// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Translation Item Collection //! =========================== //! //! This module is responsible for discovering all items that will contribute to //! to code generation of the crate. The important part here is that it not only //! needs to find syntax-level items (functions, structs, etc) but also all //! their monomorphized instantiations. Every non-generic, non-const function //! maps to one LLVM artifact. Every generic function can produce //! from zero to N artifacts, depending on the sets of type arguments it //! is instantiated with. //! This also applies to generic items from other crates: A generic definition //! in crate X might produce monomorphizations that are compiled into crate Y. //! We also have to collect these here. //! //! The following kinds of "translation items" are handled here: //! //! - Functions //! - Methods //! - Closures //! - Statics //! - Drop glue //! //! The following things also result in LLVM artifacts, but are not collected //! here, since we instantiate them locally on demand when needed in a given //! codegen unit: //! //! - Constants //! - Vtables //! - Object Shims //! //! //! General Algorithm //! ----------------- //! Let's define some terms first: //! //! - A "translation item" is something that results in a function or global in //! the LLVM IR of a codegen unit. Translation items do not stand on their //! own, they can reference other translation items. For example, if function //! `foo()` calls function `bar()` then the translation item for `foo()` //! references the translation item for function `bar()`. In general, the //! definition for translation item A referencing a translation item B is that //! the LLVM artifact produced for A references the LLVM artifact produced //! for B. //! //! - Translation items and the references between them for a directed graph, //! where the translation items are the nodes and references form the edges. //! Let's call this graph the "translation item graph". //! //! - The translation item graph for a program contains all translation items //! that are needed in order to produce the complete LLVM IR of the program. //! //! The purpose of the algorithm implemented in this module is to build the //! translation item graph for the current crate. It runs in two phases: //! //! 1. Discover the roots of the graph by traversing the HIR of the crate. //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR //! representation of the item corresponding to a given node, until no more //! new nodes are found. //! //! ### Discovering roots //! //! The roots of the translation item graph correspond to the non-generic //! syntactic items in the source code. We find them by walking the HIR of the //! crate, and whenever we hit upon a function, method, or static item, we //! create a translation item consisting of the items DefId and, since we only //! consider non-generic items, an empty type-substitution set. //! //! ### Finding neighbor nodes //! Given a translation item node, we can discover neighbors by inspecting its //! MIR. We walk the MIR and any time we hit upon something that signifies a //! reference to another translation item, we have found a neighbor. Since the //! translation item we are currently at is always monomorphic, we also know the //! concrete type arguments of its neighbors, and so all neighbors again will be //! monomorphic. The specific forms a reference to a neighboring node can take //! in MIR are quite diverse. Here is an overview: //! //! #### Calling Functions/Methods //! The most obvious form of one translation item referencing another is a //! function or method call (represented by a CALL terminator in MIR). But //! calls are not the only thing that might introduce a reference between two //! function translation items, and as we will see below, they are just a //! specialized of the form described next, and consequently will don't get any //! special treatment in the algorithm. //! //! #### Taking a reference to a function or method //! A function does not need to actually be called in order to be a neighbor of //! another function. It suffices to just take a reference in order to introduce //! an edge. Consider the following example: //! //! ```rust //! fn print_val(x: T) { //! println!("{}", x); //! } //! //! fn call_fn(f: &Fn(i32), x: i32) { //! f(x); //! } //! //! fn main() { //! let print_i32 = print_val::; //! call_fn(&print_i32, 0); //! } //! ``` //! The MIR of none of these functions will contain an explicit call to //! `print_val::`. Nonetheless, in order to translate this program, we need //! an instance of this function. Thus, whenever we encounter a function or //! method in operand position, we treat it as a neighbor of the current //! translation item. Calls are just a special case of that. //! //! #### Closures //! In a way, closures are a simple case. Since every closure object needs to be //! constructed somewhere, we can reliably discover them by observing //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also //! true for closures inlined from other crates. //! //! #### Drop glue //! Drop glue translation items are introduced by MIR drop-statements. The //! generated translation item will again have drop-glue item neighbors if the //! type to be dropped contains nested values that also need to be dropped. It //! might also have a function item neighbor for the explicit `Drop::drop` //! implementation of its type. //! //! #### Unsizing Casts //! A subtle way of introducing neighbor edges is by casting to a trait object. //! Since the resulting fat-pointer contains a reference to a vtable, we need to //! instantiate all object-save methods of the trait, as we need to store //! pointers to these functions even if they never get called anywhere. This can //! be seen as a special case of taking a function reference. //! //! #### Boxes //! Since `Box` expression have special compiler support, no explicit calls to //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the //! compiler will generate them. We have to observe `Rvalue::Box` expressions //! and Box-typed drop-statements for that purpose. //! //! //! Interaction with Cross-Crate Inlining //! ------------------------------------- //! The binary of a crate will not only contain machine code for the items //! defined in the source code of that crate. It will also contain monomorphic //! instantiations of any extern generic functions and of functions marked with //! #[inline]. //! The collection algorithm handles this more or less transparently. If it is //! about to create a translation item for something with an external `DefId`, //! it will take a look if the MIR for that item is available, and if so just //! proceed normally. If the MIR is not available, it assumes that that item is //! just linked to and no node is created; which is exactly what we want, since //! no machine code should be generated in the current crate for such an item. //! //! Eager and Lazy Collection Mode //! ------------------------------ //! Translation item collection can be performed in one of two modes: //! //! - Lazy mode means that items will only be instantiated when actually //! referenced. The goal is to produce the least amount of machine code //! possible. //! //! - Eager mode is meant to be used in conjunction with incremental compilation //! where a stable set of translation items is more important than a minimal //! one. Thus, eager mode will instantiate drop-glue for every drop-able type //! in the crate, even of no drop call for that type exists (yet). It will //! also instantiate default implementations of trait methods, something that //! otherwise is only done on demand. //! //! //! Open Issues //! ----------- //! Some things are not yet fully implemented in the current version of this //! module. //! //! ### Initializers of Constants and Statics //! Since no MIR is constructed yet for initializer expressions of constants and //! statics we cannot inspect these properly. //! //! ### Const Fns //! Ideally, no translation item should be generated for const fns unless there //! is a call to them that cannot be evaluated at compile time. At the moment //! this is not implemented however: a translation item will be produced //! regardless of whether it is actually needed or not. use rustc_front::hir; use rustc_front::intravisit as hir_visit; use rustc::front::map as hir_map; use rustc::middle::def_id::DefId; use rustc::middle::lang_items::{ExchangeFreeFnLangItem, ExchangeMallocFnLangItem}; use rustc::middle::{ty, traits}; use rustc::middle::subst::{self, Substs, Subst}; use rustc::middle::ty::adjustment::CustomCoerceUnsized; use rustc::middle::ty::fold::TypeFoldable; use rustc::mir::repr as mir; use rustc::mir::visit as mir_visit; use rustc::mir::visit::Visitor as MirVisitor; use syntax::ast::{self, NodeId}; use syntax::codemap::DUMMY_SP; use syntax::errors; use syntax::parse::token; use trans::base::custom_coerce_unsize_info; use trans::context::CrateContext; use trans::common::{fulfill_obligation, normalize_and_test_predicates, type_is_sized}; use trans::glue; use trans::meth; use trans::monomorphize; use util::nodemap::{FnvHashSet, FnvHashMap, DefIdMap}; use std::hash::{Hash, Hasher}; use std::rc::Rc; #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)] pub enum TransItemCollectionMode { Eager, Lazy } #[derive(Eq, Clone, Copy, Debug)] pub enum TransItem<'tcx> { DropGlue(ty::Ty<'tcx>), Fn { def_id: DefId, substs: &'tcx Substs<'tcx> }, Static(NodeId) } impl<'tcx> Hash for TransItem<'tcx> { fn hash(&self, s: &mut H) { match *self { TransItem::DropGlue(t) => { 0u8.hash(s); t.hash(s); }, TransItem::Fn { def_id, substs } => { 1u8.hash(s); def_id.hash(s); (substs as *const Substs<'tcx> as usize).hash(s); } TransItem::Static(node_id) => { 3u8.hash(s); node_id.hash(s); } }; } } impl<'tcx> PartialEq for TransItem<'tcx> { fn eq(&self, other: &Self) -> bool { match (*self, *other) { (TransItem::DropGlue(t1), TransItem::DropGlue(t2)) => t1 == t2, (TransItem::Fn { def_id: def_id1, substs: substs1 }, TransItem::Fn { def_id: def_id2, substs: substs2 }) => { def_id1 == def_id2 && substs1 == substs2 }, (TransItem::Static(node_id1), TransItem::Static(node_id2)) => { node_id1 == node_id2 }, _ => false } } } pub fn collect_crate_translation_items<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, mode: TransItemCollectionMode) -> FnvHashSet> { // We are not tracking dependencies of this pass as it has to be re-executed // every time no matter what. ccx.tcx().dep_graph.with_ignore(|| { let roots = collect_roots(ccx, mode); debug!("Building translation item graph, beginning at roots"); let mut visited = FnvHashSet(); let mut recursion_depths = DefIdMap(); let mut mir_cache = DefIdMap(); for root in roots { collect_items_rec(ccx, root, &mut visited, &mut recursion_depths, &mut mir_cache); } visited }) } // Find all non-generic items by walking the HIR. These items serve as roots to // start monomorphizing from. fn collect_roots<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, mode: TransItemCollectionMode) -> Vec> { debug!("Collecting roots"); let mut roots = Vec::new(); { let mut visitor = RootCollector { ccx: ccx, mode: mode, output: &mut roots, enclosing_item: None, trans_empty_substs: ccx.tcx().mk_substs(Substs::trans_empty()), }; ccx.tcx().map.krate().visit_all_items(&mut visitor); } roots } #[derive(Clone)] enum CachedMir<'mir, 'tcx: 'mir> { Ref(&'mir mir::Mir<'tcx>), Owned(Rc>) } impl<'mir, 'tcx: 'mir> CachedMir<'mir, 'tcx> { fn get_ref<'a>(&'a self) -> &'a mir::Mir<'tcx> { match *self { CachedMir::Ref(r) => r, CachedMir::Owned(ref rc) => &**rc, } } } // Collect all monomorphized translation items reachable from `starting_point` fn collect_items_rec<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>, starting_point: TransItem<'tcx>, visited: &mut FnvHashSet>, recursion_depths: &mut DefIdMap, mir_cache: &mut DefIdMap>) { if !visited.insert(starting_point.clone()) { // We've been here already, no need to search again. return; } debug!("BEGIN collect_items_rec({})", starting_point.to_string(ccx)); let mut neighbors = Vec::new(); let recursion_depth_reset; match starting_point { TransItem::DropGlue(t) => { find_drop_glue_neighbors(ccx, t, &mut neighbors); recursion_depth_reset = None; } TransItem::Static(_) => { recursion_depth_reset = None; } TransItem::Fn { def_id, substs: ref param_substs } => { // Keep track of the monomorphization recursion depth recursion_depth_reset = Some(check_recursion_limit(ccx, def_id, recursion_depths)); // Scan the MIR in order to find function calls, closures, and // drop-glue let mir = load_mir(ccx, def_id, mir_cache); let mut visitor = MirNeighborCollector { ccx: ccx, mir: mir.get_ref(), output: &mut neighbors, param_substs: param_substs }; visitor.visit_mir(mir.get_ref()); } } for neighbour in neighbors { collect_items_rec(ccx, neighbour, visited, recursion_depths, mir_cache); } if let Some((def_id, depth)) = recursion_depth_reset { recursion_depths.insert(def_id, depth); } debug!("END collect_items_rec({})", starting_point.to_string(ccx)); } fn load_mir<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId, mir_cache: &mut DefIdMap>) -> CachedMir<'a, 'tcx> { let mir_not_found_error_message = || { format!("Could not find MIR for function: {}", ccx.tcx().item_path_str(def_id)) }; if def_id.is_local() { let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap(); let mir_opt = ccx.mir_map().map.get(&node_id); let mir = errors::expect(ccx.sess().diagnostic(), mir_opt, mir_not_found_error_message); CachedMir::Ref(mir) } else { if let Some(mir) = mir_cache.get(&def_id) { return mir.clone(); } let mir_opt = ccx.sess().cstore.maybe_get_item_mir(ccx.tcx(), def_id); let mir = errors::expect(ccx.sess().diagnostic(), mir_opt, mir_not_found_error_message); let cached = CachedMir::Owned(Rc::new(mir)); mir_cache.insert(def_id, cached.clone()); cached } } fn check_recursion_limit<'a, 'tcx: 'a>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId, recursion_depths: &mut DefIdMap) -> (DefId, usize) { let recursion_depth = recursion_depths.get(&def_id) .map(|x| *x) .unwrap_or(0); debug!(" => recursion depth={}", recursion_depth); // Code that needs to instantiate the same function recursively // more than the recursion limit is assumed to be causing an // infinite expansion. if recursion_depth > ccx.sess().recursion_limit.get() { if let Some(node_id) = ccx.tcx().map.as_local_node_id(def_id) { ccx.sess().span_fatal(ccx.tcx().map.span(node_id), "reached the recursion limit during monomorphization"); } else { let error = format!("reached the recursion limit during \ monomorphization of '{}'", ccx.tcx().item_path_str(def_id)); ccx.sess().fatal(&error[..]); } } recursion_depths.insert(def_id, recursion_depth + 1); (def_id, recursion_depth) } struct MirNeighborCollector<'a, 'tcx: 'a> { ccx: &'a CrateContext<'a, 'tcx>, mir: &'a mir::Mir<'tcx>, output: &'a mut Vec>, param_substs: &'tcx Substs<'tcx> } impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>) { debug!("visiting rvalue {:?}", *rvalue); match *rvalue { mir::Rvalue::Aggregate(mir::AggregateKind::Closure(def_id, ref substs), _) => { assert!(can_have_local_instance(self.ccx, def_id)); let trans_item = create_fn_trans_item(self.ccx, def_id, substs.func_substs, self.param_substs); self.output.push(trans_item); } // When doing an cast from a regular pointer to a fat pointer, we // have to instantiate all methods of the trait being cast to, so we // can build the appropriate vtable. mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => { let target_ty = monomorphize::apply_param_substs(self.ccx.tcx(), self.param_substs, &target_ty); let source_ty = self.mir.operand_ty(self.ccx.tcx(), operand); let source_ty = monomorphize::apply_param_substs(self.ccx.tcx(), self.param_substs, &source_ty); let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.ccx, source_ty, target_ty); // This could also be a different Unsize instruction, like // from a fixed sized array to a slice. But we are only // interested in things that produce a vtable. if target_ty.is_trait() && !source_ty.is_trait() { create_trans_items_for_vtable_methods(self.ccx, target_ty, source_ty, self.output); } } mir::Rvalue::Box(_) => { let exchange_malloc_fn_def_id = self.ccx .tcx() .lang_items .require(ExchangeMallocFnLangItem) .expect("Could not find ExchangeMallocFnLangItem"); assert!(can_have_local_instance(self.ccx, exchange_malloc_fn_def_id)); let exchange_malloc_fn_trans_item = create_fn_trans_item(self.ccx, exchange_malloc_fn_def_id, &Substs::trans_empty(), self.param_substs); self.output.push(exchange_malloc_fn_trans_item); } _ => { /* not interesting */ } } self.super_rvalue(rvalue); } fn visit_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>, context: mir_visit::LvalueContext) { debug!("visiting lvalue {:?}", *lvalue); if let mir_visit::LvalueContext::Drop = context { let ty = self.mir.lvalue_ty(self.ccx.tcx(), lvalue) .to_ty(self.ccx.tcx()); let ty = monomorphize::apply_param_substs(self.ccx.tcx(), self.param_substs, &ty); let ty = self.ccx.tcx().erase_regions(&ty); let ty = glue::get_drop_glue_type(self.ccx, ty); self.output.push(TransItem::DropGlue(ty)); } self.super_lvalue(lvalue, context); } fn visit_operand(&mut self, operand: &mir::Operand<'tcx>) { debug!("visiting operand {:?}", *operand); let callee = match *operand { mir::Operand::Constant(mir::Constant { literal: mir::Literal::Item { def_id, kind, substs }, .. }) if is_function_or_method(kind) => Some((def_id, substs)), _ => None }; if let Some((callee_def_id, callee_substs)) = callee { debug!(" => operand is callable"); // `callee_def_id` might refer to a trait method instead of a // concrete implementation, so we have to find the actual // implementation. For example, the call might look like // // std::cmp::partial_cmp(0i32, 1i32) // // Calling do_static_dispatch() here will map the def_id of // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp` let dispatched = do_static_dispatch(self.ccx, callee_def_id, callee_substs, self.param_substs); if let Some((callee_def_id, callee_substs)) = dispatched { // if we have a concrete impl (which we might not have // in the case of something compiler generated like an // object shim or a closure that is handled differently), // we check if the callee is something that will actually // result in a translation item ... if can_result_in_trans_item(self.ccx, callee_def_id) { // ... and create one if it does. let trans_item = create_fn_trans_item(self.ccx, callee_def_id, callee_substs, self.param_substs); self.output.push(trans_item); } } } self.super_operand(operand); fn is_function_or_method(item_kind: mir::ItemKind) -> bool { match item_kind { mir::ItemKind::Constant => false, mir::ItemKind::Function | mir::ItemKind::Method => true } } fn can_result_in_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId) -> bool { if !match ccx.tcx().lookup_item_type(def_id).ty.sty { ty::TyBareFn(Some(def_id), _) => { // Some constructors also have type TyBareFn but they are // always instantiated inline and don't result in // translation item. match ccx.tcx().map.get_if_local(def_id) { Some(hir_map::NodeVariant(_)) | Some(hir_map::NodeStructCtor(_)) => false, Some(_) => true, None => { ccx.sess().cstore.variant_kind(def_id).is_none() } } } ty::TyClosure(..) => true, _ => false } { return false; } can_have_local_instance(ccx, def_id) } } } fn can_have_local_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId) -> bool { // Take a look if we have the definition available. If not, we // will not emit code for this item in the local crate, and thus // don't create a translation item for it. def_id.is_local() || ccx.sess().cstore.is_item_mir_available(def_id) } fn find_drop_glue_neighbors<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: ty::Ty<'tcx>, output: &mut Vec>) { debug!("find_drop_glue_neighbors: {}", type_to_string(ccx, ty)); // Make sure the exchange_free_fn() lang-item gets translated if // there is a boxed value. if let ty::TyBox(_) = ty.sty { let exchange_free_fn_def_id = ccx.tcx() .lang_items .require(ExchangeFreeFnLangItem) .expect("Could not find ExchangeFreeFnLangItem"); assert!(can_have_local_instance(ccx, exchange_free_fn_def_id)); let exchange_free_fn_trans_item = create_fn_trans_item(ccx, exchange_free_fn_def_id, &Substs::trans_empty(), &Substs::trans_empty()); output.push(exchange_free_fn_trans_item); } // If the type implements Drop, also add a translation item for the // monomorphized Drop::drop() implementation. let destructor_did = match ty.sty { ty::TyStruct(def, _) | ty::TyEnum(def, _) => def.destructor(), _ => None }; if let Some(destructor_did) = destructor_did { use rustc::middle::ty::ToPolyTraitRef; let drop_trait_def_id = ccx.tcx() .lang_items .drop_trait() .unwrap(); let self_type_substs = ccx.tcx().mk_substs( Substs::trans_empty().with_self_ty(ty)); let trait_ref = ty::TraitRef { def_id: drop_trait_def_id, substs: self_type_substs, }.to_poly_trait_ref(); let substs = match fulfill_obligation(ccx, DUMMY_SP, trait_ref) { traits::VtableImpl(data) => data.substs, _ => unreachable!() }; if can_have_local_instance(ccx, destructor_did) { let trans_item = create_fn_trans_item(ccx, destructor_did, ccx.tcx().mk_substs(substs), &Substs::trans_empty()); output.push(trans_item); } } // Finally add the types of nested values match ty.sty { ty::TyBool | ty::TyChar | ty::TyInt(_) | ty::TyUint(_) | ty::TyStr | ty::TyFloat(_) | ty::TyRawPtr(_) | ty::TyRef(..) | ty::TyBareFn(..) | ty::TySlice(_) | ty::TyTrait(_) => { /* nothing to do */ } ty::TyStruct(ref adt_def, substs) | ty::TyEnum(ref adt_def, substs) => { for field in adt_def.all_fields() { let field_type = monomorphize::apply_param_substs(ccx.tcx(), substs, &field.unsubst_ty()); let field_type = glue::get_drop_glue_type(ccx, field_type); if glue::type_needs_drop(ccx.tcx(), field_type) { output.push(TransItem::DropGlue(field_type)); } } } ty::TyClosure(_, ref substs) => { for upvar_ty in &substs.upvar_tys { let upvar_ty = glue::get_drop_glue_type(ccx, upvar_ty); if glue::type_needs_drop(ccx.tcx(), upvar_ty) { output.push(TransItem::DropGlue(upvar_ty)); } } } ty::TyBox(inner_type) | ty::TyArray(inner_type, _) => { let inner_type = glue::get_drop_glue_type(ccx, inner_type); if glue::type_needs_drop(ccx.tcx(), inner_type) { output.push(TransItem::DropGlue(inner_type)); } } ty::TyTuple(ref args) => { for arg in args { let arg = glue::get_drop_glue_type(ccx, arg); if glue::type_needs_drop(ccx.tcx(), arg) { output.push(TransItem::DropGlue(arg)); } } } ty::TyProjection(_) | ty::TyParam(_) | ty::TyInfer(_) | ty::TyError => { ccx.sess().bug("encountered unexpected type"); } } } fn do_static_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_def_id: DefId, fn_substs: &'tcx Substs<'tcx>, param_substs: &'tcx Substs<'tcx>) -> Option<(DefId, &'tcx Substs<'tcx>)> { debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?}, param_substs={:?})", def_id_to_string(ccx, fn_def_id, None), fn_substs, param_substs); let is_trait_method = ccx.tcx().trait_of_item(fn_def_id).is_some(); if is_trait_method { match ccx.tcx().impl_or_trait_item(fn_def_id) { ty::MethodTraitItem(ref method) => { match method.container { ty::TraitContainer(trait_def_id) => { debug!(" => trait method, attempting to find impl"); do_static_trait_method_dispatch(ccx, method, trait_def_id, fn_substs, param_substs) } ty::ImplContainer(_) => { // This is already a concrete implementation debug!(" => impl method"); Some((fn_def_id, fn_substs)) } } } _ => unreachable!() } } else { debug!(" => regular function"); // The function is not part of an impl or trait, no dispatching // to be done Some((fn_def_id, fn_substs)) } } // Given a trait-method and substitution information, find out the actual // implementation of the trait method. fn do_static_trait_method_dispatch<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, trait_method: &ty::Method, trait_id: DefId, callee_substs: &'tcx Substs<'tcx>, param_substs: &'tcx Substs<'tcx>) -> Option<(DefId, &'tcx Substs<'tcx>)> { let tcx = ccx.tcx(); debug!("do_static_trait_method_dispatch(trait_method={}, \ trait_id={}, \ callee_substs={:?}, \ param_substs={:?}", def_id_to_string(ccx, trait_method.def_id, None), def_id_to_string(ccx, trait_id, None), callee_substs, param_substs); let rcvr_substs = monomorphize::apply_param_substs(tcx, param_substs, callee_substs); let trait_ref = ty::Binder(rcvr_substs.to_trait_ref(tcx, trait_id)); let vtbl = fulfill_obligation(ccx, DUMMY_SP, trait_ref); // Now that we know which impl is being used, we can dispatch to // the actual function: match vtbl { traits::VtableImpl(traits::VtableImplData { impl_def_id: impl_did, substs: impl_substs, nested: _ }) => { let callee_substs = impl_substs.with_method_from(&rcvr_substs); let impl_method = tcx.get_impl_method(impl_did, callee_substs, trait_method.name); Some((impl_method.method.def_id, tcx.mk_substs(impl_method.substs))) } // If we have a closure or a function pointer, we will also encounter // the concrete closure/function somewhere else (during closure or fn // pointer construction). That's where we track those things. traits::VtableClosure(..) | traits::VtableFnPointer(..) | traits::VtableObject(..) => { None } _ => { tcx.sess.bug(&format!("static call to invalid vtable: {:?}", vtbl)) } } } /// For given pair of source and target type that occur in an unsizing coercion, /// this function finds the pair of types that determines the vtable linking /// them. /// /// For example, the source type might be `&SomeStruct` and the target type\ /// might be `&SomeTrait` in a cast like: /// /// let src: &SomeStruct = ...; /// let target = src as &SomeTrait; /// /// Then the output of this function would be (SomeStruct, SomeTrait) since for /// constructing the `target` fat-pointer we need the vtable for that pair. /// /// Things can get more complicated though because there's also the case where /// the unsized type occurs as a field: /// /// ```rust /// struct ComplexStruct { /// a: u32, /// b: f64, /// c: T /// } /// ``` /// /// In this case, if `T` is sized, `&ComplexStruct` is a thin pointer. If `T` /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is /// for the pair of `T` (which is a trait) and the concrete type that `T` was /// originally coerced from: /// /// let src: &ComplexStruct = ...; /// let target = src as &ComplexStruct; /// /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair /// `(SomeStruct, SomeTrait)`. /// /// Finally, there is also the case of custom unsizing coercions, e.g. for /// smart pointers such as `Rc` and `Arc`. fn find_vtable_types_for_unsizing<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, source_ty: ty::Ty<'tcx>, target_ty: ty::Ty<'tcx>) -> (ty::Ty<'tcx>, ty::Ty<'tcx>) { match (&source_ty.sty, &target_ty.sty) { (&ty::TyBox(a), &ty::TyBox(b)) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) | (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => { let (inner_source, inner_target) = (a, b); if !type_is_sized(ccx.tcx(), inner_source) { (inner_source, inner_target) } else { ccx.tcx().struct_lockstep_tails(inner_source, inner_target) } } (&ty::TyStruct(source_adt_def, source_substs), &ty::TyStruct(target_adt_def, target_substs)) => { assert_eq!(source_adt_def, target_adt_def); let kind = custom_coerce_unsize_info(ccx, source_ty, target_ty); let coerce_index = match kind { CustomCoerceUnsized::Struct(i) => i }; let source_fields = &source_adt_def.struct_variant().fields; let target_fields = &target_adt_def.struct_variant().fields; assert!(coerce_index < source_fields.len() && source_fields.len() == target_fields.len()); find_vtable_types_for_unsizing(ccx, source_fields[coerce_index].ty(ccx.tcx(), source_substs), target_fields[coerce_index].ty(ccx.tcx(), target_substs)) } _ => ccx.sess() .bug(&format!