// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Atomic types //! //! Atomic types provide primitive shared-memory communication between //! threads, and are the building blocks of other concurrent //! types. //! //! This module defines atomic versions of a select number of primitive //! types, including `AtomicBool`, `AtomicInt`, `AtomicUint`, and `AtomicOption`. //! Atomic types present operations that, when used correctly, synchronize //! updates between threads. //! //! Each method takes an `Ordering` which represents the strength of //! the memory barrier for that operation. These orderings are the //! same as [C++11 atomic orderings][1]. //! //! [1]: http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync //! //! Atomic variables are safe to share between threads (they implement `Share`) //! but they do not themselves provide the mechanism for sharing. The most //! common way to share an atomic variable is to put it into an `Arc` (an //! atomically-reference-counted shared pointer). //! //! Most atomic types may be stored in static variables, initialized using //! the provided static initializers like `INIT_ATOMIC_BOOL`. Atomic statics //! are often used for lazy global initialization. //! //! //! # Examples //! //! A simple spinlock: //! //! ``` //! extern crate sync; //! //! use sync::Arc; //! use std::sync::atomics::{AtomicUint, SeqCst}; //! use std::task::deschedule; //! //! fn main() { //! let spinlock = Arc::new(AtomicUint::new(1)); //! //! let spinlock_clone = spinlock.clone(); //! spawn(proc() { //! spinlock_clone.store(0, SeqCst); //! }); //! //! // Wait for the other task to release the lock //! while spinlock.load(SeqCst) != 0 { //! // Since tasks may not be preemptive (if they are green threads) //! // yield to the scheduler to let the other task run. Low level //! // concurrent code needs to take into account Rust's two threading //! // models. //! deschedule(); //! } //! } //! ``` //! //! Transferring a heap object with `AtomicOption`: //! //! ``` //! extern crate sync; //! //! use sync::Arc; //! use std::sync::atomics::{AtomicOption, SeqCst}; //! //! fn main() { //! struct BigObject; //! //! let shared_big_object = Arc::new(AtomicOption::empty()); //! //! let shared_big_object_clone = shared_big_object.clone(); //! spawn(proc() { //! let unwrapped_big_object = shared_big_object_clone.take(SeqCst); //! if unwrapped_big_object.is_some() { //! println!("got a big object from another task"); //! } else { //! println!("other task hasn't sent big object yet"); //! } //! }); //! //! shared_big_object.swap(~BigObject, SeqCst); //! } //! ``` //! //! Keep a global count of live tasks: //! //! ``` //! use std::sync::atomics::{AtomicUint, SeqCst, INIT_ATOMIC_UINT}; //! //! static mut GLOBAL_TASK_COUNT: AtomicUint = INIT_ATOMIC_UINT; //! //! unsafe { //! let old_task_count = GLOBAL_TASK_COUNT.fetch_add(1, SeqCst); //! println!("live tasks: {}", old_task_count + 1); //! } //! ``` #![allow(missing_doc)] use intrinsics; use cast; use std::kinds::marker; use option::{Option,Some,None}; use ops::Drop; use ty::Unsafe; /// An atomic boolean type. pub struct AtomicBool { priv v: Unsafe, priv nocopy: marker::NoCopy } /// A signed atomic integer type, supporting basic atomic arithmetic operations pub struct AtomicInt { priv v: Unsafe, priv nocopy: marker::NoCopy } /// An unsigned atomic integer type, supporting basic atomic arithmetic operations pub struct AtomicUint { priv v: Unsafe, priv nocopy: marker::NoCopy } /// An unsafe atomic pointer. Only supports basic atomic operations pub struct AtomicPtr { priv p: Unsafe, priv nocopy: marker::NoCopy } /// An atomic, nullable unique pointer /// /// This can be used as the concurrency primitive for operations that transfer /// owned heap objects across tasks. #[unsafe_no_drop_flag] pub struct AtomicOption { priv p: Unsafe, } /// Atomic memory orderings /// /// Memory