//! `mbe` (short for Macro By Example) crate contains code for handling //! `macro_rules` macros. It uses `TokenTree` (from `tt` package) as the //! interface, although it contains some code to bridge `SyntaxNode`s and //! `TokenTree`s as well! //! //! The tests for this functionality live in another crate: //! `hir_def::macro_expansion_tests::mbe`. #![warn(rust_2018_idioms, unused_lifetimes)] mod parser; mod expander; mod syntax_bridge; mod tt_iter; mod to_parser_input; #[cfg(test)] mod benchmark; use stdx::impl_from; use tt::Span; use std::fmt; use crate::{ parser::{MetaTemplate, MetaVarKind, Op}, tt_iter::TtIter, }; // FIXME: we probably should re-think `token_tree_to_syntax_node` interfaces pub use ::parser::TopEntryPoint; pub use tt::{Delimiter, DelimiterKind, Punct}; pub use crate::syntax_bridge::{ parse_exprs_with_sep, parse_to_token_tree, parse_to_token_tree_static_span, syntax_node_to_token_tree, syntax_node_to_token_tree_modified, token_tree_to_syntax_node, SpanMapper, }; pub use crate::syntax_bridge::dummy_test_span_utils::*; #[derive(Debug, PartialEq, Eq, Clone)] pub enum ParseError { UnexpectedToken(Box), Expected(Box), InvalidRepeat, RepetitionEmptyTokenTree, } impl ParseError { fn expected(e: &str) -> ParseError { ParseError::Expected(e.into()) } fn unexpected(e: &str) -> ParseError { ParseError::UnexpectedToken(e.into()) } } impl fmt::Display for ParseError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ParseError::UnexpectedToken(it) => f.write_str(it), ParseError::Expected(it) => f.write_str(it), ParseError::InvalidRepeat => f.write_str("invalid repeat"), ParseError::RepetitionEmptyTokenTree => f.write_str("empty token tree in repetition"), } } } #[derive(Debug, PartialEq, Eq, Clone, Hash)] pub enum ExpandError { BindingError(Box>), UnresolvedBinding(Box>), LeftoverTokens, ConversionError, LimitExceeded, NoMatchingRule, UnexpectedToken, CountError(CountError), } impl_from!(CountError for ExpandError); impl ExpandError { fn binding_error(e: impl Into>) -> ExpandError { ExpandError::BindingError(Box::new(e.into())) } } impl fmt::Display for ExpandError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ExpandError::NoMatchingRule => f.write_str("no rule matches input tokens"), ExpandError::UnexpectedToken => f.write_str("unexpected token in input"), ExpandError::BindingError(e) => f.write_str(e), ExpandError::UnresolvedBinding(binding) => { f.write_str("could not find binding ")?; f.write_str(binding) } ExpandError::ConversionError => f.write_str("could not convert tokens"), ExpandError::LimitExceeded => f.write_str("Expand exceed limit"), ExpandError::LeftoverTokens => f.write_str("leftover tokens"), ExpandError::CountError(e) => e.fmt(f), } } } // FIXME: Showing these errors could be nicer. #[derive(Debug, PartialEq, Eq, Clone, Hash)] pub enum CountError { OutOfBounds, Misplaced, } impl fmt::Display for CountError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { CountError::OutOfBounds => f.write_str("${count} out of bounds"), CountError::Misplaced => f.write_str("${count} misplaced"), } } } /// This struct contains AST for a single `macro_rules` definition. What might /// be very confusing is that AST has almost exactly the same shape as /// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident` /// and `$()*` have special meaning (see `Var` and `Repeat` data structures) #[derive(Clone, Debug, PartialEq, Eq)] pub struct DeclarativeMacro { rules: Box<[Rule]>, // This is used for correctly determining the behavior of the pat fragment // FIXME: This should be tracked by hygiene of the fragment identifier! is_2021: bool, err: Option>, } #[derive(Clone, Debug, PartialEq, Eq)] struct Rule { lhs: MetaTemplate, rhs: MetaTemplate, } impl DeclarativeMacro { pub fn from_err(err: ParseError, is_2021: bool) -> DeclarativeMacro { DeclarativeMacro { rules: Box::default(), is_2021, err: Some(Box::new(err)) } } /// The old, `macro_rules! m {}` flavor. pub fn parse_macro_rules( tt: &tt::Subtree, is_2021: bool, // FIXME: Remove this once we drop support for rust 1.76 (defaults to true then) new_meta_vars: bool, ) -> DeclarativeMacro { // Note: this parsing can be implemented using mbe machinery itself, by // matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing // manually seems easier. let mut src = TtIter::new(tt); let mut rules = Vec::new(); let mut err = None; while src.len() > 0 { let rule = match Rule::parse(&mut src, true, new_meta_vars) { Ok(it) => it, Err(e) => { err = Some(Box::new(e)); break; } }; rules.push(rule); if let Err(()) = src.expect_char(';') { if src.len() > 0 { err = Some(Box::new(ParseError::expected("expected `;`"))); } break; } } for Rule { lhs, .. } in &rules { if let Err(e) = validate(lhs) { err = Some(Box::new(e)); break; } } DeclarativeMacro { rules: rules.into_boxed_slice(), is_2021, err } } /// The new, unstable `macro m {}` flavor. pub fn parse_macro2( tt: &tt::Subtree, is_2021: bool, // FIXME: Remove this once we drop support for rust 1.76 (defaults to true then) new_meta_vars: bool, ) -> DeclarativeMacro { let mut src = TtIter::new(tt); let mut rules = Vec::new(); let mut err = None; if tt::DelimiterKind::Brace == tt.delimiter.kind { cov_mark::hit!(parse_macro_def_rules); while src.len() > 0 { let rule = match Rule::parse(&mut src, true, new_meta_vars) { Ok(it) => it, Err(e) => { err = Some(Box::new(e)); break; } }; rules.push(rule); if let Err(()) = src.expect_any_char(&[';', ',']) { if src.len() > 0 { err = Some(Box::new(ParseError::expected( "expected `;` or `,` to delimit rules", ))); } break; } } } else { cov_mark::hit!(parse_macro_def_simple); match Rule::parse(&mut src, false, new_meta_vars) { Ok(rule) => { if src.len() != 0 { err = Some(Box::new(ParseError::expected("remaining tokens in macro def"))); } rules.push(rule); } Err(e) => { err = Some(Box::new(e)); } } } for Rule { lhs, .. } in &rules { if let Err(e) = validate(lhs) { err = Some(Box::new(e)); break; } } DeclarativeMacro { rules: rules.into_boxed_slice(), is_2021, err } } pub fn err(&self) -> Option<&ParseError> { self.err.as_deref() } pub fn expand( &self, tt: &tt::Subtree, marker: impl Fn(&mut S) + Copy, new_meta_vars: bool, ) -> ExpandResult> { expander::expand_rules(&self.rules, &tt, marker, self.is_2021, new_meta_vars) } } impl Rule { fn parse( src: &mut TtIter<'_, S>, expect_arrow: bool, new_meta_vars: bool, ) -> Result { let lhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?; if expect_arrow { src.expect_char('=').map_err(|()| ParseError::expected("expected `=`"))?; src.expect_char('>').map_err(|()| ParseError::expected("expected `>`"))?; } let rhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?; let lhs = MetaTemplate::parse_pattern(lhs)?; let rhs = MetaTemplate::parse_template(rhs, new_meta_vars)?; Ok(crate::Rule { lhs, rhs }) } } fn validate(pattern: &MetaTemplate) -> Result<(), ParseError> { for op in pattern.iter() { match op { Op::Subtree { tokens, .. } => validate(tokens)?, Op::Repeat { tokens: subtree, separator, .. } => { // Checks that no repetition which could match an empty token // https://github.com/rust-lang/rust/blob/a58b1ed44f5e06976de2bdc4d7dc81c36a96934f/src/librustc_expand/mbe/macro_rules.rs#L558 let lsh_is_empty_seq = separator.is_none() && subtree.iter().all(|child_op| { match *child_op { // vis is optional Op::Var { kind: Some(kind), .. } => kind == MetaVarKind::Vis, Op::Repeat { kind: parser::RepeatKind::ZeroOrMore | parser::RepeatKind::ZeroOrOne, .. } => true, _ => false, } }); if lsh_is_empty_seq { return Err(ParseError::RepetitionEmptyTokenTree); } validate(subtree)? } _ => (), } } Ok(()) } pub type ExpandResult = ValueResult; #[derive(Debug, Clone, Eq, PartialEq)] pub struct ValueResult { pub value: T, pub err: Option, } impl ValueResult { pub fn new(value: T, err: E) -> Self { Self { value, err: Some(err) } } pub fn ok(value: T) -> Self { Self { value, err: None } } pub fn only_err(err: E) -> Self where T: Default, { Self { value: Default::default(), err: Some(err) } } pub fn map(self, f: impl FnOnce(T) -> U) -> ValueResult { ValueResult { value: f(self.value), err: self.err } } pub fn map_err(self, f: impl FnOnce(E) -> E2) -> ValueResult { ValueResult { value: self.value, err: self.err.map(f) } } pub fn result(self) -> Result { self.err.map_or(Ok(self.value), Err) } } impl From> for ValueResult { fn from(result: Result) -> Self { result.map_or_else(Self::only_err, Self::ok) } }