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", source_ty, target_ty)) } } fn create_fn_trans_item<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId, fn_substs: &Substs<'tcx>, param_substs: &Substs<'tcx>) -> TransItem<'tcx> { debug!("create_fn_trans_item(def_id={}, fn_substs={:?}, param_substs={:?})", def_id_to_string(ccx, def_id, None), fn_substs, param_substs); // We only get here, if fn_def_id either designates a local item or // an inlineable external item. Non-inlineable external items are // ignored because we don't want to generate any code for them. let concrete_substs = monomorphize::apply_param_substs(ccx.tcx(), param_substs, fn_substs); let concrete_substs = ccx.tcx().erase_regions(&concrete_substs); let trans_item = TransItem::Fn { def_id: def_id, substs: ccx.tcx().mk_substs(concrete_substs), }; return trans_item; } /// Creates a `TransItem` for each method that is referenced by the vtable for /// the given trait/impl pair. fn create_trans_items_for_vtable_methods<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, trait_ty: ty::Ty<'tcx>, impl_ty: ty::Ty<'tcx>, output: &mut Vec>) { assert!(!trait_ty.needs_subst() && !impl_ty.needs_subst()); if let ty::TyTrait(ref trait_ty) = trait_ty.sty { let poly_trait_ref = trait_ty.principal_trait_ref_with_self_ty(ccx.tcx(), impl_ty); // Walk all methods of the trait, including those of its supertraits for trait_ref in traits::supertraits(ccx.tcx(), poly_trait_ref) { let vtable = fulfill_obligation(ccx, DUMMY_SP, trait_ref); match vtable { traits::VtableImpl( traits::VtableImplData { impl_def_id, substs, nested: _ }) => { let items = meth::get_vtable_methods(ccx, impl_def_id, substs) .into_iter() // filter out None values .filter_map(|opt_impl_method| opt_impl_method) // create translation items .filter_map(|impl_method| { if can_have_local_instance(ccx, impl_method.method.def_id) { let substs = ccx.tcx().mk_substs(impl_method.substs); Some(create_fn_trans_item(ccx, impl_method.method.def_id, substs, &Substs::trans_empty())) } else { None } }) .collect::>(); output.extend(items.into_iter()); } _ => { /* */ } } } } } //=----------------------------------------------------------------------------- // Root Collection //=----------------------------------------------------------------------------- struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> { ccx: &'b CrateContext<'a, 'tcx>, mode: TransItemCollectionMode, output: &'b mut Vec>, enclosing_item: Option<&'tcx hir::Item>, trans_empty_substs: &'tcx Substs<'tcx> } impl<'b, 'a, 'v> hir_visit::Visitor<'v> for RootCollector<'b, 'a, 'v> { fn visit_item(&mut self, item: &'v hir::Item) { let old_enclosing_item = self.enclosing_item; self.enclosing_item = Some(item); match item.node { hir::ItemExternCrate(..) | hir::ItemUse(..) | hir::ItemForeignMod(..) | hir::ItemTy(..) | hir::ItemDefaultImpl(..) | hir::ItemTrait(..) | hir::ItemConst(..) | hir::ItemMod(..) => { // Nothing to do, just keep recursing... } hir::ItemImpl(..) => { if self.mode == TransItemCollectionMode::Eager { create_trans_items_for_default_impls(self.ccx, item, self.trans_empty_substs, self.output); } } hir::ItemEnum(_, ref generics) | hir::ItemStruct(_, ref generics) => { if !generics.is_parameterized() { let ty = { let tables = self.ccx.tcx().tables.borrow(); tables.node_types[&item.id] }; if self.mode == TransItemCollectionMode::Eager { debug!("RootCollector: ADT drop-glue for {}", def_id_to_string(self.ccx, self.ccx.tcx().map.local_def_id(item.id), None)); let ty = glue::get_drop_glue_type(self.ccx, ty); self.output.push(TransItem::DropGlue(ty)); } } } hir::ItemStatic(..) => { debug!("RootCollector: ItemStatic({})", def_id_to_string(self.ccx, self.ccx.tcx().map.local_def_id(item.id), None)); self.output.push(TransItem::Static(item.id)); } hir::ItemFn(_, _, constness, _, ref generics, _) => { if !generics.is_type_parameterized() && constness == hir::Constness::NotConst { let def_id = self.ccx.tcx().map.local_def_id(item.id); debug!("RootCollector: ItemFn({})", def_id_to_string(self.ccx, def_id, None)); self.output.push(TransItem::Fn { def_id: def_id, substs: self.trans_empty_substs }); } } } hir_visit::walk_item(self, item); self.enclosing_item = old_enclosing_item; } fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) { match ii.node { hir::ImplItemKind::Method(hir::MethodSig { ref generics, constness, .. }, _) if constness == hir::Constness::NotConst => { let hir_map = &self.ccx.tcx().map; let parent_node_id = hir_map.get_parent_node(ii.id); let is_impl_generic = match hir_map.expect_item(parent_node_id) { &hir::Item { node: hir::ItemImpl(_, _, ref generics, _, _, _), .. } => { generics.is_type_parameterized() } _ => { unreachable!() } }; if !generics.is_type_parameterized() && !is_impl_generic { let def_id = self.ccx.tcx().map.local_def_id(ii.id); debug!("RootCollector: MethodImplItem({})", def_id_to_string(self.ccx, def_id, None)); self.output.push(TransItem::Fn { def_id: def_id, substs: self.trans_empty_substs }); } } _ => { /* Nothing to do here */ } } hir_visit::walk_impl_item(self, ii) } } fn create_trans_items_for_default_impls<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, item: &'tcx hir::Item, trans_empty_substs: &'tcx Substs<'tcx>, output: &mut Vec>) { match item.node { hir::ItemImpl(_, _, ref generics, _, _, ref items) => { if generics.is_type_parameterized() { return } let tcx = ccx.tcx(); let impl_def_id = tcx.map.local_def_id(item.id); debug!