// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use lib; use lib::llvm::{llvm, ValueRef}; use middle::lang_items::StrDupUniqFnLangItem; use middle::trans::base; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::{Dest, Ignore, SaveIn}; use middle::trans::expr; use middle::trans::glue; use middle::trans::machine::{llsize_of, nonzero_llsize_of}; use middle::trans::type_of; use middle::ty; use util::common::indenter; use util::ppaux::ty_to_str; use middle::trans::type_::Type; use std::option::None; use syntax::ast; use syntax::codemap; // Boxed vector types are in some sense currently a "shorthand" for a box // containing an unboxed vector. This expands a boxed vector type into such an // expanded type. It doesn't respect mutability, but that doesn't matter at // this point. pub fn expand_boxed_vec_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let unit_ty = ty::sequence_element_type(tcx, t); let unboxed_vec_ty = ty::mk_mut_unboxed_vec(tcx, unit_ty); match ty::get(t).sty { ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) => { ty::mk_imm_uniq(tcx, unboxed_vec_ty) } ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) => { ty::mk_imm_box(tcx, unboxed_vec_ty) } _ => tcx.sess.bug("non boxed-vec type \ in tvec::expand_boxed_vec_ty") } } pub fn get_fill(bcx: @mut Block, vptr: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::get_fill"); Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_fill])) } pub fn set_fill(bcx: @mut Block, vptr: ValueRef, fill: ValueRef) { Store(bcx, fill, GEPi(bcx, vptr, [0u, abi::vec_elt_fill])); } pub fn get_alloc(bcx: @mut Block, vptr: ValueRef) -> ValueRef { Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_alloc])) } pub fn get_bodyptr(bcx: @mut Block, vptr: ValueRef, t: ty::t) -> ValueRef { if ty::type_contents(bcx.tcx(), t).contains_managed() { GEPi(bcx, vptr, [0u, abi::box_field_body]) } else { vptr } } pub fn get_dataptr(bcx: @mut Block, vptr: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::get_dataptr"); GEPi(bcx, vptr, [0u, abi::vec_elt_elems, 0u]) } pub fn pointer_add_byte(bcx: @mut Block, ptr: ValueRef, bytes: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::pointer_add_byte"); let old_ty = val_ty(ptr); let bptr = PointerCast(bcx, ptr, Type::i8p()); return PointerCast(bcx, InBoundsGEP(bcx, bptr, [bytes]), old_ty); } pub fn alloc_raw(bcx: @mut Block, unit_ty: ty::t, fill: ValueRef, alloc: ValueRef, heap: heap) -> Result { let _icx = push_ctxt("tvec::alloc_uniq"); let ccx = bcx.ccx(); let vecbodyty = ty::mk_mut_unboxed_vec(bcx.tcx(), unit_ty); let vecsize = Add(bcx, alloc, llsize_of(ccx, ccx.opaque_vec_type)); if heap == heap_exchange { let Result { bcx: bcx, val: val } = malloc_raw_dyn(bcx, vecbodyty, heap_exchange, vecsize); Store(bcx, fill, GEPi(bcx, val, [0u, abi::vec_elt_fill])); Store(bcx, alloc, GEPi(bcx, val, [0u, abi::vec_elt_alloc])); return rslt(bcx, val); } else { let base::MallocResult {bcx, box: bx, body} = base::malloc_general_dyn(bcx, vecbodyty, heap, vecsize); Store(bcx, fill, GEPi(bcx, body, [0u, abi::vec_elt_fill])); Store(bcx, alloc, GEPi(bcx, body, [0u, abi::vec_elt_alloc])); base::maybe_set_managed_unique_rc(bcx, bx, heap); return rslt(bcx, bx); } } pub fn alloc_uniq_raw(bcx: @mut Block, unit_ty: ty::t, fill: ValueRef, alloc: ValueRef) -> Result { alloc_raw(bcx, unit_ty, fill, alloc, base::heap_for_unique(bcx, unit_ty)) } pub fn alloc_vec(bcx: @mut Block, unit_ty: ty::t, elts: uint, heap: heap) -> Result { let _icx = push_ctxt("tvec::alloc_uniq"); let