// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for 32-bits floats (`f32` type) use cmp::{Eq, Ord}; use default::Default; use intrinsics; use num::{Zero, One, Bounded, Signed, Num, Primitive}; use ops::{Add, Sub, Mul, Div, Rem, Neg}; pub static RADIX: uint = 2u; pub static MANTISSA_DIGITS: uint = 24u; pub static DIGITS: uint = 6u; pub static EPSILON: f32 = 1.19209290e-07_f32; /// Smallest finite f32 value pub static MIN_VALUE: f32 = -3.40282347e+38_f32; /// Smallest positive, normalized f32 value pub static MIN_POS_VALUE: f32 = 1.17549435e-38_f32; /// Largest finite f32 value pub static MAX_VALUE: f32 = 3.40282347e+38_f32; pub static MIN_EXP: int = -125; pub static MAX_EXP: int = 128; pub static MIN_10_EXP: int = -37; pub static MAX_10_EXP: int = 38; pub static NAN: f32 = 0.0_f32/0.0_f32; pub static INFINITY: f32 = 1.0_f32/0.0_f32; pub static NEG_INFINITY: f32 = -1.0_f32/0.0_f32; /// Various useful constants. pub mod consts { // FIXME: replace with mathematical constants from cmath. // FIXME(#5527): These constants should be deprecated once associated // constants are implemented in favour of referencing the respective members // of `Float`. /// Archimedes' constant pub static PI: f32 = 3.14159265358979323846264338327950288_f32; /// pi * 2.0 pub static PI_2: f32 = 6.28318530717958647692528676655900576_f32; /// pi/2.0 pub static FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32; /// pi/3.0 pub static FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32; /// pi/4.0 pub static FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32; /// pi/6.0 pub static FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32; /// pi/8.0 pub static FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32; /// 1.0/pi pub static FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32; /// 2.0/pi pub static FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32; /// 2.0/sqrt(pi) pub static FRAC_2_SQRTPI: f32 = 1.12837916709551257389615890312154517_f32; /// sqrt(2.0) pub static SQRT2: f32 = 1.41421356237309504880168872420969808_f32; /// 1.0/sqrt(2.0) pub static FRAC_1_SQRT2: f32 = 0.707106781186547524400844362104849039_f32; /// Euler's number pub static E: f32 = 2.71828182845904523536028747135266250_f32; /// log2(e) pub static LOG2_E: f32 = 1.44269504088896340735992468100189214_f32; /// log10(e) pub static LOG10_E: f32 = 0.434294481903251827651128918916605082_f32; /// ln(2.0) pub static LN_2: f32 = 0.693147180559945309417232121458176568_f32; /// ln(10.0) pub static LN_10: f32 = 2.30258509299404568401799145468436421_f32; } impl Ord for f32 { #[inline] fn lt(&self, other: &f32) -> bool { (*self) < (*other) } #[inline] fn le(&self, other: &f32) -> bool { (*self) <= (*other) } #[inline] fn ge(&self, other: &f32) -> bool { (*self) >= (*other) } #[inline] fn gt(&self, other: &f32) -> bool { (*self) > (*other) } } impl Eq for f32 { #[inline] fn eq(&self, other: &f32) -> bool { (*self) == (*other) } } impl Num for f32 {} impl Default for f32 { #[inline] fn default() -> f32 { 0.0 } } impl Primitive for f32 {} impl Zero for f32 { #[inline] fn zero() -> f32 { 0.0 } /// Returns true if the number is equal to either `0.0` or `-0.0` #[inline] fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 } } impl One for f32 { #[inline] fn one() -> f32 { 1.0 } } #[cfg(not(test))] impl Add for f32 { #[inline] fn add(&self, other: &f32) -> f32 { *self + *other } } #[cfg(not(test))] impl Sub for f32 { #[inline] fn sub(&self, other: &f32) -> f32 { *self - *other } } #[cfg(not(test))] impl Mul for f32 { #[inline] fn mul(&self, other: &f32) -> f32 { *self * *other } } #[cfg(not(test))] impl Div for f32 { #[inline] fn div(&self, other: &f32) -> f32 { *self / *other } } #[cfg(not(test))] impl Rem for f32 { #[inline] fn rem(&self, other: &f32) -> f32 { extern { fn fmodf(a: f32, b: f32) -> f32; } unsafe { fmodf(*self, *other) } } } #[cfg(not(test))] impl Neg for f32 { #[inline] fn neg(&self) -> f32 { -*self } } impl Signed for f32 { /// Computes the absolute value. Returns `NAN` if the number is `NAN`. #[inline] fn abs(&self) -> f32 { unsafe { intrinsics::fabsf32(*self) } } /// The positive difference of two numbers. Returns `0.0` if the number is /// less than or equal to `other`, otherwise the difference between`self` /// and `other` is returned. #[inline] fn abs_sub(&self, other: &f32) -> f32 { extern { fn fdimf(a: f32, b: f32) -> f32; } unsafe { fdimf(*self, *other) } } /// # Returns /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is NaN #[inline] fn signum(&self) -> f32 { if self != self { NAN } else { unsafe { intrinsics::copysignf32(1.0, *self) } } } /// Returns `true` if the number is positive, including `+0.0` and `INFINITY` #[inline] fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == INFINITY } /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY` #[inline] fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == NEG_INFINITY } } impl Bounded for f32 { // NOTE: this is the smallest non-infinite f32 value, *not* MIN_VALUE #[inline] fn min_value() -> f32 { -MAX_VALUE } #[inline] fn max_value() -> f32 { MAX_VALUE } }