orderings limit the ways that both the compiler and CPU may reorder /// instructions around atomic operations. At its most restrictive, /// "sequentially consistent" atomics allow neither reads nor writes /// to be moved either before or after the atomic operation; on the other end /// "relaxed" atomics allow all reorderings. /// /// Rust's memory orderings are the same as in C++[1]. /// /// [1]: http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync pub enum Ordering { /// No ordering constraints, only atomic operations Relaxed, /// When coupled with a store, all previous writes become visible /// to another thread that performs a load with `Acquire` ordering /// on the same value Release, /// When coupled with a load, all subsequent loads will see data /// written before a store with `Release` ordering on the same value /// in another thread Acquire, /// When coupled with a load, uses `Acquire` ordering, and with a store /// `Release` ordering AcqRel, /// Like `AcqRel` with the additional guarantee that all threads see all /// sequentially consistent operations in the same order. SeqCst } /// An `AtomicBool` initialized to `false` pub static INIT_ATOMIC_BOOL : AtomicBool = AtomicBool { v: Unsafe{value: 0, marker1: marker::InvariantType}, nocopy: marker::NoCopy }; /// An `AtomicInt` initialized to `0` pub static INIT_ATOMIC_INT : AtomicInt = AtomicInt { v: Unsafe{value: 0, marker1: marker::InvariantType}, nocopy: marker::NoCopy }; /// An `AtomicUint` initialized to `0` pub static INIT_ATOMIC_UINT : AtomicUint = AtomicUint { v: Unsafe{value: 0, marker1: marker::InvariantType}, nocopy: marker::NoCopy }; // NB: Needs to be -1 (0b11111111...) to make fetch_nand work correctly static UINT_TRUE: uint = -1; impl AtomicBool { /// Create a new `AtomicBool` pub fn new(v: bool) -> AtomicBool { let val = if v { UINT_TRUE } else { 0 }; AtomicBool { v: Unsafe::new(val), nocopy: marker::NoCopy } } /// Load the value #[inline] pub fn load(&self, order: Ordering) -> bool { unsafe { atomic_load(self.v.get() as *uint, order) > 0 } } /// Store the value #[inline] pub fn store(&self, val: bool, order: Ordering) { let val = if val { UINT_TRUE } else { 0 }; unsafe { atomic_store(self.v.get(), val, order); } } /// Store a value, returning the old value #[inline] pub fn swap(&self, val: bool, order: Ordering) -> bool { let val = if val { UINT_TRUE } else { 0 }; unsafe { atomic_swap(self.v.get(), val, order) > 0 } } /// If the current value is the same as expected, store a new value /// /// Compare the current value with `old`; if they are the same then /// replace the current value with `new`. Return the previous value. /// If the return value is equal to `old` then the value was updated. /// /// # Examples /// /// ```ignore /// # // FIXME: Needs PR #12430 /// extern crate sync; /// /// use sync::Arc; /// use std::sync::atomics::{AtomicBool, SeqCst}; /// /// fn main() { /// let spinlock = Arc::new(AtomicBool::new(false)); /// let spinlock_clone = spin_lock.clone(); /// /// spawn(proc() { /// with_lock(&spinlock, || println!("task 1 in lock")); /// }); /// /// spawn(proc() { /// with_lock(&spinlock_clone, || println!("task 2 in lock")); /// }); /// } /// /// fn with_lock(spinlock: &Arc, f: || -> ()) { /// // CAS loop until we are able to replace `false` with `true` /// while spinlock.compare_and_swap(false, true, SeqCst) == false { /// // Since tasks may not be preemptive (if they are green threads) /// // yield to the scheduler to let the other task run. Low level /// // concurrent code needs to take into account Rust's two threading /// // models. /// deschedule(); /// } /// /// // Now we have the spinlock /// f(); /// /// // Release the lock /// spinlock.store(false); /// } /// ``` #[inline] pub fn compare_and_swap(&self, old: bool, new: bool, order: Ordering) -> bool { let old = if old { UINT_TRUE } else { 0 }; let new = if new { UINT_TRUE } else { 0 }; unsafe { atomic_compare_and_swap(self.v.get(), old, new, order) > 0 } } /// A logical "and" operation /// /// Performs a logical "and" operation on the current value and the /// argument `val`, and sets the new value to the result. /// Returns the previous value. /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicBool, SeqCst}; /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_and(false, SeqCst)); /// assert_eq!