ccx = bcx.ccx(); let llunitty = type_of::type_of(ccx, unit_ty); let unit_sz = nonzero_llsize_of(ccx, llunitty); let fill = Mul(bcx, C_uint(ccx, elts), unit_sz); let alloc = if elts < 4u { Mul(bcx, C_int(ccx, 4), unit_sz) } else { fill }; let Result {bcx: bcx, val: vptr} = alloc_raw(bcx, unit_ty, fill, alloc, heap); return rslt(bcx, vptr); } pub fn make_drop_glue_unboxed(bcx: @mut Block, vptr: ValueRef, vec_ty: ty::t) -> @mut Block { let _icx = push_ctxt("tvec::make_drop_glue_unboxed"); let tcx = bcx.tcx(); let unit_ty = ty::sequence_element_type(tcx, vec_ty); if ty::type_needs_drop(tcx, unit_ty) { iter_vec_unboxed(bcx, vptr, vec_ty, glue::drop_ty) } else { bcx } } pub struct VecTypes { vec_ty: ty::t, unit_ty: ty::t, llunit_ty: Type, llunit_size: ValueRef } impl VecTypes { pub fn to_str(&self, ccx: &CrateContext) -> ~str { format!("VecTypes \\{vec_ty={}, unit_ty={}, llunit_ty={}, llunit_size={}\\}", ty_to_str(ccx.tcx, self.vec_ty), ty_to_str(ccx.tcx, self.unit_ty), ccx.tn.type_to_str(self.llunit_ty), ccx.tn.val_to_str(self.llunit_size)) } } pub fn trans_fixed_vstore(bcx: @mut Block, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: expr::Dest) -> @mut Block { //! // // [...] allocates a fixed-size array and moves it around "by value". // In this case, it means that the caller has already given us a location // to store the array of the suitable size, so all we have to do is // generate the content. debug!("trans_fixed_vstore(vstore_expr={}, dest={:?})", bcx.expr_to_str(vstore_expr), dest.to_str(bcx.ccx())); let _indenter = indenter(); let vt = vec_types_from_expr(bcx, vstore_expr); return match dest { Ignore => write_content(bcx, &vt, vstore_expr, content_expr, dest), SaveIn(lldest) => { // lldest will have type *[T x N], but we want the type *T, // so use GEP to convert: let lldest = GEPi(bcx, lldest, [0, 0]); write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(lldest)) } }; } pub fn trans_slice_vstore(bcx: @mut Block, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: expr::Dest) -> @mut Block { //! // // &[...] allocates memory on the stack and writes the values into it, // returning a slice (pair of ptr, len). &"..." is similar except that // the memory can be statically allocated. let ccx = bcx.ccx(); debug!("trans_slice_vstore(vstore_expr={}, dest={})", bcx.expr_to_str(vstore_expr), dest.to_str(ccx)); let _indenter = indenter(); // Handle the &"..." case: match content_expr.node { ast::ExprLit(@codemap::Spanned {node: ast::lit_str(s, _), span: _}) => { return trans_lit_str(bcx, content_expr, s, dest); } _ => {} } // Handle the &[...] case: let vt = vec_types_from_expr(bcx, vstore_expr); let count = elements_required(bcx, content_expr); debug!("vt={}, count={:?}", vt.to_str(ccx), count); // Make a fixed-length backing array and allocate it on the stack. let llcount = C_uint(ccx, count); let llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount); // Arrange for the backing array to be cleaned up. let fixed_ty = ty::mk_evec(bcx.tcx(), ty::mt {ty: vt.unit_ty, mutbl: ast::MutMutable}, ty::vstore_fixed(count)); let llfixed_ty = type_of::type_of(bcx.ccx(), fixed_ty).ptr_to(); let llfixed_casted = BitCast(bcx, llfixed, llfixed_ty); add_clean(bcx, llfixed_casted, fixed_ty); // Generate the content into the backing array. let bcx = write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(llfixed)); // Finally, create the slice pair itself. match dest { Ignore => {} SaveIn(lldest) => { Store(bcx, llfixed, GEPi(bcx, lldest, [0u, abi::slice_elt_base])); Store(bcx, llcount, GEPi(bcx, lldest, [0u, abi::slice_elt_len])); } } return bcx; } pub fn trans_lit_str(bcx: @mut Block, lit_expr: &ast::Expr, str_lit: @str, dest: Dest) -> @mut Block { //! // // Literal strings translate to slices into static memory. This is // different from trans_slice_vstore() above because it does need to copy // the content anywhere. debug!