// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Decoding metadata from a single crate's metadata use cstore::{self, CrateMetadata, MetadataBlob, NativeLibrary}; use schema::*; use rustc::hir::map::{DefKey, DefPath, DefPathData}; use rustc::hir; use rustc::middle::cstore::LinkagePreference; use rustc::hir::def::{self, Def, CtorKind}; use rustc::hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE}; use rustc::middle::lang_items; use rustc::session::Session; use rustc::ty::{self, Ty, TyCtxt}; use rustc::ty::subst::Substs; use rustc::mir::Mir; use std::borrow::Cow; use std::cell::Ref; use std::collections::BTreeMap; use std::io; use std::mem; use std::str; use std::u32; use rustc_serialize::{Decodable, Decoder, SpecializedDecoder, opaque}; use syntax::attr; use syntax::ast; use syntax::codemap; use syntax::ext::base::MacroKind; use syntax_pos::{self, Span, BytePos, Pos, DUMMY_SP, NO_EXPANSION}; pub struct DecodeContext<'a, 'tcx: 'a> { opaque: opaque::Decoder<'a>, cdata: Option<&'a CrateMetadata>, sess: Option<&'a Session>, tcx: Option>, // Cache the last used filemap for translating spans as an optimization. last_filemap_index: usize, lazy_state: LazyState, } /// Abstract over the various ways one can create metadata decoders. pub trait Metadata<'a, 'tcx>: Copy { fn raw_bytes(self) -> &'a [u8]; fn cdata(self) -> Option<&'a CrateMetadata> { None } fn sess(self) -> Option<&'a Session> { None } fn tcx(self) -> Option> { None } fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> { let tcx = self.tcx(); DecodeContext { opaque: opaque::Decoder::new(self.raw_bytes(), pos), cdata: self.cdata(), sess: self.sess().or(tcx.map(|tcx| tcx.sess)), tcx: tcx, last_filemap_index: 0, lazy_state: LazyState::NoNode, } } } impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob { fn raw_bytes(self) -> &'a [u8] { match *self { MetadataBlob::Inflated(ref vec) => vec, MetadataBlob::Archive(ref ar) => ar.as_slice(), MetadataBlob::Raw(ref vec) => vec, } } } impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a CrateMetadata { fn raw_bytes(self) -> &'a [u8] { self.blob.raw_bytes() } fn cdata(self) -> Option<&'a CrateMetadata> { Some(self) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadata, &'a Session) { fn raw_bytes(self) -> &'a [u8] { self.0.raw_bytes() } fn cdata(self) -> Option<&'a CrateMetadata> { Some(self.0) } fn sess(self) -> Option<&'a Session> { Some(&self.1) } } impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a CrateMetadata, TyCtxt<'a, 'tcx, 'tcx>) { fn raw_bytes(self) -> &'a [u8] { self.0.raw_bytes() } fn cdata(self) -> Option<&'a CrateMetadata> { Some(self.0) } fn tcx(self) -> Option> { Some(self.1) } } impl<'a, 'tcx: 'a, T: Decodable> Lazy { pub fn decode>(self, meta: M) -> T { let mut dcx = meta.decoder(self.position); dcx.lazy_state = LazyState::NodeStart(self.position); T::decode(&mut dcx).unwrap() } } impl<'a, 'tcx: 'a, T: Decodable> LazySeq { pub fn decode>(self, meta: M) -> impl Iterator + 'a { let mut dcx = meta.decoder(self.position); dcx.lazy_state = LazyState::NodeStart(self.position); (0..self.len).map(move |_| T::decode(&mut dcx).unwrap()) } } impl<'a, 'tcx> DecodeContext<'a, 'tcx> { pub fn tcx(&self) -> TyCtxt<'a, 'tcx, 'tcx> { self.tcx.expect("missing TyCtxt in DecodeContext") } pub fn cdata(&self) -> &'a CrateMetadata { self.cdata.expect("missing CrateMetadata in DecodeContext") } fn with_position R, R>(&mut self, pos: usize, f: F) -> R { let new_opaque = opaque::Decoder::new(self.opaque.data, pos); let old_opaque = mem::replace(&mut self.opaque, new_opaque); let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode); let r = f(self); self.opaque = old_opaque; self.lazy_state = old_state; r } fn read_lazy_distance(&mut self, min_size: usize) -> Result::Error> { let distance = self.read_usize()?; let position = match self.lazy_state { LazyState::NoNode => bug!