//! Codegen of [`asm!`] invocations. use crate::prelude::*; use std::fmt::Write; use rustc_ast::ast::{InlineAsmOptions, InlineAsmTemplatePiece}; use rustc_middle::mir::InlineAsmOperand; use rustc_span::Symbol; use rustc_target::asm::*; pub(crate) fn codegen_inline_asm<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, _span: Span, template: &[InlineAsmTemplatePiece], operands: &[InlineAsmOperand<'tcx>], options: InlineAsmOptions, ) { // FIXME add .eh_frame unwind info directives if template.is_empty() { // Black box return; } else if template[0] == InlineAsmTemplatePiece::String("int $$0x29".to_string()) { let true_ = fx.bcx.ins().iconst(types::I32, 1); fx.bcx.ins().trapnz(true_, TrapCode::User(1)); return; } else if template[0] == InlineAsmTemplatePiece::String("movq %rbx, ".to_string()) && matches!( template[1], InlineAsmTemplatePiece::Placeholder { operand_idx: 0, modifier: Some('r'), span: _ } ) && template[2] == InlineAsmTemplatePiece::String("\n".to_string()) && template[3] == InlineAsmTemplatePiece::String("cpuid".to_string()) && template[4] == InlineAsmTemplatePiece::String("\n".to_string()) && template[5] == InlineAsmTemplatePiece::String("xchgq %rbx, ".to_string()) && matches!( template[6], InlineAsmTemplatePiece::Placeholder { operand_idx: 0, modifier: Some('r'), span: _ } ) { assert_eq!(operands.len(), 4); let (leaf, eax_place) = match operands[1] { InlineAsmOperand::InOut { reg, late: true, ref in_value, out_place } => { assert_eq!( reg, InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::ax)) ); ( crate::base::codegen_operand(fx, in_value).load_scalar(fx), crate::base::codegen_place(fx, out_place.unwrap()), ) } _ => unreachable!(), }; let ebx_place = match operands[0] { InlineAsmOperand::Out { reg, late: true, place } => { assert_eq!( reg, InlineAsmRegOrRegClass::RegClass(InlineAsmRegClass::X86( X86InlineAsmRegClass::reg )) ); crate::base::codegen_place(fx, place.unwrap()) } _ => unreachable!(), }; let (sub_leaf, ecx_place) = match operands[2] { InlineAsmOperand::InOut { reg, late: true, ref in_value, out_place } => { assert_eq!( reg, InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::cx)) ); ( crate::base::codegen_operand(fx, in_value).load_scalar(fx), crate::base::codegen_place(fx, out_place.unwrap()), ) } _ => unreachable!(), }; let edx_place = match operands[3] { InlineAsmOperand::Out { reg, late: true, place } => { assert_eq!( reg, InlineAsmRegOrRegClass::Reg(InlineAsmReg::X86(X86InlineAsmReg::dx)) ); crate::base::codegen_place(fx, place.unwrap()) } _ => unreachable!(), }; let (eax, ebx, ecx, edx) = crate::intrinsics::codegen_cpuid_call(fx, leaf, sub_leaf); eax_place.write_cvalue(fx, CValue::by_val(eax, fx.layout_of(fx.tcx.types.u32))); ebx_place.write_cvalue(fx, CValue::by_val(ebx, fx.layout_of(fx.tcx.types.u32))); ecx_place.write_cvalue(fx, CValue::by_val(ecx, fx.layout_of(fx.tcx.types.u32))); edx_place.write_cvalue(fx, CValue::by_val(edx, fx.layout_of(fx.tcx.types.u32))); return; } else if fx.tcx.symbol_name(fx.instance).name.starts_with("___chkstk") { // ___chkstk, ___chkstk_ms and __alloca are only used on Windows crate::trap::trap_unimplemented(fx, "Stack probes are not supported"); } else if fx.tcx.symbol_name(fx.instance).name == "__alloca" { crate::trap::trap_unimplemented(fx, "Alloca is not supported"); } let mut slot_size = Size::from_bytes(0); let mut clobbered_regs = Vec::new(); let mut inputs = Vec::new(); let mut outputs = Vec::new(); let mut new_slot = |reg_class: InlineAsmRegClass| { let reg_size = reg_class .supported_types(InlineAsmArch::X86_64) .iter() .map(|(ty, _)| ty.size()) .max() .unwrap(); let align = rustc_target::abi::Align::from_bytes(reg_size.bytes()).unwrap(); slot_size = slot_size.align_to(align); let offset = slot_size; slot_size += reg_size; offset }; let mut asm_gen = InlineAssemblyGenerator { tcx: fx.tcx, arch: InlineAsmArch::X86_64, template, operands, options, registers: Vec::new(), }; asm_gen.allocate_registers(); // FIXME overlap input and output slots to save stack space for (i, operand) in operands.iter().enumerate() { match *operand { InlineAsmOperand::In { reg, ref value } => { let reg = asm_gen.registers[i].unwrap(); clobbered_regs.push((reg, new_slot(reg.reg_class()))); inputs.push(( reg, new_slot(reg.reg_class()), crate::base::codegen_operand(fx, value).load_scalar(fx), )); } InlineAsmOperand::Out { reg, late: _, place } => { let reg = asm_gen.registers[i].unwrap(); clobbered_regs.push((reg, new_slot(reg.reg_class()))); if let Some(place) = place { outputs.push(( reg, new_slot(reg.reg_class()), crate::base::codegen_place(fx, place), )); } } InlineAsmOperand::InOut { reg, late: _, ref in_value, out_place } => { let reg = asm_gen.registers[i].unwrap(); clobbered_regs.push((reg, new_slot(reg.reg_class()))); inputs.push(( reg, new_slot(reg.reg_class()), crate::base::codegen_operand(fx, in_value).load_scalar(fx), )); if let Some(out_place) = out_place { outputs.push(( reg, new_slot(reg.reg_class()), crate::base::codegen_place(fx, out_place), )); } } InlineAsmOperand::Const { value: _ } => todo!(), InlineAsmOperand::SymFn { value: _ } => todo!(), InlineAsmOperand::SymStatic { def_id: _ } => todo!(), } } let inline_asm_index = fx.inline_asm_index; fx.inline_asm_index += 1; let asm_name = format!("{}__inline_asm_{}", fx.symbol_name, inline_asm_index); let generated_asm = asm_gen.generate_asm_wrapper(&asm_name, clobbered_regs, &inputs, &outputs); fx.cx.global_asm.push_str(&generated_asm); call_inline_asm(fx, &asm_name, slot_size, inputs, outputs); } struct InlineAssemblyGenerator<'a, 'tcx> { tcx: TyCtxt<'tcx>, arch: InlineAsmArch, template: &'a [InlineAsmTemplatePiece], operands: &'a [InlineAsmOperand<'tcx>], options: InlineAsmOptions, registers: Vec>, } impl<'tcx> InlineAssemblyGenerator<'_, 'tcx> { fn allocate_registers(&mut self) { let sess = self.tcx.sess; let map = allocatable_registers( self.arch, |feature| sess.target_features.contains(&Symbol::intern(feature)), &sess.target, ); let mut allocated = FxHashMap::<_, (bool, bool)>::default(); let mut regs = vec![None; self.operands.len()]; // Add explicit registers to the allocated set. for (i, operand) in self.operands.iter().enumerate() { match *operand { InlineAsmOperand::In { reg: InlineAsmRegOrRegClass::Reg(reg), .. } => { regs[i] = Some(reg); allocated.entry(reg).or_default().0 = true; } InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::Reg(reg), late: true, .. } => { regs[i] = Some(reg); allocated.entry(reg).or_default().1 = true; } InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::Reg(reg), .. } | InlineAsmOperand::InOut { reg: InlineAsmRegOrRegClass::Reg(reg), .. } => { regs[i] = Some(reg); allocated.insert(reg, (true, true)); } _ => (), } } // Allocate out/inout/inlateout registers first because they are more constrained. for (i, operand) in self.operands.iter().enumerate() { match *operand { InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::RegClass(class), late: false, .. } | InlineAsmOperand::InOut { reg: InlineAsmRegOrRegClass::RegClass(class), .. } => { let mut alloc_reg = None; for ® in &map[&class] { let mut used = false; reg.overlapping_regs(|r| { if allocated.contains_key(&r) { used = true; } }); if !used { alloc_reg = Some(reg); break; } } let reg = alloc_reg.expect("cannot allocate registers"); regs[i] = Some(reg); allocated.insert(reg, (true, true)); } _ => (), } } // Allocate in/lateout. for (i, operand) in self.operands.iter().enumerate() { match *operand { InlineAsmOperand::In { reg: InlineAsmRegOrRegClass::RegClass(class), .. } => { let mut alloc_reg = None; for ® in &map[&class] { let mut used = false; reg.overlapping_regs(|r| { if allocated.get(&r).copied().unwrap_or_default().0 { used = true; } }); if !used { alloc_reg = Some(reg); break; } } let reg = alloc_reg.expect("cannot allocate registers"); regs[i] = Some(reg); allocated.entry(reg).or_default().0 = true; } InlineAsmOperand::Out { reg: InlineAsmRegOrRegClass::RegClass(class), late: true, .. } => { let mut alloc_reg = None; for ® in &map[&class] { let mut used = false; reg.overlapping_regs(|r| { if allocated.get(&r).copied().unwrap_or_default().1 { used = true; } }); if !used { alloc_reg = Some(reg); break; } } let reg = alloc_reg.expect("cannot allocate registers"); regs[i] = Some(reg); allocated.entry(reg).or_default().1 = true; } _ => (), } } self.registers = regs; } fn generate_asm_wrapper( &self, asm_name: &str, clobbered_regs: Vec<(InlineAsmReg, Size)>, inputs: &[(InlineAsmReg, Size, Value)], outputs: &[(InlineAsmReg, Size, CPlace<'_>)], ) -> String { let mut generated_asm = String::new(); writeln!