("create_trans_items_for_default_impls(item={})", def_id_to_string(ccx, impl_def_id, None)); if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) { let default_impls = tcx.provided_trait_methods(trait_ref.def_id); let callee_substs = tcx.mk_substs(tcx.erase_regions(trait_ref.substs)); let overridden_methods: FnvHashSet<_> = items.iter() .map(|item| item.name) .collect(); for default_impl in default_impls { if overridden_methods.contains(&default_impl.name) { continue; } if default_impl.generics.has_type_params(subst::FnSpace) { continue; } // The substitutions we have are on the impl, so we grab // the method type from the impl to substitute into. let mth = tcx.get_impl_method(impl_def_id, callee_substs.clone(), default_impl.name); assert!(mth.is_provided); let predicates = mth.method.predicates.predicates.subst(tcx, &mth.substs); if !normalize_and_test_predicates(ccx, predicates.into_vec()) { continue; } if can_have_local_instance(ccx, default_impl.def_id) { let item = create_fn_trans_item(ccx, default_impl.def_id, callee_substs, trans_empty_substs); output.push(item); } } } } _ => { unreachable!() } } } //=----------------------------------------------------------------------------- // TransItem String Keys //=----------------------------------------------------------------------------- // The code below allows for producing a unique string key for a trans item. // These keys are used by the handwritten auto-tests, so they need to be // predictable and human-readable. // // Note: A lot of this could looks very similar to what's already in the // ppaux module. It would be good to refactor things so we only have one // parameterizable implementation for printing types. /// Same as `unique_type_name()` but with the result pushed onto the given /// `output` parameter. pub fn push_unique_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: ty::Ty<'tcx>, output: &mut String) { match t.sty { ty::TyBool => output.push_str("bool"), ty::TyChar => output.push_str("char"), ty::TyStr => output.push_str("str"), ty::TyInt(ast::TyIs) => output.push_str("isize"), ty::TyInt(ast::TyI8) => output.push_str("i8"), ty::TyInt(ast::TyI16) => output.push_str("i16"), ty::TyInt(ast::TyI32) => output.push_str("i32"), ty::TyInt(ast::TyI64) => output.push_str("i64"), ty::TyUint(ast::TyUs) => output.push_str("usize"), ty::TyUint(ast::TyU8) => output.push_str("u8"), ty::TyUint(ast::TyU16) => output.push_str("u16"), ty::TyUint(ast::TyU32) => output.push_str("u32"), ty::TyUint(ast::TyU64) => output.push_str("u64"), ty::TyFloat(ast::TyF32) => output.push_str("f32"), ty::TyFloat(ast::TyF64) => output.push_str("f64"), ty::TyStruct(adt_def, substs) | ty::TyEnum(adt_def, substs) => { push_item_name(cx, adt_def.did, output); push_type_params(cx, substs, &[], output); }, ty::TyTuple(ref component_types) => { output.push('('); for &component_type in component_types { push_unique_type_name(cx, component_type, output); output.push_str(", "); } if !component_types.is_empty() { output.pop(); output.pop(); } output.push(')'); }, ty::TyBox(inner_type) => { output.push_str("Box<"); push_unique_type_name(cx, inner_type, output); output.push('>'); }, ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => { output.push('*'); match mutbl { hir::MutImmutable => output.push_str("const "), hir::MutMutable => output.push_str("mut "), } push_unique_type_name(cx, inner_type, output); }, ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => { output.push('&'); if mutbl == hir::MutMutable { output.push_str("mut "); } push_unique_type_name(cx, inner_type, output); }, ty::TyArray(inner_type, len) => { output.push('['); push_unique_type_name(cx, inner_type, output); output.push_str(&format!("; {}", len)); output.push(']'); }, ty::TySlice(inner_type) => { output.push('['); push_unique_type_name(cx, inner_type, output); output.push(']'); }, ty::TyTrait(ref trait_data) => { push_item_name(cx, trait_data.principal.skip_binder().def_id, output); push_type_params(cx, &trait_data.principal.skip_binder().substs, &trait_data.bounds.projection_bounds, output); }, ty::TyBareFn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => { if unsafety == hir::Unsafety::Unsafe { output.push_str("unsafe "); } if abi != ::syntax::abi::Rust { output.push_str("extern \""); output.push_str(abi.name()); output.push_str("\" "); } output.push_str("fn("); let sig = cx.tcx().erase_late_bound_regions(sig); if !sig.inputs.is_empty() { for ¶meter_type in &sig.inputs { push_unique_type_name(cx, parameter_type, output); output.push_str(", "); } output.pop(); output.pop(); } if sig.variadic { if !sig.inputs.is_empty() { output.push_str(", ..."); } else { output.push_str("..."); } } output.push(')'); match sig.output { ty::FnConverging(result_type) if result_type.is_nil() => {} ty::FnConverging(result_type) => { output.push_str(" -> "); push_unique_type_name(cx, result_type, output); } ty::FnDiverging => { output.push_str(" -> !"); } } }, ty::TyClosure(def_id, ref closure_substs) => { push_item_name(cx, def_id, output); output.push_str("{"); output.push_str(&format!("{}:{}", def_id.krate, def_id.index.as_usize())); output.push_str("}"); push_type_params(cx, closure_substs.func_substs, &[], output); } ty::TyError | ty::TyInfer(_) | ty::TyProjection(..) | ty::TyParam(_) => { cx.sess().bug(&format!("debuginfo: Trying to create type name for \ unexpected type: {:?