("read_lazy_distance: outside of a metadata node"), LazyState::NodeStart(start) => { assert!(distance + min_size <= start); start - distance - min_size } LazyState::Previous(last_min_end) => last_min_end + distance, }; self.lazy_state = LazyState::Previous(position + min_size); Ok(position) } } macro_rules! decoder_methods { ($($name:ident -> $ty:ty;)*) => { $(fn $name(&mut self) -> Result<$ty, Self::Error> { self.opaque.$name() })* } } impl<'doc, 'tcx> Decoder for DecodeContext<'doc, 'tcx> { type Error = as Decoder>::Error; decoder_methods! { read_nil -> (); read_u128 -> u128; read_u64 -> u64; read_u32 -> u32; read_u16 -> u16; read_u8 -> u8; read_usize -> usize; read_i128 -> i128; read_i64 -> i64; read_i32 -> i32; read_i16 -> i16; read_i8 -> i8; read_isize -> isize; read_bool -> bool; read_f64 -> f64; read_f32 -> f32; read_char -> char; read_str -> Cow; } fn error(&mut self, err: &str) -> Self::Error { self.opaque.error(err) } } impl<'a, 'tcx, T> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { Ok(Lazy::with_position(self.read_lazy_distance(Lazy::::min_size())?)) } } impl<'a, 'tcx, T> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { let len = self.read_usize()?; let position = if len == 0 { 0 } else { self.read_lazy_distance(LazySeq::::min_size(len))? }; Ok(LazySeq::with_position_and_length(position, len)) } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { let cnum = CrateNum::from_u32(u32::decode(self)?); if cnum == LOCAL_CRATE { Ok(self.cdata().cnum) } else { Ok(self.cdata().cnum_map.borrow()[cnum]) } } } impl<'a, 'tcx> SpecializedDecoder for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result { let lo = BytePos::decode(self)?; let hi = BytePos::decode(self)?; let sess = if let Some(sess) = self.sess { sess } else { return Ok(Span { lo: lo, hi: hi, ctxt: NO_EXPANSION }); }; let (lo, hi) = if lo > hi { // Currently macro expansion sometimes produces invalid Span values // where lo > hi. In order not to crash the compiler when trying to // translate these values, let's transform them into something we // can handle (and which will produce useful debug locations at // least some of the time). // This workaround is only necessary as long as macro expansion is // not fixed. FIXME(#23480) (lo, lo) } else { (lo, hi) }; let imported_filemaps = self.cdata().imported_filemaps(&sess.codemap()); let filemap = { // Optimize for the case that most spans within a translated item // originate from the same filemap. let last_filemap = &imported_filemaps[self.last_filemap_index]; if lo >= last_filemap.original_start_pos && lo <= last_filemap.original_end_pos && hi >= last_filemap.original_start_pos && hi <= last_filemap.original_end_pos { last_filemap } else { let mut a = 0; let mut b = imported_filemaps.len(); while b - a > 1 { let m = (a + b) / 2; if imported_filemaps[m].original_start_pos > lo { b = m; } else { a = m; } } self.last_filemap_index = a; &imported_filemaps[a] } }; let lo = (lo - filemap.original_start_pos) + filemap.translated_filemap.start_pos; let hi = (hi - filemap.original_start_pos) + filemap.translated_filemap.start_pos; Ok(Span { lo: lo, hi: hi, ctxt: NO_EXPANSION }) } } // FIXME(#36588) These impls are horribly unsound as they allow // the caller to pick any lifetime for 'tcx, including 'static, // by using the unspecialized proxies to them. impl<'a, 'tcx> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { let tcx = self.tcx(); // Handle shorthands first, if we have an usize > 0x80. if self.opaque.data[self.opaque.position()] & 0x80 != 0 { let pos = self.read_usize()?; assert!