//! Operations and constants for `f32` // PORT import cmath::c_float::*; import cmath::c_float_targ_consts::*; export add, sub, mul, div, rem, lt, le, gt, eq, ne; export is_positive, is_negative, is_nonpositive, is_nonnegative; export is_zero, is_infinite, is_finite; export NaN, is_NaN, infinity, neg_infinity; export consts; export logarithm; export acos, asin, atan, atan2, cbrt, ceil, copysign, cos, cosh, floor; export erf, erfc, exp, expm1, exp2, abs, abs_sub; export mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp; export lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix; export modf, pow, round, sin, sinh, sqrt, tan, tanh, tgamma, trunc; export signbit; export num; // These are not defined inside consts:: for consistency with // the integer types const NaN: f32 = 0.0_f32/0.0_f32; const infinity: f32 = 1.0_f32/0.0_f32; const neg_infinity: f32 = -1.0_f32/0.0_f32; pure fn is_NaN(f: f32) -> bool { f != f } pure fn add(x: f32, y: f32) -> f32 { ret x + y; } pure fn sub(x: f32, y: f32) -> f32 { ret x - y; } pure fn mul(x: f32, y: f32) -> f32 { ret x * y; } pure fn div(x: f32, y: f32) -> f32 { ret x / y; } pure fn rem(x: f32, y: f32) -> f32 { ret x % y; } pure fn lt(x: f32, y: f32) -> bool { ret x < y; } pure fn le(x: f32, y: f32) -> bool { ret x <= y; } pure fn eq(x: f32, y: f32) -> bool { ret x == y; } pure fn ne(x: f32, y: f32) -> bool { ret x != y; } pure fn ge(x: f32, y: f32) -> bool { ret x >= y; } pure fn gt(x: f32, y: f32) -> bool { ret x > y; } // FIXME (#1999): replace the predicates below with llvm intrinsics or // calls to the libmath macros in the rust runtime for performance. /// Returns true if `x` is a positive number, including +0.0f320 and +Infinity pure fn is_positive(x: f32) -> bool { ret x > 0.0f32 || (1.0f32/x) == infinity; } /// Returns true if `x` is a negative number, including -0.0f320 and -Infinity pure fn is_negative(x: f32) -> bool { ret x < 0.0f32 || (1.0f32/x) == neg_infinity; } /** * Returns true if `x` is a negative number, including -0.0f320 and -Infinity * * This is the same as `f32::is_negative`. */ pure fn is_nonpositive(x: f32) -> bool { ret x < 0.0f32 || (1.0f32/x) == neg_infinity; } /** * Returns true if `x` is a positive number, including +0.0f320 and +Infinity * * This is the same as `f32::is_positive`.) */ pure fn is_nonnegative(x: f32) -> bool { ret x > 0.0f32 || (1.0f32/x) == infinity; } /// Returns true if `x` is a zero number (positive or negative zero) pure fn is_zero(x: f32) -> bool { ret x == 0.0f32 || x == -0.0f32; } /// Returns true if `x`is an infinite number pure fn is_infinite(x: f32) -> bool { ret x == infinity || x == neg_infinity; } /// Returns true if `x`is a finite number pure fn is_finite(x: f32) -> bool { ret !(is_NaN(x) || is_infinite(x)); } // FIXME (#1999): add is_normal, is_subnormal, and fpclassify. /* Module: consts */ mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // constants from cmath. /// Archimedes' constant const pi: f32 = 3.14159265358979323846264338327950288_f32; /// pi/2.0 const frac_pi_2: f32 = 1.57079632679489661923132169163975144_f32; /// pi/4.0 const frac_pi_4: f32 = 0.785398163397448309615660845819875721_f32; /// 1.0/pi const frac_1_pi: f32 = 0.318309886183790671537767526745028724_f32; /// 2.0/pi const frac_2_pi: f32 = 0.636619772367581343075535053490057448_f32; /// 2.0/sqrt(pi) const frac_2_sqrtpi: f32 = 1.12837916709551257389615890312154517_f32; /// sqrt(2.0) const sqrt2: f32 = 1.41421356237309504880168872420969808_f32; /// 1.0/sqrt(2.0) const frac_1_sqrt2: f32 = 0.707106781186547524400844362104849039_f32; /// Euler's number const e: f32 = 2.71828182845904523536028747135266250_f32; /// log2(e) const log2_e: f32 = 1.44269504088896340735992468100189214_f32; /// log10(e) const log10_e: f32 = 0.434294481903251827651128918916605082_f32; /// ln(2.0) const ln_2: f32 = 0.693147180559945309417232121458176568_f32; /// ln(10.0) const ln_10: f32 = 2.30258509299404568401799145468436421_f32; } pure fn signbit(x: f32) -> int { if is_negative(x) { ret 1; } else { ret 0; } } #[cfg(target_os="linux")] #[cfg(target_os="macos")] #[cfg(target_os="win32")] pure fn logarithm(n: f32, b: f32) -> f32 { ret log2(n) / log2(b); } #[cfg(target_os="freebsd")] pure fn logarithm(n: f32, b: f32) -> f32 { // FIXME (#2000): check if it is good to use log2 instead of ln here; // in theory should be faster since the radix is 2 ret ln(n) / ln(b); } #[cfg(target_os="freebsd")] pure fn log2(n: f32) -> f32 { ret ln(n) / consts::ln_2; } impl num of num::num for f32 { fn add(&&other: f32) -> f32 { ret self + other; } fn sub(&&other: f32) -> f32 { ret self - other; } fn mul(&&other: f32) -> f32 { ret self * other; } fn div(&&other: f32) -> f32 { ret self / other; } fn modulo(&&other: f32) -> f32 { ret self % other; } fn neg() -> f32 { ret -self; } fn to_int() -> int { ret self as int; } fn from_int(n: int) -> f32 { ret n as f32; } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //