// Copyright 2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use {AmbiguityError, Resolver, ResolutionError, resolve_error}; use {Module, ModuleKind, NameBinding, NameBindingKind, PathResult}; use Namespace::{self, MacroNS}; use build_reduced_graph::BuildReducedGraphVisitor; use resolve_imports::ImportResolver; use rustc::hir::def_id::{DefId, BUILTIN_MACROS_CRATE, CRATE_DEF_INDEX, DefIndex}; use rustc::hir::def::{Def, Export}; use rustc::hir::map::{self, DefCollector}; use rustc::ty; use syntax::ast::{self, Name, Ident}; use syntax::attr::{self, HasAttrs}; use syntax::errors::DiagnosticBuilder; use syntax::ext::base::{self, Annotatable, Determinacy, MultiModifier, MultiDecorator}; use syntax::ext::base::{MacroKind, SyntaxExtension, Resolver as SyntaxResolver}; use syntax::ext::expand::{Expansion, ExpansionKind, Invocation, InvocationKind, find_attr_invoc}; use syntax::ext::hygiene::Mark; use syntax::ext::placeholders::placeholder; use syntax::ext::tt::macro_rules; use syntax::feature_gate::{self, emit_feature_err, GateIssue}; use syntax::fold::{self, Folder}; use syntax::parse::parser::PathStyle; use syntax::parse::token::{self, Token}; use syntax::ptr::P; use syntax::symbol::{Symbol, keywords}; use syntax::tokenstream::{TokenStream, TokenTree, Delimited}; use syntax::util::lev_distance::find_best_match_for_name; use syntax_pos::{Span, DUMMY_SP}; use std::cell::Cell; use std::mem; use std::rc::Rc; #[derive(Clone)] pub struct InvocationData<'a> { pub module: Cell>, pub def_index: DefIndex, // True if this expansion is in a `const_expr` position, for example `[u32; m!()]`. // c.f. `DefCollector::visit_const_expr`. pub const_expr: bool, // The scope in which the invocation path is resolved. pub legacy_scope: Cell>, // The smallest scope that includes this invocation's expansion, // or `Empty` if this invocation has not been expanded yet. pub expansion: Cell>, } impl<'a> InvocationData<'a> { pub fn root(graph_root: Module<'a>) -> Self { InvocationData { module: Cell::new(graph_root), def_index: CRATE_DEF_INDEX, const_expr: false, legacy_scope: Cell::new(LegacyScope::Empty), expansion: Cell::new(LegacyScope::Empty), } } } #[derive(Copy, Clone)] pub enum LegacyScope<'a> { Empty, Invocation(&'a InvocationData<'a>), // The scope of the invocation, not including its expansion Expansion(&'a InvocationData<'a>), // The scope of the invocation, including its expansion Binding(&'a LegacyBinding<'a>), } pub struct LegacyBinding<'a> { pub parent: Cell>, pub name: ast::Name, def_id: DefId, pub span: Span, } pub enum MacroBinding<'a> { Legacy(&'a LegacyBinding<'a>), Modern(&'a NameBinding<'a>), } impl<'a> base::Resolver for Resolver<'a> { fn next_node_id(&mut self) -> ast::NodeId { self.session.next_node_id() } fn get_module_scope(&mut self, id: ast::NodeId) -> Mark { let mark = Mark::fresh(); let module = self.module_map[&self.definitions.local_def_id(id)]; self.invocations.insert(mark, self.arenas.alloc_invocation_data(InvocationData { module: Cell::new(module), def_index: module.def_id().unwrap().index, const_expr: false, legacy_scope: Cell::new(LegacyScope::Empty), expansion: Cell::new(LegacyScope::Empty), })); mark } fn eliminate_crate_var(&mut self, item: P) -> P { struct EliminateCrateVar<'b, 'a: 'b>(&'b mut Resolver<'a>); impl<'a, 'b> Folder for EliminateCrateVar<'a, 'b> { fn fold_path(&mut self, mut path: ast::Path) -> ast::Path { let ident = path.segments[0].identifier; if ident.name == "$crate" { path.segments[0].identifier.name = keywords::CrateRoot.name(); let module = self.0.resolve_crate_var(ident.ctxt); if !module.is_local() { let span = path.segments[0].span; path.segments.insert(1, match module.kind { ModuleKind::Def(_, name) => ast::PathSegment::from_ident( ast::Ident::with_empty_ctxt(name), span ), _ => unreachable!