// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::const_eval::{compare_const_vals, lookup_const_by_id}; use middle::const_eval::{eval_const_expr, const_val, const_bool, const_float}; use middle::pat_util::*; use middle::ty::*; use middle::ty; use middle::typeck::method_map; use middle::moves; use util::ppaux::ty_to_str; use std::iter; use std::num; use std::vec; use extra::sort; use syntax::ast::*; use syntax::ast_util::{unguarded_pat, walk_pat}; use syntax::codemap::{Span, dummy_sp, Spanned}; use syntax::visit; use syntax::visit::{Visitor,fn_kind}; pub struct MatchCheckCtxt { tcx: ty::ctxt, method_map: method_map, moves_map: moves::MovesMap } struct CheckMatchVisitor { cx: @MatchCheckCtxt } impl Visitor<()> for CheckMatchVisitor { fn visit_expr(&mut self, ex:@Expr, e:()) { check_expr(self, self.cx, ex, e); } fn visit_local(&mut self, l:@Local, e:()) { check_local(self, self.cx, l, e); } fn visit_fn(&mut self, fk:&fn_kind, fd:&fn_decl, b:&Block, s:Span, n:NodeId, e:()) { check_fn(self, self.cx, fk, fd, b, s, n, e); } } pub fn check_crate(tcx: ty::ctxt, method_map: method_map, moves_map: moves::MovesMap, crate: &Crate) { let cx = @MatchCheckCtxt {tcx: tcx, method_map: method_map, moves_map: moves_map}; let mut v = CheckMatchVisitor { cx: cx }; visit::walk_crate(&mut v, crate, ()); tcx.sess.abort_if_errors(); } pub fn check_expr(v: &mut CheckMatchVisitor, cx: @MatchCheckCtxt, ex: @Expr, s: ()) { visit::walk_expr(v, ex, s); match ex.node { ExprMatch(scrut, ref arms) => { // First, check legality of move bindings. for arm in arms.iter() { check_legality_of_move_bindings(cx, arm.guard.is_some(), arm.pats); } check_arms(cx, *arms); /* Check for exhaustiveness */ // Check for empty enum, because is_useful only works on inhabited // types. let pat_ty = node_id_to_type(cx.tcx, scrut.id); if (*arms).is_empty() { if !type_is_empty(cx.tcx, pat_ty) { // We know the type is inhabited, so this must be wrong cx.tcx.sess.span_err(ex.span, fmt!("non-exhaustive patterns: \ type %s is non-empty", ty_to_str(cx.tcx, pat_ty))); } // If the type *is* empty, it's vacuously exhaustive return; } match ty::get(pat_ty).sty { ty_enum(did, _) => { if (*enum_variants(cx.tcx, did)).is_empty() && (*arms).is_empty() { return; } } _ => { /* We assume only enum types can be uninhabited */ } } let arms = arms.iter().filter_map(unguarded_pat).collect::<~[~[@Pat]]>().concat_vec(); if arms.is_empty() { cx.tcx.sess.span_err(ex.span, "non-exhaustive patterns"); } else { check_exhaustive(cx, ex.span, arms); } } _ => () } } // Check for unreachable patterns pub fn check_arms(cx: &MatchCheckCtxt, arms: &[Arm]) { let mut seen = ~[]; for arm in arms.iter() { for pat in arm.pats.iter() { // Check that we do not match against a static NaN (#6804) let pat_matches_nan: &fn(@Pat) -> bool = |p| { match cx.tcx.def_map.find(&p.id) { Some(&DefStatic(did, false)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); match eval_const_expr(cx.tcx, const_expr) { const_float(f) if f.is_NaN() => true, _ => false } } _ => false } }; do walk_pat(*pat) |p| { if pat_matches_nan(p) { cx.tcx.sess.span_warn(p.span, "unmatchable NaN in pattern, \ use the is_NaN method in a guard instead"); } true }; let v = ~[*pat]; match is_useful(cx, &seen, v) { not_useful => { cx.tcx.sess.span_err(pat.span, "unreachable pattern"); } _ => () } if arm.guard.is_none() { seen.push(v); } } } } pub fn raw_pat(p: @Pat) -> @Pat { match p.node { PatIdent(_, _, Some(s)) => { raw_pat(s) } _ => { p } } } pub fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, pats: ~[@Pat]) { assert!