(generated_asm, ".globl {}", asm_name).unwrap(); writeln!(generated_asm, ".type {},@function", asm_name).unwrap(); writeln!(generated_asm, ".section .text.{},\"ax\",@progbits", asm_name).unwrap(); writeln!(generated_asm, "{}:", asm_name).unwrap(); generated_asm.push_str(".intel_syntax noprefix\n"); generated_asm.push_str(" push rbp\n"); generated_asm.push_str(" mov rbp,rdi\n"); // Save clobbered registers if !self.options.contains(InlineAsmOptions::NORETURN) { // FIXME skip registers saved by the calling convention for &(reg, offset) in &clobbered_regs { save_register(&mut generated_asm, self.arch, reg, offset); } } // Write input registers for &(reg, offset, _value) in inputs { restore_register(&mut generated_asm, self.arch, reg, offset); } if self.options.contains(InlineAsmOptions::ATT_SYNTAX) { generated_asm.push_str(".att_syntax\n"); } // The actual inline asm for piece in self.template { match piece { InlineAsmTemplatePiece::String(s) => { generated_asm.push_str(s); } InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => { self.registers[*operand_idx] .unwrap() .emit(&mut generated_asm, self.arch, *modifier) .unwrap(); } } } generated_asm.push('\n'); if self.options.contains(InlineAsmOptions::ATT_SYNTAX) { generated_asm.push_str(".intel_syntax noprefix\n"); } if !self.options.contains(InlineAsmOptions::NORETURN) { // Read output registers for &(reg, offset, _place) in outputs { save_register(&mut generated_asm, self.arch, reg, offset); } // Restore clobbered registers for &(reg, offset) in clobbered_regs.iter().rev() { restore_register(&mut generated_asm, self.arch, reg, offset); } generated_asm.push_str(" pop rbp\n"); generated_asm.push_str(" ret\n"); } else { generated_asm.push_str(" ud2\n"); } generated_asm.push_str(".att_syntax\n"); writeln!(generated_asm, ".size {name}, .-{name}", name = asm_name).unwrap(); generated_asm.push_str(".text\n"); generated_asm.push_str("\n\n"); generated_asm } } fn call_inline_asm<'tcx>( fx: &mut FunctionCx<'_, '_, 'tcx>, asm_name: &str, slot_size: Size, inputs: Vec<(InlineAsmReg, Size, Value)>, outputs: Vec<(InlineAsmReg, Size, CPlace<'tcx>)>, ) { let stack_slot = fx.bcx.func.create_stack_slot(StackSlotData { kind: StackSlotKind::ExplicitSlot, size: u32::try_from(slot_size.bytes()).unwrap(), }); if fx.clif_comments.enabled() { fx.add_comment(stack_slot, "inline asm scratch slot"); } let inline_asm_func = fx .module .declare_function( asm_name, Linkage::Import, &Signature { call_conv: CallConv::SystemV, params: vec![AbiParam::new(fx.pointer_type)], returns: vec![], }, ) .unwrap(); let inline_asm_func = fx.module.declare_func_in_func(inline_asm_func, &mut fx.bcx.func); if fx.clif_comments.enabled() { fx.add_comment(inline_asm_func, asm_name); } for (_reg, offset, value) in inputs { fx.bcx.ins().stack_store(value, stack_slot, i32::try_from(offset.bytes()).unwrap()); } let stack_slot_addr = fx.bcx.ins().stack_addr(fx.pointer_type, stack_slot, 0); fx.bcx.ins().call(inline_asm_func, &[stack_slot_addr]); for (_reg, offset, place) in outputs { let ty = fx.clif_type(place.layout().ty).unwrap(); let value = fx.bcx.ins().stack_load(ty, stack_slot, i32::try_from(offset.bytes()).unwrap()); place.write_cvalue(fx, CValue::by_val(value, place.layout())); } } fn save_register(generated_asm: &mut String, arch: InlineAsmArch, reg: InlineAsmReg, offset: Size) { match arch { InlineAsmArch::X86_64 => { write!(generated_asm, " mov [rbp+0x{:x}], ", offset.bytes()).unwrap(); reg.emit(generated_asm, InlineAsmArch::X86_64, None).unwrap(); generated_asm.push('\n'); } _ => unimplemented!("save_register for {:?}", arch), } } fn restore_register( generated_asm: &mut String, arch: InlineAsmArch, reg: InlineAsmReg, offset: Size, ) { match arch { InlineAsmArch::X86_64 => { generated_asm.push_str(" mov "); reg.emit(generated_asm, InlineAsmArch::X86_64, None).unwrap(); writeln!(generated_asm, ", [rbp+0x{:x}]", offset.bytes()).unwrap(); } _ => unimplemented!("restore_register for {:?}", arch), } }