}", t)); } } } fn push_item_name(ccx: &CrateContext, def_id: DefId, output: &mut String) { if def_id.is_local() { let node_id = ccx.tcx().map.as_local_node_id(def_id).unwrap(); let inlined_from = ccx.external_srcs() .borrow() .get(&node_id) .map(|def_id| *def_id); if let Some(extern_def_id) = inlined_from { push_item_name(ccx, extern_def_id, output); return; } output.push_str(&ccx.link_meta().crate_name); output.push_str("::"); } for part in ccx.tcx().def_path(def_id) { output.push_str(&format!("{}[{}]::", part.data.as_interned_str(), part.disambiguator)); } output.pop(); output.pop(); } fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, substs: &Substs<'tcx>, projections: &[ty::PolyProjectionPredicate<'tcx>], output: &mut String) { if substs.types.is_empty() && projections.is_empty() { return; } output.push('<'); for &type_parameter in &substs.types { push_unique_type_name(cx, type_parameter, output); output.push_str(", "); } for projection in projections { let projection = projection.skip_binder(); let name = token::get_ident_interner().get(projection.projection_ty.item_name); output.push_str(&name[..]); output.push_str("="); push_unique_type_name(cx, projection.ty, output); output.push_str(", "); } output.pop(); output.pop(); output.push('>'); } fn push_def_id_as_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId, substs: Option<&Substs<'tcx>>, output: &mut String) { push_item_name(ccx, def_id, output); if let Some(substs) = substs { push_type_params(ccx, substs, &[], output); } } fn def_id_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: DefId, substs: Option<&Substs<'tcx>>) -> String { let mut output = String::new(); push_def_id_as_string(ccx, def_id, substs, &mut output); output } fn type_to_string<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: ty::Ty<'tcx>) -> String { let mut output = String::new(); push_unique_type_name(ccx, ty, &mut output); output } impl<'tcx> TransItem<'tcx> { pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String { let hir_map = &ccx.tcx().map; return match *self { TransItem::DropGlue(t) => { let mut s = String::with_capacity(32); s.push_str("drop-glue "); push_unique_type_name(ccx, t, &mut s); s } TransItem::Fn { def_id, ref substs } => { to_string_internal(ccx, "fn ", def_id, Some(substs)) }, TransItem::Static(node_id) => { let def_id = hir_map.local_def_id(node_id); to_string_internal(ccx, "static ", def_id, None) }, }; fn to_string_internal<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, prefix: &str, def_id: DefId, substs: Option<&Substs<'tcx>>) -> String { let mut result = String::with_capacity(32); result.push_str(prefix); push_def_id_as_string(ccx, def_id, substs, &mut result); result } } fn to_raw_string(&self) -> String { match *self { TransItem::DropGlue(t) => { format!("DropGlue({})", t as *const _ as usize) } TransItem::Fn { def_id, substs } => { format!("Fn({:?}, {})", def_id, substs as *const _ as usize) } TransItem::Static(id) => { format!("Static({:?})", id) } } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum TransItemState { PredictedAndGenerated, PredictedButNotGenerated, NotPredictedButGenerated, } pub fn collecting_debug_information(ccx: &CrateContext) -> bool { return cfg!(debug_assertions) && ccx.sess().opts.debugging_opts.print_trans_items.is_some(); } pub fn print_collection_results<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>) { use std::hash::{Hash, SipHasher, Hasher}; if !collecting_debug_information(ccx) { return; } fn hash(t: &T) -> u64 { let mut s = SipHasher::new(); t.hash(&mut s); s.finish() } let trans_items = ccx.translation_items().borrow(); { // Check for duplicate item keys let mut item_keys = FnvHashMap(); for (item, item_state) in trans_items.iter() { let k = item.to_string(&ccx); if item_keys.contains_key(&k) { let prev: (TransItem, TransItemState) = item_keys[&k]; debug!("DUPLICATE KEY: {}", k); debug!(" (1) {:?}, {:?}, hash: {}, raw: {}", prev.0, prev.1, hash(&prev.0), prev.0.to_raw_string()); debug!(" (2) {:?}, {:?}, hash: {}, raw: {}", *item, *item_state, hash(item), item.to_raw_string()); } else { item_keys.insert(k, (*item, *item_state)); } } } let mut predicted_but_not_generated = FnvHashSet(); let mut not_predicted_but_generated = FnvHashSet(); let mut predicted = FnvHashSet(); let mut generated = FnvHashSet(); for (item, item_state) in trans_items.iter() { let item_key = item.to_string(&ccx); match *item_state { TransItemState::PredictedAndGenerated => { predicted.insert(item_key.clone()); generated.insert(item_key); } TransItemState::PredictedButNotGenerated => { predicted_but_not_generated.insert(item_key.clone()); predicted.insert(item_key); } TransItemState::NotPredictedButGenerated => { not_predicted_but_generated.insert(item_key.clone()); generated.insert(item_key); } } } debug!("Total number of translation items predicted: {}", predicted.len()); debug!("Total number of translation items generated: {}", generated.len()); debug!("Total number of translation items predicted but not generated: {}", predicted_but_not_generated.len()); debug!("Total number of translation items not predicted but generated: {}", not_predicted_but_generated.len()); if generated.len() > 0 { debug!("Failed to predict {}% of translation items", (100 * not_predicted_but_generated.len()) / generated.len()); } if generated.len() > 0 { debug!("Predict {}% too many translation items", (100 * predicted_but_not_generated.len()) / generated.len()); } debug!(""); debug!("Not predicted but generated:"); debug!("============================"); for item in not_predicted_but_generated { debug!(" - {}", item); } debug!(""); debug!("Predicted but not generated:"); debug!("============================"); for item in predicted_but_not_generated { debug!(" - {}", item); } }