use rustc_errors::ErrorReported; use rustc_hir::def_id::DefId; use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::ty::subst::SubstsRef; use rustc_middle::ty::{self, Instance, TyCtxt, TypeFoldable}; use rustc_span::sym; use rustc_target::spec::abi::Abi; use rustc_trait_selection::traits; use traits::{translate_substs, Reveal}; use log::debug; fn resolve_instance<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>, ) -> Result>, ErrorReported> { let (param_env, (def_id, substs)) = key.into_parts(); debug!("resolve(def_id={:?}, substs={:?})", def_id, substs); let result = if let Some(trait_def_id) = tcx.trait_of_item(def_id) { debug!(" => associated item, attempting to find impl in param_env {:#?}", param_env); let item = tcx.associated_item(def_id); resolve_associated_item(tcx, &item, param_env, trait_def_id, substs) } else { let ty = tcx.type_of(def_id); let item_type = tcx.subst_and_normalize_erasing_regions(substs, param_env, &ty); let def = match item_type.kind { ty::FnDef(..) if { let f = item_type.fn_sig(tcx); f.abi() == Abi::RustIntrinsic || f.abi() == Abi::PlatformIntrinsic } => { debug!(" => intrinsic"); ty::InstanceDef::Intrinsic(def_id) } ty::FnDef(def_id, substs) if Some(def_id) == tcx.lang_items().drop_in_place_fn() => { let ty = substs.type_at(0); if ty.needs_drop(tcx, param_env) { // `DropGlue` requires a monomorphic aka concrete type. if ty.needs_subst() { return Ok(None); } debug!(" => nontrivial drop glue"); ty::InstanceDef::DropGlue(def_id, Some(ty)) } else { debug!(" => trivial drop glue"); ty::InstanceDef::DropGlue(def_id, None) } } _ => { debug!(" => free item"); ty::InstanceDef::Item(def_id) } }; Ok(Some(Instance { def, substs })) }; debug!("resolve(def_id={:?}, substs={:?}) = {:?}", def_id, substs, result); result } fn resolve_associated_item<'tcx>( tcx: TyCtxt<'tcx>, trait_item: &ty::AssocItem, param_env: ty::ParamEnv<'tcx>, trait_id: DefId, rcvr_substs: SubstsRef<'tcx>, ) -> Result>, ErrorReported> { let def_id = trait_item.def_id; debug!( "resolve_associated_item(trait_item={:?}, \ param_env={:?}, \ trait_id={:?}, \ rcvr_substs={:?})", def_id, param_env, trait_id, rcvr_substs ); let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_substs); let vtbl = tcx.codegen_fulfill_obligation((param_env, ty::Binder::bind(trait_ref)))?; // Now that we know which impl is being used, we can dispatch to // the actual function: Ok(match vtbl { traits::ImplSourceUserDefined(impl_data) => { debug!( "resolving ImplSourceUserDefined: {:?}, {:?}, {:?}, {:?}", param_env, trait_item, rcvr_substs, impl_data ); assert!(!rcvr_substs.needs_infer()); assert!(!trait_ref.needs_infer()); let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap(); let trait_def = tcx.trait_def(trait_def_id); let leaf_def = trait_def .ancestors(tcx, impl_data.impl_def_id)? .leaf_def(tcx, trait_item.ident, trait_item.kind) .unwrap_or_else(|| { bug!("{:?} not found in {:?}", trait_item, impl_data.impl_def_id); }); let substs = tcx.infer_ctxt().enter(|infcx| { let param_env = param_env.with_reveal_all(); let substs = rcvr_substs.rebase_onto(tcx, trait_def_id, impl_data.substs); let substs = translate_substs( &infcx, param_env, impl_data.impl_def_id, substs, leaf_def.defining_node, ); infcx.tcx.erase_regions(&substs) }); // Since this is a trait item, we need to see if the item is either a trait default item // or a specialization because we can't resolve those unless we can `Reveal::All`. // NOTE: This should be kept in sync with the similar code in // `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`. let eligible = if leaf_def.is_final() { // Non-specializable items are always projectable. true } else { // Only reveal a specializable default if we're past type-checking // and the obligation is monomorphic, otherwise passes such as // transmute checking and polymorphic MIR optimizations could // get a result which isn't correct for all monomorphizations. if param_env.reveal == Reveal::All { !trait_ref.still_further_specializable() } else { false } }; if !eligible { return Ok(None); } let substs = tcx.erase_regions(&substs); // Check if we just resolved an associated `const` declaration from // a `trait` to an associated `const` definition in an `impl`, where // the definition in the `impl` has the wrong type (for which an // error has already been/will be emitted elsewhere). // // NB: this may be expensive, we try to skip it in all the cases where // we know the error would've been caught (e.g. in an upstream crate). // // A better approach might be to just introduce a query (returning // `Result<(), ErrorReported>`) for the check that `rustc_typeck` // performs (i.e. that the definition's type in the `impl` matches // the declaration in the `trait`), so that we can cheaply check // here if it failed, instead of approximating it. if trait_item.kind == ty::AssocKind::Const && trait_item.def_id != leaf_def.item.def_id && leaf_def.item.def_id.is_local() { let normalized_type_of = |def_id, substs| { tcx.subst_and_normalize_erasing_regions(substs, param_env, &tcx.type_of(def_id)) }; let original_ty = normalized_type_of(trait_item.def_id, rcvr_substs); let resolved_ty = normalized_type_of(leaf_def.item.def_id, substs); if original_ty != resolved_ty { let msg = format!( "Instance::resolve: inconsistent associated `const` type: \ was `{}: {}` but resolved to `{}: {}`", tcx.def_path_str_with_substs(trait_item.def_id, rcvr_substs), original_ty, tcx.def_path_str_with_substs(leaf_def.item.def_id, substs), resolved_ty, ); let span = tcx.def_span(leaf_def.item.def_id); tcx.sess.delay_span_bug(span, &msg); return Err(ErrorReported); } } Some(ty::Instance::new(leaf_def.item.def_id, substs)) } traits::ImplSourceGenerator(generator_data) => Some(Instance { def: ty::InstanceDef::Item(generator_data.generator_def_id), substs: generator_data.substs, }), traits::ImplSourceClosure(closure_data) => { let trait_closure_kind = tcx.fn_trait_kind_from_lang_item(trait_id).unwrap(); Some(Instance::resolve_closure( tcx, closure_data.closure_def_id, closure_data.substs, trait_closure_kind, )) } traits::ImplSourceFnPointer(ref data) => { // `FnPtrShim` requires a monomorphic aka concrete type. if data.fn_ty.needs_subst() { return Ok(None); } Some(Instance { def: ty::InstanceDef::FnPtrShim(trait_item.def_id, data.fn_ty), substs: rcvr_substs, }) } traits::ImplSourceObject(ref data) => { let index = traits::get_vtable_index_of_object_method(tcx, data, def_id); Some(Instance { def: ty::InstanceDef::Virtual(def_id, index), substs: rcvr_substs }) } traits::ImplSourceBuiltin(..) => { if Some(trait_ref.def_id) == tcx.lang_items().clone_trait() { // FIXME(eddyb) use lang items for methods instead of names. let name = tcx.item_name(def_id); if name == sym::clone { let self_ty = trait_ref.self_ty(); // `CloneShim` requires a monomorphic aka concrete type. if self_ty.needs_subst() { return Ok(None); } Some(Instance { def: ty::InstanceDef::CloneShim(def_id, self_ty), substs: rcvr_substs, }) } else { assert_eq!(name, sym::clone_from); // Use the default `fn clone_from` from `trait Clone`. let substs = tcx.erase_regions(&rcvr_substs); Some(ty::Instance::new(def_id, substs)) } } else { None } } traits::ImplSourceAutoImpl(..) | traits::ImplSourceParam(..) | traits::ImplSourceTraitAlias(..) | traits::ImplSourceDiscriminantKind(..) => None, }) } pub fn provide(providers: &mut ty::query::Providers<'_>) { *providers = ty::query::Providers { resolve_instance, ..*providers }; }