("trans_lit_str(lit_expr={}, dest={})", bcx.expr_to_str(lit_expr), dest.to_str(bcx.ccx())); let _indenter = indenter(); match dest { Ignore => bcx, SaveIn(lldest) => { unsafe { let bytes = str_lit.len(); let llbytes = C_uint(bcx.ccx(), bytes); let llcstr = C_cstr(bcx.ccx(), str_lit); let llcstr = llvm::LLVMConstPointerCast(llcstr, Type::i8p().to_ref()); Store(bcx, llcstr, GEPi(bcx, lldest, [0u, abi::slice_elt_base])); Store(bcx, llbytes, GEPi(bcx, lldest, [0u, abi::slice_elt_len])); bcx } } } } pub fn trans_uniq_or_managed_vstore(bcx: @mut Block, heap: heap, vstore_expr: &ast::Expr, content_expr: &ast::Expr) -> DatumBlock { //! // // @[...] or ~[...] (also @"..." or ~"...") allocate boxes in the // appropriate heap and write the array elements into them. debug!("trans_uniq_or_managed_vstore(vstore_expr={}, heap={:?})", bcx.expr_to_str(vstore_expr), heap); let _indenter = indenter(); // Handle ~"". match heap { heap_exchange => { match content_expr.node { ast::ExprLit(@codemap::Spanned { node: ast::lit_str(s, _), span }) => { let llptrval = C_cstr(bcx.ccx(), s); let llptrval = PointerCast(bcx, llptrval, Type::i8p()); let llsizeval = C_uint(bcx.ccx(), s.len()); let typ = ty::mk_estr(bcx.tcx(), ty::vstore_uniq); let lldestval = scratch_datum(bcx, typ, "", false); let alloc_fn = langcall(bcx, Some(span), "", StrDupUniqFnLangItem); let bcx = callee::trans_lang_call( bcx, alloc_fn, [ llptrval, llsizeval ], Some(expr::SaveIn(lldestval.to_ref_llval(bcx)))).bcx; return DatumBlock { bcx: bcx, datum: lldestval }; } _ => {} } } heap_exchange_closure => fail!("vectors use exchange_alloc"), heap_managed | heap_managed_unique => {} } let vt = vec_types_from_expr(bcx, vstore_expr); let count = elements_required(bcx, content_expr); let Result {bcx, val} = alloc_vec(bcx, vt.unit_ty, count, heap); add_clean_free(bcx, val, heap); let dataptr = get_dataptr(bcx, get_bodyptr(bcx, val, vt.vec_ty)); debug!("alloc_vec() returned val={}, dataptr={}", bcx.val_to_str(val), bcx.val_to_str(dataptr)); let bcx = write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(dataptr)); revoke_clean(bcx, val); return immediate_rvalue_bcx(bcx, val, vt.vec_ty); } pub fn write_content(bcx: @mut Block, vt: &VecTypes, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: Dest) -> @mut Block { let _icx = push_ctxt("tvec::write_content"); let mut bcx = bcx; debug!("write_content(vt={}, dest={}, vstore_expr={:?})", vt.to_str(bcx.ccx()), dest.to_str(bcx.ccx()), bcx.expr_to_str(vstore_expr)); let _indenter = indenter(); match content_expr.node { ast::ExprLit(@codemap::Spanned { node: ast::lit_str(s, _), _ }) => { match dest { Ignore => { return bcx; } SaveIn(lldest) => { let bytes = s.len(); let llbytes = C_uint(bcx.ccx(), bytes); let llcstr = C_cstr(bcx.ccx(), s); base::call_memcpy(bcx, lldest, llcstr, llbytes, 1); return bcx; } } } ast::ExprVec(ref elements, _) => { match dest { Ignore => { for element in elements.iter() { bcx = expr::trans_into(bcx, *element, Ignore); } } SaveIn(lldest) => { let mut temp_cleanups = ~[]; for (i, element) in elements.iter().enumerate() { let lleltptr = GEPi(bcx, lldest, [i]); debug!