(pos >= SHORTHAND_OFFSET); let key = ty::CReaderCacheKey { cnum: self.cdata().cnum, pos: pos - SHORTHAND_OFFSET, }; if let Some(ty) = tcx.rcache.borrow().get(&key).cloned() { return Ok(ty); } let ty = self.with_position(key.pos, Ty::decode)?; tcx.rcache.borrow_mut().insert(key, ty); Ok(ty) } else { Ok(tcx.mk_ty(ty::TypeVariants::decode(self)?)) } } } impl<'a, 'tcx> SpecializedDecoder> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result, Self::Error> { Ok(ty::GenericPredicates { parent: Decodable::decode(self)?, predicates: (0..self.read_usize()?).map(|_| { // Handle shorthands first, if we have an usize > 0x80. if self.opaque.data[self.opaque.position()] & 0x80 != 0 { let pos = self.read_usize()?; assert!(pos >= SHORTHAND_OFFSET); let pos = pos - SHORTHAND_OFFSET; self.with_position(pos, ty::Predicate::decode) } else { ty::Predicate::decode(self) } }) .collect::, _>>()?, }) } } impl<'a, 'tcx> SpecializedDecoder<&'tcx Substs<'tcx>> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result<&'tcx Substs<'tcx>, Self::Error> { Ok(self.tcx().mk_substs((0..self.read_usize()?).map(|_| Decodable::decode(self)))?) } } impl<'a, 'tcx> SpecializedDecoder<&'tcx ty::Region> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result<&'tcx ty::Region, Self::Error> { Ok(self.tcx().mk_region(Decodable::decode(self)?)) } } impl<'a, 'tcx> SpecializedDecoder<&'tcx ty::Slice>> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result<&'tcx ty::Slice>, Self::Error> { Ok(self.tcx().mk_type_list((0..self.read_usize()?).map(|_| Decodable::decode(self)))?) } } impl<'a, 'tcx> SpecializedDecoder<&'tcx ty::AdtDef> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result<&'tcx ty::AdtDef, Self::Error> { let def_id = DefId::decode(self)?; Ok(self.tcx().lookup_adt_def(def_id)) } } impl<'a, 'tcx> SpecializedDecoder<&'tcx ty::Slice>> for DecodeContext<'a, 'tcx> { fn specialized_decode(&mut self) -> Result<&'tcx ty::Slice>, Self::Error> { Ok(self.tcx().mk_existential_predicates((0..self.read_usize()?) .map(|_| Decodable::decode(self)))?) } } impl<'a, 'tcx> MetadataBlob { pub fn is_compatible(&self) -> bool { self.raw_bytes().starts_with(METADATA_HEADER) } pub fn get_rustc_version(&self) -> String { Lazy::with_position(METADATA_HEADER.len() + 4).decode(self) } pub fn get_root(&self) -> CrateRoot { let slice = self.raw_bytes(); let offset = METADATA_HEADER.len(); let pos = (((slice[offset + 0] as u32) << 24) | ((slice[offset + 1] as u32) << 16) | ((slice[offset + 2] as u32) << 8) | ((slice[offset + 3] as u32) << 0)) as usize; Lazy::with_position(pos).decode(self) } pub fn list_crate_metadata(&self, out: &mut io::Write) -> io::Result<()> { write!(out, "=External Dependencies=\n")?; let root = self.get_root(); for (i, dep) in root.crate_deps.decode(self).enumerate() { write!(out, "{} {}-{}\n", i + 1, dep.name, dep.hash)?; } write!(out, "\n")?; Ok(()) } } impl<'tcx> EntryKind<'tcx> { fn to_def(&self, did: DefId) -> Option { Some(match *self { EntryKind::Const(_) => Def::Const(did), EntryKind::AssociatedConst(..) => Def::AssociatedConst(did), EntryKind::ImmStatic | EntryKind::ForeignImmStatic => Def::Static(did, false), EntryKind::MutStatic | EntryKind::ForeignMutStatic => Def::Static(did, true), EntryKind::Struct(_, _) => Def::Struct(did), EntryKind::Union(_, _) => Def::Union(did), EntryKind::Fn(_) | EntryKind::ForeignFn(_) => Def::Fn(did), EntryKind::Method(_) => Def::Method(did), EntryKind::Type => Def::TyAlias(did), EntryKind::AssociatedType(_) => Def::AssociatedTy(did), EntryKind::Mod(_) => Def::Mod(did), EntryKind::Variant(_) => Def::Variant(did), EntryKind::Trait(_) => Def::Trait(did), EntryKind::Enum(..) => Def::Enum(did), EntryKind::MacroDef(_) => Def::Macro(did, MacroKind::Bang), EntryKind::ForeignMod | EntryKind::Impl(_) | EntryKind::DefaultImpl(_) | EntryKind::Field | EntryKind::Closure(_) => return None, }) } } impl<'a, 'tcx> CrateMetadata { fn is_proc_macro(&self, id: DefIndex) -> bool { self.proc_macros.is_some() && id != CRATE_DEF_INDEX } fn maybe_entry(&self, item_id: DefIndex) -> Option>> { assert!