(false, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_and(true, SeqCst)); /// assert_eq!(true, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(false); /// assert_eq!(false, foo.fetch_and(false, SeqCst)); /// assert_eq!(false, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_and(&self, val: bool, order: Ordering) -> bool { let val = if val { UINT_TRUE } else { 0 }; unsafe { atomic_and(self.v.get(), val, order) > 0 } } /// A logical "nand" operation /// /// Performs a logical "nand" operation on the current value and the /// argument `val`, and sets the new value to the result. /// Returns the previous value. /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicBool, SeqCst}; /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_nand(false, SeqCst)); /// assert_eq!(true, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_nand(true, SeqCst)); /// assert_eq!(0, foo.load(SeqCst) as int); /// assert_eq!(false, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(false); /// assert_eq!(false, foo.fetch_nand(false, SeqCst)); /// assert_eq!(true, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool { let val = if val { UINT_TRUE } else { 0 }; unsafe { atomic_nand(self.v.get(), val, order) > 0 } } /// A logical "or" operation /// /// Performs a logical "or" operation on the current value and the /// argument `val`, and sets the new value to the result. /// Returns the previous value. /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicBool, SeqCst}; /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_or(false, SeqCst)); /// assert_eq!(true, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_or(true, SeqCst)); /// assert_eq!(true, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(false); /// assert_eq!(false, foo.fetch_or(false, SeqCst)); /// assert_eq!(false, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_or(&self, val: bool, order: Ordering) -> bool { let val = if val { UINT_TRUE } else { 0 }; unsafe { atomic_or(self.v.get(), val, order) > 0 } } /// A logical "xor" operation /// /// Performs a logical "xor" operation on the current value and the /// argument `val`, and sets the new value to the result. /// Returns the previous value. /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicBool, SeqCst}; /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_xor(false, SeqCst)); /// assert_eq!(true, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(true); /// assert_eq!(true, foo.fetch_xor(true, SeqCst)); /// assert_eq!(false, foo.load(SeqCst)); /// /// let foo = AtomicBool::new(false); /// assert_eq!(false, foo.fetch_xor(false, SeqCst)); /// assert_eq!(false, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool { let val = if val { UINT_TRUE } else { 0 }; unsafe { atomic_xor(self.v.get(), val, order) > 0 } } } impl AtomicInt { /// Create a new `AtomicInt` pub fn new(v: int) -> AtomicInt { AtomicInt {v: Unsafe::new(v), nocopy: marker::NoCopy} } /// Load the value #[inline] pub fn load(&self, order: Ordering) -> int { unsafe { atomic_load(self.v.get() as *int, order) } } /// Store the value #[inline] pub fn store(&self, val: int, order: Ordering) { unsafe { atomic_store(self.v.get(), val, order); } } /// Store a value, returning the old value #[inline] pub fn swap(&self, val: int, order: Ordering) -> int { unsafe { atomic_swap(self.v.get(), val, order) } } /// If the current value is the same as expected, store a new value /// /// Compare the current value with `old`; if they are the same then /// replace the current value with `new`. Return the previous value. /// If the return value is equal to `old` then the value was updated. #[inline] pub fn compare_and_swap(&self, old: int, new: int, order: Ordering) -> int { unsafe { atomic_compare_and_swap(self.v.get(), old, new, order) } } /// Add to the current value, returning the previous /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicInt, SeqCst}; /// /// let foo = AtomicInt::new(0); /// assert_eq!