((!pats.is_empty())); let ext = match is_useful(cx, &pats.map(|p| ~[*p]), [wild()]) { not_useful => { // This is good, wildcard pattern isn't reachable return; } useful_ => None, useful(ty, ref ctor) => { match ty::get(ty).sty { ty::ty_bool => { match (*ctor) { val(const_bool(true)) => Some(@"true"), val(const_bool(false)) => Some(@"false"), _ => None } } ty::ty_enum(id, _) => { let vid = match *ctor { variant(id) => id, _ => fail!("check_exhaustive: non-variant ctor"), }; let variants = ty::enum_variants(cx.tcx, id); match variants.iter().find(|v| v.id == vid) { Some(v) => Some(cx.tcx.sess.str_of(v.name)), None => { fail!("check_exhaustive: bad variant in ctor") } } } ty::ty_unboxed_vec(*) | ty::ty_evec(*) => { match *ctor { vec(n) => Some(fmt!("vectors of length %u", n).to_managed()), _ => None } } _ => None } } }; let msg = ~"non-exhaustive patterns" + match ext { Some(ref s) => fmt!(": %s not covered", *s), None => ~"" }; cx.tcx.sess.span_err(sp, msg); } pub type matrix = ~[~[@Pat]]; pub enum useful { useful(ty::t, ctor), useful_, not_useful } #[deriving(Eq)] pub enum ctor { single, variant(DefId), val(const_val), range(const_val, const_val), vec(uint) } // Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html // // Whether a vector `v` of patterns is 'useful' in relation to a set of such // vectors `m` is defined as there being a set of inputs that will match `v` // but not any of the sets in `m`. // // This is used both for reachability checking (if a pattern isn't useful in // relation to preceding patterns, it is not reachable) and exhaustiveness // checking (if a wildcard pattern is useful in relation to a matrix, the // matrix isn't exhaustive). // Note: is_useful doesn't work on empty types, as the paper notes. // So it assumes that v is non-empty. pub fn is_useful(cx: &MatchCheckCtxt, m: &matrix, v: &[@Pat]) -> useful { if m.len() == 0u { return useful_; } if m[0].len() == 0u { return not_useful; } let real_pat = match m.iter().find(|r| r[0].id != 0) { Some(r) => r[0], None => v[0] }; let left_ty = if real_pat.id == 0 { ty::mk_nil() } else { ty::node_id_to_type(cx.tcx, real_pat.id) }; match pat_ctor_id(cx, v[0]) { None => { match missing_ctor(cx, m, left_ty) { None => { match ty::get(left_ty).sty { ty::ty_bool => { match is_useful_specialized(cx, m, v, val(const_bool(true)), 0u, left_ty){ not_useful => { is_useful_specialized(cx, m, v, val(const_bool(false)), 0u, left_ty) } ref u => *u, } } ty::ty_enum(eid, _) => { for va in (*ty::enum_variants(cx.tcx, eid)).iter() { match is_useful_specialized(cx, m, v, variant(va.id), va.args.len(), left_ty) { not_useful => (), ref u => return *u, } } not_useful } ty::ty_evec(_, ty::vstore_fixed(n)) => { is_useful_specialized(cx, m, v, vec(n), n, left_ty) } ty::ty_unboxed_vec(*) | ty::ty_evec(*) => { let max_len = do m.rev_iter().fold(0) |max_len, r| { match r[0].node { PatVec(ref before, _, ref after) => { num::max(before.len() + after.len(), max_len) } _ => max_len } }; for n in iter::range(0u, max_len + 1) { match is_useful_specialized(cx, m, v, vec(n), n, left_ty) { not_useful => (), ref u => return *u, } } not_useful } _ => { let arity = ctor_arity(cx, &single, left_ty); is_useful_specialized(cx, m, v, single, arity, left_ty) } } } Some(ref ctor) => { match is_useful(cx, &m.iter().filter_map(|r| default(cx, *r)).collect::(), v.tail()) { useful_ => useful(left_ty, *ctor), ref u => *u, } } } } Some(ref v0_ctor) => { let arity = ctor_arity(cx, v0_ctor, left_ty); is_useful_specialized(cx, m, v, *v0_ctor, arity, left_ty) } } } pub fn is_useful_specialized(cx: &MatchCheckCtxt, m: &matrix, v: &[@Pat], ctor: ctor, arity: uint, lty: ty::t) -> useful { let ms = m.iter().filter_map(|r| specialize(cx, *r, &ctor, arity, lty)).collect::(); let could_be_useful = is_useful( cx, &ms, specialize(cx, v, &ctor, arity, lty).unwrap()); match could_be_useful { useful_ => useful(lty, ctor), ref u => *u, } } pub fn pat_ctor_id(cx: &MatchCheckCtxt, p: @Pat) -> Option { let pat = raw_pat(p); match pat.node { PatWild => { None } PatIdent(_, _, _) | PatEnum(_, _) => { match cx.tcx.def_map.find(&pat.id) { Some(&DefVariant(_, id, _)) => Some(variant(id)), Some(&DefStatic(did, false)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); Some(val(eval_const_expr(cx.tcx, const_expr))) } _ => None } } PatLit(expr) => { Some(val(eval_const_expr(cx.tcx, expr))) } PatRange(lo, hi) => { Some(range(eval_const_expr(cx.tcx, lo), eval_const_expr(cx.tcx, hi))) } PatStruct(*) => { match cx.tcx.def_map.find(&pat.id) { Some(&DefVariant(_, id, _)) => Some(variant(id)), _ => Some(single) } } PatBox(_) | PatUniq(_) | PatTup(_) | PatRegion(*) => { Some(single) } PatVec(ref before, slice, ref after) => { match slice { Some(_) => None, None => Some(vec(before.len() + after.len())) } } } } pub fn is_wild(cx: &MatchCheckCtxt, p: @Pat) -> bool { let pat = raw_pat(p); match pat.node { PatWild => { true } PatIdent(_, _, _) => { match cx.tcx.def_map.find(&pat.id) { Some(&DefVariant(_, _, _)) | Some(&DefStatic(*)) => { false } _ => { true } } } _ => { false } } } pub fn missing_ctor(cx: &MatchCheckCtxt, m: &matrix, left_ty: ty::t) -> Option { match ty::get(left_ty).sty { ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) | ty::ty_tup(_) | ty::ty_struct(*) => { for r in m.iter() { if !is_wild(cx, r[0]) { return None; } } return Some(single); } ty::ty_enum(eid, _) => { let mut found = ~[]; for r in m.iter() { let r = pat_ctor_id(cx, r[0]); for id in r.iter() { if !found.contains(id) { found.push(*id); } } } let variants = ty::enum_variants(cx.tcx, eid); if found.len() != (*variants).len() { for v in (*variants).iter() { if !found.iter().any(|x| x == &(variant(v.id))) { return Some(variant(v.id)); } } fail!(); } else { None } } ty::ty_nil => None, ty::ty_bool => { let mut true_found = false; let mut false_found = false; for r in m.iter() { match pat_ctor_id(cx, r[0]) { None => (), Some(val(const_bool(true))) => true_found = true, Some(val(const_bool(false))) => false_found = true, _ => fail!("impossible case") } } if true_found && false_found { None } else if true_found { Some(val(const_bool(false))) } else { Some(val(const_bool(true))) } } ty::ty_evec(_, ty::vstore_fixed(n)) => { let mut missing = true; let mut wrong = false; for r in m.iter() { match r[0].node { PatVec(ref before, ref slice, ref after) => { let count = before.len() + after.len(); if (count < n && slice.is_none()) || count > n { wrong = true; } if count == n || (count < n && slice.is_some()) { missing = false; } } _ => {} } } match (wrong, missing) { (true, _) => Some(vec(n)), // should be compile-time error (_, true) => Some(vec(n)), _ => None } } ty::ty_unboxed_vec(*) | ty::ty_evec(*) => { // Find the lengths and slices of all vector patterns. let vec_pat_lens = do m.iter().filter_map |r| { match r[0].node { PatVec(ref before, ref slice, ref after) => { Some((before.len() + after.len(), slice.is_some())) } _ => None } }.collect::<~[(uint, bool)]>(); // Sort them by length such that for patterns of the same length, // those with a destructured slice come first. let mut sorted_vec_lens = sort::merge_sort(vec_pat_lens, |&(len1, slice1), &(len2, slice2)| { if len1 == len2 { slice1 > slice2 } else { len1 <= len2 } } ); sorted_vec_lens.dedup(); let mut found_slice = false; let mut next = 0; let mut missing = None; for &(length, slice) in sorted_vec_lens.iter() { if length != next { missing = Some(next); break; } if slice { found_slice = true; break; } next += 1; } // We found patterns of all lengths within <0, next), yet there was no // pattern with a slice - therefore, we report vec(next) as missing. if !found_slice { missing = Some(next); } match missing { Some(k) => Some(vec(k)), None => None } } _ => Some(single) } } pub fn ctor_arity(cx: &MatchCheckCtxt, ctor: &ctor, ty: ty::t) -> uint { match ty::get(ty).sty { ty::ty_tup(ref fs) => fs.len(), ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) => 1u, ty::ty_enum(eid, _) => { let id = match *ctor { variant(id) => id, _ => fail!("impossible case") }; match ty::enum_variants(cx.tcx, eid).iter().find(|v| v.id == id ) { Some(v) => v.args.len(), None => fail!("impossible case") } } ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(), ty::ty_unboxed_vec(*) | ty::ty_evec(*) => { match *ctor { vec(n) => n, _ => 0u } } _ => 0u } } pub fn wild() -> @Pat { @Pat {id: 0, node: PatWild, span: dummy_sp()} } pub fn specialize(cx: &MatchCheckCtxt, r: &[@Pat], ctor_id: &ctor, arity: uint, left_ty: ty::t) -> Option<~[@Pat]> { // Sad, but I can't get rid of this easily let r0 = (*raw_pat(r[0])).clone(); match r0 { Pat{id: pat_id, node: n, span: pat_span} => match n { PatWild => { Some(vec::append(vec::from_elem(arity, wild()), r.tail())) } PatIdent(_, _, _) => { match cx.tcx.def_map.find(&pat_id) { Some(&DefVariant(_, id, _)) => { if variant(id) == *ctor_id { Some(r.tail().to_owned()) } else { None } } Some(&DefStatic(did, _)) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); let e_v = eval_const_expr(cx.tcx, const_expr); let match_ = match *ctor_id { val(ref v) => { match compare_const_vals(&e_v, v) { Some(val1) => (val1 == 0), None => { cx.tcx.sess.span_err(pat_span, "mismatched types between arms"); false } } }, range(ref c_lo, ref c_hi) => { let m1 = compare_const_vals(c_lo, &e_v); let m2 = compare_const_vals(c_hi, &e_v); match (m1, m2) { (Some(val1), Some(val2)) => { (val1 >= 0 && val2 <= 0) } _ => { cx.tcx.sess.span_err(pat_span, "mismatched types between ranges"); false } } } single => true, _ => fail!("type error") }; if match_ { Some(r.tail().to_owned()) } else { None } } _ => { Some( vec::append( vec::from_elem(arity, wild()), r.tail() ) ) } } } PatEnum(_, args) => { match cx.tcx.def_map.get_copy(&pat_id) { DefStatic(did, _) => { let const_expr = lookup_const_by_id(cx.tcx, did).unwrap(); let e_v = eval_const_expr(cx.tcx, const_expr); let match_ = match *ctor_id { val(ref v) => match compare_const_vals(&e_v, v) { Some(val1) => (val1 == 0), None => { cx.tcx.sess.span_err(pat_span, "mismatched types between arms"); false } }, range(ref c_lo, ref c_hi) => { let m1 = compare_const_vals(c_lo, &e_v); let m2 = compare_const_vals(c_hi, &e_v); match (m1, m2) { (Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0), _ => { cx.tcx.sess.span_err(pat_span, "mismatched types between ranges"); false } } } single => true, _ => fail!("type error") }; if match_ { Some(r.tail().to_owned()) } else { None } } DefVariant(_, id, _) if variant(id) == *ctor_id => { let args = match args { Some(args) => args, None => vec::from_elem(arity, wild()) }; Some(vec::append(args, r.tail())) } DefVariant(_, _, _) => None, DefFn(*) | DefStruct(*) => { // FIXME #4731: Is this right? --pcw let new_args; match args { Some(args) => new_args = args, None => new_args = vec::from_elem(arity, wild()) } Some(vec::append(new_args, r.tail())) } _ => None } } PatStruct(_, ref flds, _) => { // Is this a struct or an enum variant? match cx.tcx.def_map.get_copy(&pat_id) { DefVariant(_, variant_id, _) => { if variant(variant_id) == *ctor_id { // FIXME #4731: Is this right? --pcw let args = flds.map(|ty_field| { match flds.iter().find(|f| f.ident == ty_field.ident) { Some(f) => f.pat, _ => wild() } }); Some(vec::append(args, r.tail())) } else { None } } _ => { // Grab the class data that we care about. let class_fields; let class_id; match ty::get(left_ty).sty { ty::ty_struct(cid, _) => { class_id = cid; class_fields = ty::lookup_struct_fields(cx.tcx, class_id); } _ => { cx.tcx.sess.span_bug( pat_span, fmt!("struct pattern resolved to %s, \ not a struct", ty_to_str(cx.tcx, left_ty))); } } let args = class_fields.iter().map(|class_field| { match flds.iter().find(|f| f.ident == class_field.ident) { Some(f) => f.pat, _ => wild() } }).collect(); Some(vec::append(args, r.tail())) } } } PatTup(args) => Some(vec::append(args, r.tail())), PatBox(a) | PatUniq(a) | PatRegion(a) => { Some(vec::append(~[a], r.tail())) } PatLit(expr) => { let e_v = eval_const_expr(cx.tcx, expr); let match_ = match *ctor_id { val(ref v) => { match compare_const_vals(&e_v, v) { Some(val1) => val1 == 0, None => { cx.tcx.sess.span_err(pat_span, "mismatched types between arms"); false } } }, range(ref c_lo, ref c_hi) => { let m1 = compare_const_vals(c_lo, &e_v); let m2 = compare_const_vals(c_hi, &e_v); match (m1, m2) { (Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0), _ => { cx.tcx.sess.span_err(pat_span, "mismatched types between ranges"); false } } } single => true, _ => fail!("type error") }; if match_ { Some(r.tail().to_owned()) } else { None } } PatRange(lo, hi) => { let (c_lo, c_hi) = match *ctor_id { val(ref v) => (*v, *v), range(ref lo, ref hi) => (*lo, *hi), single => return Some(r.tail().to_owned()), _ => fail!