(!self.is_proc_macro(item_id)); self.root.index.lookup(self.blob.raw_bytes(), item_id) } fn entry(&self, item_id: DefIndex) -> Entry<'tcx> { match self.maybe_entry(item_id) { None => { bug!("entry: id not found: {:?} in crate {:?} with number {}", item_id, self.name, self.cnum) } Some(d) => d.decode(self), } } fn local_def_id(&self, index: DefIndex) -> DefId { DefId { krate: self.cnum, index: index, } } fn item_name(&self, item_index: DefIndex) -> ast::Name { self.def_key(item_index) .disambiguated_data .data .get_opt_name() .expect("no name in item_name") } pub fn get_def(&self, index: DefIndex) -> Option { if !self.is_proc_macro(index) { self.entry(index).kind.to_def(self.local_def_id(index)) } else { let kind = self.proc_macros.as_ref().unwrap()[index.as_usize() - 1].1.kind(); Some(Def::Macro(self.local_def_id(index), kind)) } } pub fn get_span(&self, index: DefIndex, sess: &Session) -> Span { match self.is_proc_macro(index) { true => DUMMY_SP, false => self.entry(index).span.decode((self, sess)), } } pub fn get_trait_def(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::TraitDef { let data = match self.entry(item_id).kind { EntryKind::Trait(data) => data.decode(self), _ => bug!(), }; let def = ty::TraitDef::new(self.local_def_id(item_id), data.unsafety, data.paren_sugar, self.def_path(item_id).deterministic_hash(tcx)); if data.has_default_impl { def.record_has_default_impl(); } def } fn get_variant(&self, item: &Entry<'tcx>, index: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> (ty::VariantDef, Option) { let data = match item.kind { EntryKind::Variant(data) | EntryKind::Struct(data, _) | EntryKind::Union(data, _) => data.decode(self), _ => bug!(), }; if let ty::VariantDiscr::Explicit(def_id) = data.discr { let result = data.evaluated_discr.map_or(Err(()), Ok); tcx.maps.monomorphic_const_eval.borrow_mut().insert(def_id, result); } (ty::VariantDef { did: self.local_def_id(data.struct_ctor.unwrap_or(index)), name: self.item_name(index), fields: item.children.decode(self).map(|index| { let f = self.entry(index); ty::FieldDef { did: self.local_def_id(index), name: self.item_name(index), vis: f.visibility.decode(self) } }).collect(), discr: data.discr, ctor_kind: data.ctor_kind, }, data.struct_ctor) } pub fn get_adt_def(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> &'tcx ty::AdtDef { let item = self.entry(item_id); let did = self.local_def_id(item_id); let kind = match item.kind { EntryKind::Enum(_) => ty::AdtKind::Enum, EntryKind::Struct(_, _) => ty::AdtKind::Struct, EntryKind::Union(_, _) => ty::AdtKind::Union, _ => bug!("get_adt_def called on a non-ADT {:?}", did), }; let variants = if let ty::AdtKind::Enum = kind { item.children .decode(self) .map(|index| { let (variant, struct_ctor) = self.get_variant(&self.entry(index), index, tcx); assert_eq!(struct_ctor, None); variant }) .collect() } else { let (variant, _struct_ctor) = self.get_variant(&item, item_id, tcx); vec![variant] }; let (kind, repr) = match item.kind { EntryKind::Enum(repr) => (ty::AdtKind::Enum, repr), EntryKind::Struct(_, repr) => (ty::AdtKind::Struct, repr), EntryKind::Union(_, repr) => (ty::AdtKind::Union, repr), _ => bug!("get_adt_def called on a non-ADT {:?}", did), }; tcx.alloc_adt_def(did, kind, variants, repr) } pub fn get_predicates(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::GenericPredicates<'tcx> { self.entry(item_id).predicates.unwrap().decode((self, tcx)) } pub fn get_super_predicates(&self, item_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::GenericPredicates<'tcx> { match self.entry(item_id).kind { EntryKind::Trait(data) => data.decode(self).super_predicates.decode((self, tcx)), _ => bug!