(), }) } } path } fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac { fold::noop_fold_mac(mac, self) } } EliminateCrateVar(self).fold_item(item).expect_one("") } fn is_whitelisted_legacy_custom_derive(&self, name: Name) -> bool { self.whitelisted_legacy_custom_derives.contains(&name) } fn visit_expansion(&mut self, mark: Mark, expansion: &Expansion, derives: &[Mark]) { let invocation = self.invocations[&mark]; self.collect_def_ids(invocation, expansion); self.current_module = invocation.module.get(); self.current_module.unresolved_invocations.borrow_mut().remove(&mark); self.current_module.unresolved_invocations.borrow_mut().extend(derives); for &derive in derives { self.invocations.insert(derive, invocation); } let mut visitor = BuildReducedGraphVisitor { resolver: self, legacy_scope: LegacyScope::Invocation(invocation), expansion: mark, }; expansion.visit_with(&mut visitor); self.current_module.unresolved_invocations.borrow_mut().remove(&mark); invocation.expansion.set(visitor.legacy_scope); } fn add_builtin(&mut self, ident: ast::Ident, ext: Rc) { let def_id = DefId { krate: BUILTIN_MACROS_CRATE, index: DefIndex::new(self.macro_map.len()), }; let kind = ext.kind(); self.macro_map.insert(def_id, ext); let binding = self.arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Def(Def::Macro(def_id, kind)), span: DUMMY_SP, vis: ty::Visibility::Invisible, expansion: Mark::root(), }); self.builtin_macros.insert(ident.name, binding); } fn resolve_imports(&mut self) { ImportResolver { resolver: self }.resolve_imports() } // Resolves attribute and derive legacy macros from `#![plugin(..)]`. fn find_legacy_attr_invoc(&mut self, attrs: &mut Vec) -> Option { for i in 0..attrs.len() { let name = unwrap_or!(attrs[i].name(), continue); if self.session.plugin_attributes.borrow().iter() .any(|&(ref attr_nm, _)| name == &**attr_nm) { attr::mark_known(&attrs[i]); } match self.builtin_macros.get(&name).cloned() { Some(binding) => match *binding.get_macro(self) { MultiModifier(..) | MultiDecorator(..) | SyntaxExtension::AttrProcMacro(..) => { return Some(attrs.remove(i)) } _ => {} }, None => {} } } // Check for legacy derives for i in 0..attrs.len() { let name = unwrap_or!(attrs[i].name(), continue); if name == "derive" { let result = attrs[i].parse_list(&self.session.parse_sess, |parser| parser.parse_path(PathStyle::Mod)); let mut traits = match result { Ok(traits) => traits, Err(mut e) => { e.cancel(); continue } }; for j in 0..traits.len() { if traits[j].segments.len() > 1 { continue } let trait_name = traits[j].segments[0].identifier.name; let legacy_name = Symbol::intern(&format!("derive_{}", trait_name)); if !self.builtin_macros.contains_key(&legacy_name) { continue } let span = traits.remove(j).span; self.gate_legacy_custom_derive(legacy_name, span); if traits.is_empty() { attrs.remove(i); } else { let mut tokens = Vec::new(); for (j, path) in traits.iter().enumerate() { if j > 0 { tokens.push(TokenTree::Token(attrs[i].span, Token::Comma).into()); } for (k, segment) in path.segments.iter().enumerate() { if k > 0 { tokens.push(TokenTree::Token(path.span, Token::ModSep).into()); } let tok = Token::Ident(segment.identifier); tokens.push(TokenTree::Token(path.span, tok).into()); } } attrs[i].tokens = TokenTree::Delimited(attrs[i].span, Delimited { delim: token::Paren, tts: TokenStream::concat(tokens).into(), }).into(); } return Some(ast::Attribute { path: ast::Path::from_ident(span, Ident::with_empty_ctxt(legacy_name)), tokens: TokenStream::empty(), id: attr::mk_attr_id(), style: ast::AttrStyle::Outer, is_sugared_doc: false, span: span, }); } } } None } fn resolve_invoc(&mut self, invoc: &mut Invocation, scope: Mark, force: bool) -> Result>, Determinacy> { let def = match invoc.kind { InvocationKind::Attr { attr: None, .. } => return Ok(None), _ => match self.resolve_invoc_to_def(invoc, scope, force) { Ok(def) => def, Err(determinacy) => return Err(determinacy), }, }; self.macro_defs.insert(invoc.expansion_data.mark, def.def_id()); Ok(Some(self.get_macro(def))) } fn resolve_macro(&mut self, scope: Mark, path: &ast::Path, kind: MacroKind, force: bool) -> Result, Determinacy> { self.resolve_macro_to_def(scope, path, kind, force).map(|def| self.get_macro(def)) } } impl<'a> Resolver<'a> { fn resolve_invoc_to_def(&mut self, invoc: &mut Invocation, scope: Mark, force: bool) -> Result { let (attr, traits, item) = match invoc.kind { InvocationKind::Attr { ref mut attr, ref traits, ref mut item } => (attr, traits, item), InvocationKind::Bang { ref mac, .. } => { return self.resolve_macro_to_def(scope, &mac.node.path, MacroKind::Bang, force); } InvocationKind::Derive { ref path, .. } => { return self.resolve_macro_to_def(scope, path, MacroKind::Derive, force); } }; let path = attr.as_ref().unwrap().path.clone(); let mut determinacy = Determinacy::Determined; match self.resolve_macro_to_def(scope, &path, MacroKind::Attr, force) { Ok(def) => return Ok(def), Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined, Err(Determinacy::Determined) if force => return Err(Determinacy::Determined), Err(Determinacy::Determined) => {} } let attr_name = match path.segments.len() { 1 => path.segments[0].identifier.name, _ => return Err(determinacy), }; for path in traits { match self.resolve_macro(scope, path, MacroKind::Derive, force) { Ok(ext) => if let SyntaxExtension::ProcMacroDerive(_, ref inert_attrs) = *ext { if inert_attrs.contains(&attr_name) { // FIXME(jseyfried) Avoid `mem::replace` here. let dummy_item = placeholder(ExpansionKind::Items, ast::DUMMY_NODE_ID) .make_items().pop().unwrap(); let dummy_item = Annotatable::Item(dummy_item); *item = mem::replace(item, dummy_item).map_attrs(|mut attrs| { let inert_attr = attr.take().unwrap(); attr::mark_known(&inert_attr); if self.proc_macro_enabled { *attr = find_attr_invoc(&mut attrs); } attrs.push(inert_attr); attrs }); } return Err(Determinacy::Undetermined); }, Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined, Err(Determinacy::Determined) => {} } } Err(determinacy) } fn resolve_macro_to_def(&mut self, scope: Mark, path: &ast::Path, kind: MacroKind, force: bool) -> Result { let ast::Path { ref segments, span } = *path; if segments.iter().any(|segment| segment.parameters.is_some()) { let kind = if segments.last().unwrap().parameters.is_some() { "macro" } else { "module" }; let msg = format!("type parameters are not allowed on {}s", kind); self.session.span_err(path.span, &msg); return Err(Determinacy::Determined); } let path: Vec<_> = segments.iter().map(|seg| seg.identifier).collect(); let invocation = self.invocations[&scope]; self.current_module = invocation.module.get(); if path.len() > 1 { if !self.use_extern_macros && self.gated_errors.insert(span) { let msg = "non-ident macro paths are experimental"; let feature = "use_extern_macros"; emit_feature_err(&self.session.parse_sess, feature, span, GateIssue::Language, msg); self.found_unresolved_macro = true; return Err(Determinacy::Determined); } let def = match self.resolve_path(&path, Some(MacroNS), None) { PathResult::NonModule(path_res) => match path_res.base_def() { Def::Err => Err(Determinacy::Determined), def @ _ => Ok(def), }, PathResult::Module(..) => unreachable!(), PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined), _ => { self.found_unresolved_macro = true; Err(Determinacy::Determined) }, }; self.current_module.macro_resolutions.borrow_mut() .push((path.into_boxed_slice(), span)); return def; } let name = path[0].name; let result = match self.resolve_legacy_scope(&invocation.legacy_scope, name, false) { Some(MacroBinding::Legacy(binding)) => Ok(Def::Macro(binding.def_id, MacroKind::Bang)), Some(MacroBinding::Modern(binding)) => Ok(binding.def_ignoring_ambiguity()), None => match self.resolve_lexical_macro_path_segment(path[0], MacroNS, None) { Ok(binding) => Ok(binding.def_ignoring_ambiguity()), Err(Determinacy::Undetermined) if !force => return Err(Determinacy::Undetermined), Err(_) => { self.found_unresolved_macro = true; Err(Determinacy::Determined) } }, }; self.current_module.legacy_macro_resolutions.borrow_mut() .push((scope, path[0], span, kind)); result } // Resolve the initial segment of a non-global macro path (e.g. `foo` in `foo::bar!();`) pub fn resolve_lexical_macro_path_segment(&mut self, ident: Ident, ns: Namespace, record_used: Option) -> Result<&'a NameBinding<'a>, Determinacy> { let mut module = self.current_module; let mut potential_expanded_shadower: Option<&NameBinding> = None; loop { // Since expanded macros may not shadow the lexical scope (enforced below), // we can ignore unresolved invocations (indicated by the penultimate argument). match self.resolve_ident_in_module(module, ident, ns, true, record_used) { Ok(binding) => { let span = match record_used { Some(span) => span, None => return Ok(binding), }; match potential_expanded_shadower { Some(shadower) if shadower.def() != binding.def() => { let name = ident.name; self.ambiguity_errors.push(AmbiguityError { span: span, name: name, b1: shadower, b2: binding, lexical: true, legacy: false, }); return Ok(shadower); } _ if binding.expansion == Mark::root() => return Ok(binding), _ => potential_expanded_shadower = Some(binding), } }, Err(Determinacy::Undetermined) => return Err(Determinacy::Undetermined), Err(Determinacy::Determined) => {} } match module.kind { ModuleKind::Block(..) => module = module.parent.unwrap(), ModuleKind::Def(..) => return match potential_expanded_shadower { Some(binding) => Ok(binding), None if record_used.is_some() => Err(Determinacy::Determined), None => Err(Determinacy::Undetermined), }, } } } pub fn resolve_legacy_scope(&mut self, mut scope: &'a Cell>, name: Name, record_used: bool) -> Option> { let mut possible_time_travel = None; let mut relative_depth: u32 = 0; let mut binding = None; loop { match scope.get() { LegacyScope::Empty => break, LegacyScope::Expansion(invocation) => { match invocation.expansion.get() { LegacyScope::Invocation(_) => scope.set(invocation.legacy_scope.get()), LegacyScope::Empty => { if possible_time_travel.is_none() { possible_time_travel = Some(scope); } scope = &invocation.legacy_scope; } _ => { relative_depth += 1; scope = &invocation.expansion; } } } LegacyScope::Invocation(invocation) => { relative_depth = relative_depth.saturating_sub(1); scope = &invocation.legacy_scope; } LegacyScope::Binding(potential_binding) => { if potential_binding.name == name { if (!self.use_extern_macros || record_used) && relative_depth > 0 { self.disallowed_shadowing.push(potential_binding); } binding = Some(potential_binding); break } scope = &potential_binding.parent; } }; } let binding = if let Some(binding) = binding { MacroBinding::Legacy(binding) } else if let Some(binding) = self.builtin_macros.get(&name).cloned() { if !self.use_extern_macros { self.record_use(Ident::with_empty_ctxt(name), MacroNS, binding, DUMMY_SP); } MacroBinding::Modern(binding) } else { return None; }; if !self.use_extern_macros { if let Some(scope) = possible_time_travel { // Check for disallowed shadowing later self.lexical_macro_resolutions.push((name, scope)); } } Some(binding) } pub fn finalize_current_module_macro_resolutions(&mut self) { let module = self.current_module; for &(ref path, span) in module.macro_resolutions.borrow().iter() { match self.resolve_path(path, Some(MacroNS), Some(span)) { PathResult::NonModule(_) => {}, PathResult::Failed(msg, _) => { resolve_error(self, span, ResolutionError::FailedToResolve(&msg)); } _ => unreachable!(), } } for &(mark, ident, span, kind) in module.legacy_macro_resolutions.borrow().iter() { let legacy_scope = &self.invocations[&mark].legacy_scope; let legacy_resolution = self.resolve_legacy_scope(legacy_scope, ident.name, true); let resolution = self.resolve_lexical_macro_path_segment(ident, MacroNS, Some(span)); match (legacy_resolution, resolution) { (Some(legacy_resolution), Ok(resolution)) => { let (legacy_span, participle) = match legacy_resolution { MacroBinding::Modern(binding) if binding.def() == resolution.def() => continue, MacroBinding::Modern(binding) => (binding.span, "imported"), MacroBinding::Legacy(binding) => (binding.span, "defined"), }; let msg1 = format!("`{}` could refer to the macro {} here", ident, participle); let msg2 = format!("`{}` could also refer to the macro imported here", ident); self.session.struct_span_err(span, &format!("`{}` is ambiguous", ident)) .span_note(legacy_span, &msg1) .span_note(resolution.span, &msg2) .emit(); }, (Some(MacroBinding::Modern(binding)), Err(_)) => { self.record_use(ident, MacroNS, binding, span); self.err_if_macro_use_proc_macro(ident.name, span, binding); }, (None, Err(_)) => { let msg = match kind { MacroKind::Bang => format!("cannot find macro `{}!` in this scope", ident), MacroKind::Attr => format!("cannot find attribute macro `{}` in this scope", ident), MacroKind::Derive => format!("cannot find derive macro `{}` in this scope", ident), }; let mut err = self.session.struct_span_err(span, &msg); self.suggest_macro_name(&ident.name.as_str(), kind, &mut err); err.emit(); }, _ => {}, }; } } fn suggest_macro_name(&mut self, name: &str, kind: MacroKind, err: &mut DiagnosticBuilder<'a>) { // First check if this is a locally-defined bang macro. let suggestion = if let MacroKind::Bang = kind { find_best_match_for_name(self.macro_names.iter(), name, None) } else { None // Then check builtin macros. }.or_else(|| { // FIXME: get_macro needs an &mut Resolver, can we do it without cloning? let builtin_macros = self.builtin_macros.clone(); let names = builtin_macros.iter().filter_map(|(name, binding)| { if binding.get_macro(self).kind() == kind { Some(name) } else { None } }); find_best_match_for_name(names, name, None) // Then check modules. }).or_else(|| { if !self.use_extern_macros { return None; } let is_macro = |def| { if let Def::Macro(_, def_kind) = def { def_kind == kind } else { false } }; let ident = Ident::from_str(name); self.lookup_typo_candidate(&vec![ident], MacroNS, is_macro) }); if let Some(suggestion) = suggestion { if suggestion != name { if let MacroKind::Bang = kind { err.help(&format!