(0, foo.fetch_add(10, SeqCst)); /// assert_eq!(10, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_add(&self, val: int, order: Ordering) -> int { unsafe { atomic_add(self.v.get(), val, order) } } /// Subtract from the current value, returning the previous /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicInt, SeqCst}; /// /// let foo = AtomicInt::new(0); /// assert_eq!(0, foo.fetch_sub(10, SeqCst)); /// assert_eq!(-10, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_sub(&self, val: int, order: Ordering) -> int { unsafe { atomic_sub(self.v.get(), val, order) } } } impl AtomicUint { /// Create a new `AtomicUint` pub fn new(v: uint) -> AtomicUint { AtomicUint { v: Unsafe::new(v), nocopy: marker::NoCopy } } /// Load the value #[inline] pub fn load(&self, order: Ordering) -> uint { unsafe { atomic_load(self.v.get() as *uint, order) } } /// Store the value #[inline] pub fn store(&self, val: uint, order: Ordering) { unsafe { atomic_store(self.v.get(), val, order); } } /// Store a value, returning the old value #[inline] pub fn swap(&self, val: uint, order: Ordering) -> uint { unsafe { atomic_swap(self.v.get(), val, order) } } /// If the current value is the same as expected, store a new value /// /// Compare the current value with `old`; if they are the same then /// replace the current value with `new`. Return the previous value. /// If the return value is equal to `old` then the value was updated. #[inline] pub fn compare_and_swap(&self, old: uint, new: uint, order: Ordering) -> uint { unsafe { atomic_compare_and_swap(self.v.get(), old, new, order) } } /// Add to the current value, returning the previous /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicUint, SeqCst}; /// /// let foo = AtomicUint::new(0); /// assert_eq!(0, foo.fetch_add(10, SeqCst)); /// assert_eq!(10, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_add(&self, val: uint, order: Ordering) -> uint { unsafe { atomic_add(self.v.get(), val, order) } } /// Subtract from the current value, returning the previous /// /// # Examples /// /// ``` /// use std::sync::atomics::{AtomicUint, SeqCst}; /// /// let foo = AtomicUint::new(10); /// assert_eq!(10, foo.fetch_sub(10, SeqCst)); /// assert_eq!(0, foo.load(SeqCst)); /// ``` #[inline] pub fn fetch_sub(&self, val: uint, order: Ordering) -> uint { unsafe { atomic_sub(self.v.get(), val, order) } } } impl AtomicPtr { /// Create a new `AtomicPtr` pub fn new(p: *mut T) -> AtomicPtr { AtomicPtr { p: Unsafe::new(p as uint), nocopy: marker::NoCopy } } /// Load the value #[inline] pub fn load(&self, order: Ordering) -> *mut T { unsafe { atomic_load(self.p.get() as **mut T, order) as *mut T } } /// Store the value #[inline] pub fn store(&self, ptr: *mut T, order: Ordering) { unsafe { atomic_store(self.p.get(), ptr as uint, order); } } /// Store a value, returning the old value #[inline] pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T { unsafe { atomic_swap(self.p.get(), ptr as uint, order) as *mut T } } /// If the current value is the same as expected, store a new value /// /// Compare the current value with `old`; if they are the same then /// replace the current value with `new`. Return the previous value. /// If the return value is equal to `old` then the value was updated. #[inline] pub fn compare_and_swap(&self, old: *mut T, new: *mut T, order: Ordering) -> *mut T { unsafe { atomic_compare_and_swap(self.p.get(), old as uint, new as uint, order) as *mut T } } } impl AtomicOption { /// Create a new `AtomicOption` pub fn new(p: ~T) -> AtomicOption { unsafe { AtomicOption { p: Unsafe::new(cast::transmute(p)) } } } /// Create a new `AtomicOption` that doesn't contain a value pub fn empty() -> AtomicOption { AtomicOption { p: Unsafe::new(0) } } /// Store a value, returning the old value #[inline] pub fn swap(&self, val: ~T, order: Ordering) -> Option<~T> { unsafe { let val = cast::transmute(val); let p = atomic_swap(self.p.get(), val, order); if p as uint == 0 { None } else { Some(cast::transmute(p)) } } } /// Remove the value, leaving the `AtomicOption` empty. #[inline] pub fn take(&self, order: Ordering) -> Option<~T> { unsafe { self.swap(cast::transmute(0), order) } } /// Replace an empty value with a non-empty value. /// /// Succeeds if the option is `None` and returns `None` if so. If /// the option was already `Some`, returns `Some` of the rejected /// value. #[inline] pub fn fill(&self, val: ~T, order: Ordering) -> Option<~T> { unsafe { let val = cast::transmute(val); let expected = cast::transmute(0); let oldval = atomic_compare_and_swap(self.p.get(), expected, val, order); if oldval == expected { None } else { Some(cast::transmute(val)) } } } /// Returns `true` if the `AtomicOption` is empty. /// /// Be careful: The caller must have some external method of ensuring the /// result does not get invalidated by another task after this returns. #[inline] pub fn is_empty(&self, order: Ordering) -> bool { unsafe { atomic_load(self.p.get() as *uint, order) as uint == 0 } } } #[unsafe_destructor] impl Drop for AtomicOption { fn drop(&mut self) { let _ = self.take(SeqCst); } } #[inline] unsafe fn atomic_store(dst: *mut T, val: T, order:Ordering) { match order { Release => intrinsics::atomic_store_rel(dst, val), Relaxed => intrinsics::atomic_store_relaxed(dst, val), _ => intrinsics::atomic_store(dst, val) } } #[inline] unsafe fn atomic_load(dst: *T, order:Ordering) -> T { match order { Acquire => intrinsics::atomic_load_acq(dst), Relaxed => intrinsics::atomic_load_relaxed(dst), _ => intrinsics::atomic_load(dst) } } #[inline] unsafe fn atomic_swap(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_xchg_acq(dst, val), Release => intrinsics::atomic_xchg_rel(dst, val), AcqRel => intrinsics::atomic_xchg_acqrel(dst, val), Relaxed => intrinsics::atomic_xchg_relaxed(dst, val), _ => intrinsics::atomic_xchg(dst, val) } } /// Returns the old value (like __sync_fetch_and_add). #[inline] unsafe fn atomic_add(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_xadd_acq(dst, val), Release => intrinsics::atomic_xadd_rel(dst, val), AcqRel => intrinsics::atomic_xadd_acqrel(dst, val), Relaxed => intrinsics::atomic_xadd_relaxed(dst, val), _ => intrinsics::atomic_xadd(dst, val) } } /// Returns the old value (like __sync_fetch_and_sub). #[inline] unsafe fn atomic_sub(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_xsub_acq(dst, val), Release => intrinsics::atomic_xsub_rel(dst, val), AcqRel => intrinsics::atomic_xsub_acqrel(dst, val), Relaxed => intrinsics::atomic_xsub_relaxed(dst, val), _ => intrinsics::atomic_xsub(dst, val) } } #[inline] unsafe fn atomic_compare_and_swap(dst: *mut T, old:T, new:T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_cxchg_acq(dst, old, new), Release => intrinsics::atomic_cxchg_rel(dst, old, new), AcqRel => intrinsics::atomic_cxchg_acqrel(dst, old, new), Relaxed => intrinsics::atomic_cxchg_relaxed(dst, old, new), _ => intrinsics::atomic_cxchg(dst, old, new), } } #[inline] unsafe fn atomic_and(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_and_acq(dst, val), Release => intrinsics::atomic_and_rel(dst, val), AcqRel => intrinsics::atomic_and_acqrel(dst, val), Relaxed => intrinsics::atomic_and_relaxed(dst, val), _ => intrinsics::atomic_and(dst, val) } } #[inline] unsafe fn