("type error") }; let v_lo = eval_const_expr(cx.tcx, lo); let v_hi = eval_const_expr(cx.tcx, hi); let m1 = compare_const_vals(&c_lo, &v_lo); let m2 = compare_const_vals(&c_hi, &v_hi); match (m1, m2) { (Some(val1), Some(val2)) if val1 >= 0 && val2 <= 0 => { Some(r.tail().to_owned()) }, (Some(_), Some(_)) => None, _ => { cx.tcx.sess.span_err(pat_span, "mismatched types between ranges"); None } } } PatVec(before, slice, after) => { match *ctor_id { vec(_) => { let num_elements = before.len() + after.len(); if num_elements < arity && slice.is_some() { Some(vec::append( vec::concat(&[ before, vec::from_elem( arity - num_elements, wild()), after ]), r.tail() )) } else if num_elements == arity { Some(vec::append( vec::append(before, after), r.tail() )) } else { None } } _ => None } } } } } pub fn default(cx: &MatchCheckCtxt, r: &[@Pat]) -> Option<~[@Pat]> { if is_wild(cx, r[0]) { Some(r.tail().to_owned()) } else { None } } pub fn check_local(v: &mut CheckMatchVisitor, cx: &MatchCheckCtxt, loc: @Local, s: ()) { visit::walk_local(v, loc, s); if is_refutable(cx, loc.pat) { cx.tcx.sess.span_err(loc.pat.span, "refutable pattern in local binding"); } // Check legality of move bindings. check_legality_of_move_bindings(cx, false, [ loc.pat ]); } pub fn check_fn(v: &mut CheckMatchVisitor, cx: &MatchCheckCtxt, kind: &visit::fn_kind, decl: &fn_decl, body: &Block, sp: Span, id: NodeId, s: ()) { visit::walk_fn(v, kind, decl, body, sp, id, s); for input in decl.inputs.iter() { if is_refutable(cx, input.pat) { cx.tcx.sess.span_err(input.pat.span, "refutable pattern in function argument"); } } } pub fn is_refutable(cx: &MatchCheckCtxt, pat: &Pat) -> bool { match cx.tcx.def_map.find(&pat.id) { Some(&DefVariant(enum_id, _, _)) => { if ty::enum_variants(cx.tcx, enum_id).len() != 1u { return true; } } Some(&DefStatic(*)) => return true, _ => () } match pat.node { PatBox(sub) | PatUniq(sub) | PatRegion(sub) | PatIdent(_, _, Some(sub)) => { is_refutable(cx, sub) } PatWild | PatIdent(_, _, None) => { false } PatLit(@Expr {node: ExprLit(@Spanned { node: lit_nil, _}), _}) => { // "()" false } PatLit(_) | PatRange(_, _) => { true } PatStruct(_, ref fields, _) => { fields.iter().any(|f| is_refutable(cx, f.pat)) } PatTup(ref elts) => { elts.iter().any(|elt| is_refutable(cx, *elt)) } PatEnum(_, Some(ref args)) => { args.iter().any(|a| is_refutable(cx, *a)) } PatEnum(_,_) => { false } PatVec(*) => { true } } } // Legality of move bindings checking pub fn check_legality_of_move_bindings(cx: &MatchCheckCtxt, has_guard: bool, pats: &[@Pat]) { let tcx = cx.tcx; let def_map = tcx.def_map; let mut by_ref_span = None; let mut any_by_move = false; for pat in pats.iter() { do pat_bindings(def_map, *pat) |bm, id, span, _path| { match bm { BindByRef(_) => { by_ref_span = Some(span); } BindInfer => { if cx.moves_map.contains(&id) { any_by_move = true; } } } } } let check_move: &fn(@Pat, Option<@Pat>) = |p, sub| { // check legality of moving out of the enum // x @ Foo(*) is legal, but x @ Foo(y) isn't. if sub.map_move_default(false, |p| pat_contains_bindings(def_map, p)) { tcx.sess.span_err( p.span, "cannot bind by-move with sub-bindings"); } else if has_guard { tcx.sess.span_err( p.span, "cannot bind by-move into a pattern guard"); } else if by_ref_span.is_some() { tcx.sess.span_err( p.span, "cannot bind by-move and by-ref \ in the same pattern"); tcx.sess.span_note( by_ref_span.unwrap(), "by-ref binding occurs here"); } }; if !any_by_move { return; } // pointless micro-optimization for pat in pats.iter() { do walk_pat(*pat) |p| { if pat_is_binding(def_map, p) { match p.node { PatIdent(_, _, sub) => { if cx.moves_map.contains(&p.id) { check_move(p, sub); } } _ => { cx.tcx.sess.span_bug( p.span, fmt!("Binding pattern %d is \ not an identifier: %?", p.id, p.node)); } } } true }; } }