("did you mean `{}!`?", suggestion)); } else { err.help(&format!("did you mean `{}`?", suggestion)); } } else { err.help(&format!("have you added the `#[macro_use]` on the module/import?")); } } } fn collect_def_ids(&mut self, invocation: &'a InvocationData<'a>, expansion: &Expansion) { let Resolver { ref mut invocations, arenas, graph_root, .. } = *self; let InvocationData { def_index, const_expr, .. } = *invocation; let visit_macro_invoc = &mut |invoc: map::MacroInvocationData| { invocations.entry(invoc.mark).or_insert_with(|| { arenas.alloc_invocation_data(InvocationData { def_index: invoc.def_index, const_expr: invoc.const_expr, module: Cell::new(graph_root), expansion: Cell::new(LegacyScope::Empty), legacy_scope: Cell::new(LegacyScope::Empty), }) }); }; let mut def_collector = DefCollector::new(&mut self.definitions); def_collector.visit_macro_invoc = Some(visit_macro_invoc); def_collector.with_parent(def_index, |def_collector| { if const_expr { if let Expansion::Expr(ref expr) = *expansion { def_collector.visit_const_expr(expr); } } expansion.visit_with(def_collector) }); } pub fn define_macro(&mut self, item: &ast::Item, legacy_scope: &mut LegacyScope<'a>) { self.local_macro_def_scopes.insert(item.id, self.current_module); let ident = item.ident; if ident.name == "macro_rules" { self.session.span_err(item.span, "user-defined macros may not be named `macro_rules`"); } let def_id = self.definitions.local_def_id(item.id); let ext = Rc::new(macro_rules::compile(&self.session.parse_sess, item)); self.macro_map.insert(def_id, ext); *legacy_scope = LegacyScope::Binding(self.arenas.alloc_legacy_binding(LegacyBinding { parent: Cell::new(*legacy_scope), name: ident.name, def_id: def_id, span: item.span, })); self.macro_names.insert(ident.name); if attr::contains_name(&item.attrs, "macro_export") { let def = Def::Macro(def_id, MacroKind::Bang); self.macro_exports.push(Export { name: ident.name, def: def, span: item.span }); } } /// Error if `ext` is a Macros 1.1 procedural macro being imported by `#[macro_use]` fn err_if_macro_use_proc_macro(&mut self, name: Name, use_span: Span, binding: &NameBinding<'a>) { use self::SyntaxExtension::*; let krate = binding.def().def_id().krate; // Plugin-based syntax extensions are exempt from this check if krate == BUILTIN_MACROS_CRATE { return; } let ext = binding.get_macro(self); match *ext { // If `ext` is a procedural macro, check if we've already warned about it AttrProcMacro(_) | ProcMacro(_) => if !self.warned_proc_macros.insert(name) { return; }, _ => return, } let warn_msg = match *ext { AttrProcMacro(_) => "attribute procedural macros cannot be \ imported with `#[macro_use]`", ProcMacro(_) => "procedural macros cannot be imported with `#[macro_use]`", _ => return, }; let crate_name = self.session.cstore.crate_name(krate); self.session.struct_span_err(use_span, warn_msg) .help(&format!("instead, import the procedural macro like any other item: \ `use {}::{};`", crate_name, name)) .emit(); } fn gate_legacy_custom_derive(&mut self, name: Symbol, span: Span) { if !self.session.features.borrow().custom_derive { let sess = &self.session.parse_sess; let explain = feature_gate::EXPLAIN_CUSTOM_DERIVE; emit_feature_err(sess, "custom_derive", span, GateIssue::Language, explain); } else if !self.is_whitelisted_legacy_custom_derive(name) { self.session.span_warn(span, feature_gate::EXPLAIN_DEPR_CUSTOM_DERIVE); } } }