atomic_nand(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_nand_acq(dst, val), Release => intrinsics::atomic_nand_rel(dst, val), AcqRel => intrinsics::atomic_nand_acqrel(dst, val), Relaxed => intrinsics::atomic_nand_relaxed(dst, val), _ => intrinsics::atomic_nand(dst, val) } } #[inline] unsafe fn atomic_or(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_or_acq(dst, val), Release => intrinsics::atomic_or_rel(dst, val), AcqRel => intrinsics::atomic_or_acqrel(dst, val), Relaxed => intrinsics::atomic_or_relaxed(dst, val), _ => intrinsics::atomic_or(dst, val) } } #[inline] unsafe fn atomic_xor(dst: *mut T, val: T, order: Ordering) -> T { match order { Acquire => intrinsics::atomic_xor_acq(dst, val), Release => intrinsics::atomic_xor_rel(dst, val), AcqRel => intrinsics::atomic_xor_acqrel(dst, val), Relaxed => intrinsics::atomic_xor_relaxed(dst, val), _ => intrinsics::atomic_xor(dst, val) } } /// An atomic fence. /// /// A fence 'A' which has `Release` ordering semantics, synchronizes with a /// fence 'B' with (at least) `Acquire` semantics, if and only if there exists /// atomic operations X and Y, both operating on some atomic object 'M' such /// that A is sequenced before X, Y is synchronized before B and Y observers /// the change to M. This provides a happens-before dependence between A and B. /// /// Atomic operations with `Release` or `Acquire` semantics can also synchronize /// with a fence. /// /// A fence with has `SeqCst` ordering, in addition to having both `Acquire` and /// `Release` semantics, participates in the global program order of the other /// `SeqCst` operations and/or fences. /// /// Accepts `Acquire`, `Release`, `AcqRel` and `SeqCst` orderings. /// /// # Failure /// /// Fails if `order` is `Relaxed` #[inline] pub fn fence(order: Ordering) { unsafe { match order { Acquire => intrinsics::atomic_fence_acq(), Release => intrinsics::atomic_fence_rel(), AcqRel => intrinsics::atomic_fence_acqrel(), SeqCst => intrinsics::atomic_fence(), Relaxed => fail!("there is no such thing as a relaxed fence") } } } #[cfg(test)] mod test { use option::*; use super::*; #[test] fn bool_() { let a = AtomicBool::new(false); assert_eq!(a.compare_and_swap(false, true, SeqCst), false); assert_eq!(a.compare_and_swap(false, true, SeqCst), true); a.store(false, SeqCst); assert_eq!(a.compare_and_swap(false, true, SeqCst), false); } #[test] fn option_empty() { let option: AtomicOption<()> = AtomicOption::empty(); assert!(option.is_empty(SeqCst)); } #[test] fn option_swap() { let p = AtomicOption::new(~1); let a = ~2; let b = p.swap(a, SeqCst); assert_eq!(b, Some(~1)); assert_eq!(p.take(SeqCst), Some(~2)); } #[test] fn option_take() { let p = AtomicOption::new(~1); assert_eq!(p.take(SeqCst), Some(~1)); assert_eq!(p.take(SeqCst), None); let p2 = ~2; p.swap(p2, SeqCst); assert_eq!(p.take(SeqCst), Some(~2)); } #[test] fn option_fill() { let p = AtomicOption::new(~1); assert!(p.fill(~2, SeqCst).is_some()); // should fail; shouldn't leak! assert_eq!(p.take(SeqCst), Some(~1)); assert!(p.fill(~2, SeqCst).is_none()); // shouldn't fail assert_eq!(p.take(SeqCst), Some(~2)); } #[test] fn bool_and() { let a = AtomicBool::new(true); assert_eq!(a.fetch_and(false, SeqCst),true); assert_eq!(a.load(SeqCst),false); } static mut S_BOOL : AtomicBool = INIT_ATOMIC_BOOL; static mut S_INT : AtomicInt = INIT_ATOMIC_INT; static mut S_UINT : AtomicUint = INIT_ATOMIC_UINT; #[test] fn static_init() { unsafe { assert!(!S_BOOL.load(SeqCst)); assert!(S_INT.load(SeqCst) == 0); assert!(S_UINT.load(SeqCst) == 0); } } #[test] fn different_sizes() { unsafe { let mut slot = 0u16; assert_eq!(super::atomic_swap(&mut slot, 1, SeqCst), 0); let mut slot = 0u8; assert_eq!(super::atomic_compare_and_swap(&mut slot, 1, 2, SeqCst), 0); let slot = 0u32; assert_eq!(super::atomic_load(&slot, SeqCst), 0); let mut slot = 0u64; super::atomic_store(&mut slot, 2, SeqCst); } } }