("writing index {:?} with lleltptr={:?}", i, bcx.val_to_str(lleltptr)); bcx = expr::trans_into(bcx, *element, SaveIn(lleltptr)); add_clean_temp_mem(bcx, lleltptr, vt.unit_ty); temp_cleanups.push(lleltptr); } for cleanup in temp_cleanups.iter() { revoke_clean(bcx, *cleanup); } } } return bcx; } ast::ExprRepeat(element, count_expr, _) => { match dest { Ignore => { return expr::trans_into(bcx, element, Ignore); } SaveIn(lldest) => { let count = ty::eval_repeat_count(&bcx.tcx(), count_expr); if count == 0 { return bcx; } // Some cleanup would be required in the case in which failure happens // during a copy. But given that copy constructors are not overridable, // this can only happen as a result of OOM. So we just skip out on the // cleanup since things would *probably* be broken at that point anyways. let elem = unpack_datum!(bcx, { expr::trans_to_datum(bcx, element) }); let next_bcx = sub_block(bcx, "expr_repeat: while next"); let loop_bcx = loop_scope_block(bcx, next_bcx, None, "expr_repeat", None); let cond_bcx = scope_block(loop_bcx, None, "expr_repeat: loop cond"); let set_bcx = scope_block(loop_bcx, None, "expr_repeat: body: set"); let inc_bcx = scope_block(loop_bcx, None, "expr_repeat: body: inc"); Br(bcx, loop_bcx.llbb); let loop_counter = { // i = 0 let i = alloca(loop_bcx, bcx.ccx().int_type, "__i"); Store(loop_bcx, C_uint(bcx.ccx(), 0), i); Br(loop_bcx, cond_bcx.llbb); i }; { // i < count let lhs = Load(cond_bcx, loop_counter); let rhs = C_uint(bcx.ccx(), count); let cond_val = ICmp(cond_bcx, lib::llvm::IntULT, lhs, rhs); CondBr(cond_bcx, cond_val, set_bcx.llbb, next_bcx.llbb); } { // v[i] = elem let i = Load(set_bcx, loop_counter); let lleltptr = InBoundsGEP(set_bcx, lldest, [i]); let set_bcx = elem.copy_to(set_bcx, INIT, lleltptr); Br(set_bcx, inc_bcx.llbb); } { // i += 1 let i = Load(inc_bcx, loop_counter); let plusone = Add(inc_bcx, i, C_uint(bcx.ccx(), 1)); Store(inc_bcx, plusone, loop_counter); Br(inc_bcx, cond_bcx.llbb); } return next_bcx; } } } _ => { bcx.tcx().sess.span_bug(content_expr.span, "Unexpected evec content"); } } } pub fn vec_types_from_expr(bcx: @mut Block, vec_expr: &ast::Expr) -> VecTypes { let vec_ty = node_id_type(bcx, vec_expr.id); vec_types(bcx, vec_ty) } pub fn vec_types(bcx: @mut Block, vec_ty: ty::t) -> VecTypes { let ccx = bcx.ccx(); let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty); let llunit_ty = type_of::type_of(ccx, unit_ty); let llunit_size = nonzero_llsize_of(ccx, llunit_ty); VecTypes {vec_ty: vec_ty, unit_ty: unit_ty, llunit_ty: llunit_ty, llunit_size: llunit_size} } pub fn elements_required(bcx: @mut Block, content_expr: &ast::Expr) -> uint { //! Figure out the number of elements we need to store this content match content_expr.node { ast::ExprLit(@codemap::Spanned { node: ast::lit_str(s, _), _ }) => { s.len() }, ast::ExprVec(ref es, _) => es.len(), ast::ExprRepeat(_, count_expr, _) => { ty::eval_repeat_count(&bcx.tcx(), count_expr) } _ => bcx.tcx().sess.span_bug(content_expr.span, "Unexpected evec content") } } pub fn get_base_and_byte_len(bcx: @mut Block, llval: ValueRef, vec_ty: ty::t) -> (ValueRef, ValueRef) { //! // // Converts a vector into the slice pair. The vector should be stored in // `llval` which should be either immediate or by-ref as appropriate for // the vector type. If you have a datum, you would probably prefer to // call `Datum::get_base_and_byte_len()` which will handle any conversions for // you. let ccx = bcx.ccx(); let vt = vec_types(bcx, vec_ty); let vstore = match ty::get(vt.vec_ty).sty { ty::ty_estr(vst) | ty::ty_evec(_, vst) => vst, _ => ty::vstore_uniq }; match vstore { ty::vstore_fixed(n) => { let base = GEPi(bcx, llval, [0u, 0u]); let len = Mul(bcx, C_uint(ccx, n), vt.llunit_size); (base, len) } ty::vstore_slice(_) => { let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base])); let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len])); let len = Mul(bcx, count, vt.llunit_size); (base, len) } ty::vstore_uniq | ty::vstore_box => { let body = get_bodyptr(bcx, llval, vec_ty); (get_dataptr(bcx, body), get_fill(bcx, body)) } } } pub fn get_base_and_len(bcx: @mut Block, llval: ValueRef, vec_ty: ty::t) -> (ValueRef, ValueRef) { //! // // Converts a vector into the slice pair. The vector should be stored in // `llval` which should be either immediate or by-ref as appropriate for // the vector type. If you have a datum, you would probably prefer to // call `Datum::get_base_and_len()` which will handle any conversions for // you. let ccx = bcx.ccx(); let vt = vec_types(bcx, vec_ty); let vstore = match ty::get(vt.vec_ty).sty { ty::ty_estr(vst) | ty::ty_evec(_, vst) => vst, _ => ty::vstore_uniq }; match vstore { ty::vstore_fixed(n) => { let base = GEPi(bcx, llval, [0u, 0u]); (base, C_uint(ccx, n)) } ty::vstore_slice(_) => { let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base])); let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len])); (base, count) } ty::vstore_uniq | ty::vstore_box => { let body = get_bodyptr(bcx, llval, vec_ty); (get_dataptr(bcx, body), UDiv(bcx, get_fill(bcx, body), vt.llunit_size)) } } } pub type iter_vec_block<'self> = &'self fn(@mut Block, ValueRef, ty::t) -> @mut Block; pub fn iter_vec_raw(bcx: @mut Block, data_ptr: ValueRef, vec_ty: ty::t, fill: ValueRef, f: iter_vec_block) -> @mut Block { let _icx = push_ctxt("tvec::iter_vec_raw"); let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty); // Calculate the last pointer address we want to handle. // FIXME (#3729): Optimize this when the size of the unit type is // statically known to not use pointer casts, which tend to confuse // LLVM. let data_end_ptr = pointer_add_byte(bcx, data_ptr, fill); // Now perform the iteration. let header_bcx = base::sub_block(bcx, "iter_vec_loop_header"); Br(bcx, header_bcx.llbb); let data_ptr = Phi(header_bcx, val_ty(data_ptr), [data_ptr], [bcx.llbb]); let not_yet_at_end = ICmp(header_bcx, lib::llvm::IntULT, data_ptr, data_end_ptr); let body_bcx = base::sub_block(header_bcx, "iter_vec_loop_body"); let next_bcx = base::sub_block(header_bcx, "iter_vec_next"); CondBr(header_bcx, not_yet_at_end, body_bcx.llbb, next_bcx.llbb); let body_bcx = f(body_bcx, data_ptr, unit_ty); AddIncomingToPhi(data_ptr, InBoundsGEP(body_bcx, data_ptr, [C_int(bcx.ccx(), 1)]), body_bcx.llbb); Br(body_bcx, header_bcx.llbb); return next_bcx; } pub fn iter_vec_uniq(bcx: @mut Block, vptr: ValueRef, vec_ty: ty::t, fill: ValueRef, f: iter_vec_block) -> @mut Block { let _icx = push_ctxt("tvec::iter_vec_uniq"); let data_ptr = get_dataptr(bcx, get_bodyptr(bcx, vptr, vec_ty)); iter_vec_raw(bcx, data_ptr, vec_ty, fill, f) } pub fn iter_vec_unboxed(bcx: @mut Block, body_ptr: ValueRef, vec_ty: ty::t, f: iter_vec_block) -> @mut Block { let _icx = push_ctxt("tvec::iter_vec_unboxed"); let fill = get_fill(bcx, body_ptr); let dataptr = get_dataptr(bcx, body_ptr); return iter_vec_raw(bcx, dataptr, vec_ty, fill, f); }