(), } } pub fn get_generics(&self, item_id: DefIndex) -> ty::Generics { self.entry(item_id).generics.unwrap().decode(self) } pub fn get_type(&self, id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Ty<'tcx> { self.entry(id).ty.unwrap().decode((self, tcx)) } pub fn get_stability(&self, id: DefIndex) -> Option { match self.is_proc_macro(id) { true => None, false => self.entry(id).stability.map(|stab| stab.decode(self)), } } pub fn get_deprecation(&self, id: DefIndex) -> Option { match self.is_proc_macro(id) { true => None, false => self.entry(id).deprecation.map(|depr| depr.decode(self)), } } pub fn get_visibility(&self, id: DefIndex) -> ty::Visibility { match self.is_proc_macro(id) { true => ty::Visibility::Public, false => self.entry(id).visibility.decode(self), } } fn get_impl_data(&self, id: DefIndex) -> ImplData<'tcx> { match self.entry(id).kind { EntryKind::Impl(data) => data.decode(self), _ => bug!(), } } pub fn get_parent_impl(&self, id: DefIndex) -> Option { self.get_impl_data(id).parent_impl } pub fn get_impl_polarity(&self, id: DefIndex) -> hir::ImplPolarity { self.get_impl_data(id).polarity } pub fn get_coerce_unsized_info(&self, id: DefIndex) -> Option { self.get_impl_data(id).coerce_unsized_info } pub fn get_impl_trait(&self, id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Option> { self.get_impl_data(id).trait_ref.map(|tr| tr.decode((self, tcx))) } /// Iterates over the language items in the given crate. pub fn get_lang_items(&self) -> Vec<(DefIndex, usize)> { self.root.lang_items.decode(self).collect() } /// Iterates over each child of the given item. pub fn each_child_of_item(&self, id: DefIndex, mut callback: F) where F: FnMut(def::Export) { if let Some(ref proc_macros) = self.proc_macros { if id == CRATE_DEF_INDEX { for (id, &(name, ref ext)) in proc_macros.iter().enumerate() { let def = Def::Macro( DefId { krate: self.cnum, index: DefIndex::new(id + 1) }, ext.kind() ); callback(def::Export { name: name, def: def, span: DUMMY_SP }); } } return } // Find the item. let item = match self.maybe_entry(id) { None => return, Some(item) => item.decode(self), }; // Iterate over all children. let macros_only = self.dep_kind.get().macros_only(); for child_index in item.children.decode(self) { if macros_only { continue } // Get the item. if let Some(child) = self.maybe_entry(child_index) { let child = child.decode(self); match child.kind { EntryKind::MacroDef(..) => {} _ if macros_only => continue, _ => {} } // Hand off the item to the callback. match child.kind { // FIXME(eddyb) Don't encode these in children. EntryKind::ForeignMod => { for child_index in child.children.decode(self) { if let Some(def) = self.get_def(child_index) { callback(def::Export { def: def, name: self.item_name(child_index), span: self.entry(child_index).span.decode(self), }); } } continue; } EntryKind::Impl(_) | EntryKind::DefaultImpl(_) => continue, _ => {} } let def_key = self.def_key(child_index); let span = child.span.decode(self); if let (Some(def), Some(name)) = (self.get_def(child_index), def_key.disambiguated_data.data.get_opt_name()) { callback(def::Export { def: def, name: name, span: span }); // For non-reexport structs and variants add their constructors to children. // Reexport lists automatically contain constructors when necessary. match def { Def::Struct(..) => { if let Some(ctor_def_id) = self.get_struct_ctor_def_id(child_index) { let ctor_kind = self.get_ctor_kind(child_index); let ctor_def = Def::StructCtor(ctor_def_id, ctor_kind); callback(def::Export { def: ctor_def, name: name, span: span }); } } Def::Variant(def_id) => { // Braced variants, unlike structs, generate unusable names in // value namespace, they are reserved for possible future use. let ctor_kind = self.get_ctor_kind(child_index); let ctor_def = Def::VariantCtor(def_id, ctor_kind); callback(def::Export { def: ctor_def, name: name, span: span }); } _ => {} } } } } if let EntryKind::Mod(data) = item.kind { for exp in data.decode(self).reexports.decode(self) { match exp.def { Def::Macro(..) => {} _ if macros_only => continue, _ => {} } callback(exp); } } } pub fn maybe_get_item_body(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefIndex) -> Option<&'tcx hir::Body> { if self.is_proc_macro(id) { return None; } self.entry(id).ast.map(|ast| { let def_id = self.local_def_id(id); let body = ast.decode(self).body.decode(self); tcx.hir.intern_inlined_body(def_id, body) }) } pub fn item_body_tables(&self, id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> &'tcx ty::TypeckTables<'tcx> { let ast = self.entry(id).ast.unwrap().decode(self); tcx.alloc_tables(ast.tables.decode((self, tcx))) } pub fn item_body_nested_bodies(&self, id: DefIndex) -> BTreeMap { self.entry(id).ast.into_iter().flat_map(|ast| { ast.decode(self).nested_bodies.decode(self).map(|body| (body.id(), body)) }).collect() } pub fn const_is_rvalue_promotable_to_static(&self, id: DefIndex) -> bool { self.entry(id).ast.expect("const item missing `ast`") .decode(self).rvalue_promotable_to_static } pub fn is_item_mir_available(&self, id: DefIndex) -> bool { !self.is_proc_macro(id) && self.maybe_entry(id).and_then(|item| item.decode(self).mir).is_some() } pub fn maybe_get_item_mir(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, id: DefIndex) -> Option> { match self.is_proc_macro(id) { true => None, false => self.entry(id).mir.map(|mir| mir.decode((self, tcx))), } } pub fn mir_const_qualif(&self, id: DefIndex) -> u8 { match self.entry(id).kind { EntryKind::Const(qualif) | EntryKind::AssociatedConst(AssociatedContainer::ImplDefault, qualif) | EntryKind::AssociatedConst(AssociatedContainer::ImplFinal, qualif) => { qualif } _ => bug!(), } } pub fn get_associated_item(&self, id: DefIndex) -> ty::AssociatedItem { let item = self.entry(id); let def_key = self.def_key(id); let parent = self.local_def_id(def_key.parent.unwrap()); let name = def_key.disambiguated_data.data.get_opt_name().unwrap(); let (kind, container, has_self) = match item.kind { EntryKind::AssociatedConst(container, _) => { (ty::AssociatedKind::Const, container, false) } EntryKind::Method(data) => { let data = data.decode(self); (ty::AssociatedKind::Method, data.container, data.has_self) } EntryKind::AssociatedType(container) => { (ty::AssociatedKind::Type, container, false) } _ => bug!() }; ty::AssociatedItem { name: name, kind: kind, vis: item.visibility.decode(self), defaultness: container.defaultness(), def_id: self.local_def_id(id), container: container.with_def_id(parent), method_has_self_argument: has_self } } pub fn get_item_variances(&self, id: DefIndex) -> Vec { self.entry(id).variances.decode(self).collect() } pub fn get_ctor_kind(&self, node_id: DefIndex) -> CtorKind { match self.entry(node_id).kind { EntryKind::Struct(data, _) | EntryKind::Union(data, _) | EntryKind::Variant(data) => data.decode(self).ctor_kind, _ => CtorKind::Fictive, } } pub fn get_struct_ctor_def_id(&self, node_id: DefIndex) -> Option { match self.entry(node_id).kind { EntryKind::Struct(data, _) => { data.decode(self).struct_ctor.map(|index| self.local_def_id(index)) } _ => None, } } pub fn get_item_attrs(&self, node_id: DefIndex) -> Vec { if self.is_proc_macro(node_id) { return Vec::new(); } // The attributes for a tuple struct are attached to the definition, not the ctor; // we assume that someone passing in a tuple struct ctor is actually wanting to // look at the definition let mut item = self.entry(node_id); let def_key = self.def_key(node_id); if def_key.disambiguated_data.data == DefPathData::StructCtor { item = self.entry(def_key.parent.unwrap()); } self.get_attributes(&item) } pub fn get_struct_field_names(&self, id: DefIndex) -> Vec { self.entry(id) .children .decode(self) .map(|index| self.item_name(index)) .collect() } fn get_attributes(&self, item: &Entry<'tcx>) -> Vec { item.attributes .decode(self) .map(|mut attr| { // Need new unique IDs: old thread-local IDs won't map to new threads. attr.id = attr::mk_attr_id(); attr }) .collect() } // Translate a DefId from the current compilation environment to a DefId // for an external crate. fn reverse_translate_def_id(&self, did: DefId) -> Option { for (local, &global) in self.cnum_map.borrow().iter_enumerated() { if global == did.krate { return Some(DefId { krate: local, index: did.index, }); } } None } pub fn get_inherent_implementations_for_type(&self, id: DefIndex) -> Vec { self.entry(id) .inherent_impls .decode(self) .map(|index| self.local_def_id(index)) .collect() } pub fn get_implementations_for_trait(&self, filter: Option, result: &mut Vec) { // Do a reverse lookup beforehand to avoid touching the crate_num // hash map in the loop below. let filter = match filter.map(|def_id| self.reverse_translate_def_id(def_id)) { Some(Some(def_id)) => Some((def_id.krate.as_u32(), def_id.index)), Some(None) => return, None if self.proc_macros.is_some() => return, None => None, }; // FIXME(eddyb) Make this O(1) instead of O(n). for trait_impls in self.root.impls.decode(self) { if filter.is_some() && filter != Some(trait_impls.trait_id) { continue; } result.extend(trait_impls.impls.decode(self).map(|index| self.local_def_id(index))); if filter.is_some() { break; } } } pub fn get_trait_of_item(&self, id: DefIndex) -> Option { self.def_key(id).parent.and_then(|parent_index| { match self.entry(parent_index).kind { EntryKind::Trait(_) => Some(self.local_def_id(parent_index)), _ => None, } }) } pub fn get_native_libraries(&self) -> Vec { self.root.native_libraries.decode(self).collect() } pub fn get_dylib_dependency_formats(&self) -> Vec<(CrateNum, LinkagePreference)> { self.root .dylib_dependency_formats .decode(self) .enumerate() .flat_map(|(i, link)| { let cnum = CrateNum::new(i + 1); link.map(|link| (self.cnum_map.borrow()[cnum], link)) }) .collect() } pub fn get_missing_lang_items(&self) -> Vec { self.root.lang_items_missing.decode(self).collect() } pub fn get_fn_arg_names(&self, id: DefIndex) -> Vec { let arg_names = match self.entry(id).kind { EntryKind::Fn(data) | EntryKind::ForeignFn(data) => data.decode(self).arg_names, EntryKind::Method(data) => data.decode(self).fn_data.arg_names, _ => LazySeq::empty(), }; arg_names.decode(self).collect() } pub fn get_exported_symbols(&self) -> Vec { self.exported_symbols.iter().map(|&index| self.local_def_id(index)).collect() } pub fn get_macro(&self, id: DefIndex) -> (ast::Name, MacroDef) { let entry = self.entry(id); match entry.kind { EntryKind::MacroDef(macro_def) => (self.item_name(id), macro_def.decode(self)), _ => bug!(), } } pub fn is_const_fn(&self, id: DefIndex) -> bool { let constness = match self.entry(id).kind { EntryKind::Method(data) => data.decode(self).fn_data.constness, EntryKind::Fn(data) => data.decode(self).constness, _ => hir::Constness::NotConst, }; constness == hir::Constness::Const } pub fn is_foreign_item(&self, id: DefIndex) -> bool { match self.entry(id).kind { EntryKind::ForeignImmStatic | EntryKind::ForeignMutStatic | EntryKind::ForeignFn(_) => true, _ => false, } } pub fn is_dllimport_foreign_item(&self, id: DefIndex) -> bool { self.dllimport_foreign_items.contains(&id) } pub fn is_default_impl(&self, impl_id: DefIndex) -> bool { match self.entry(impl_id).kind { EntryKind::DefaultImpl(_) => true, _ => false, } } pub fn closure_kind(&self, closure_id: DefIndex) -> ty::ClosureKind { match self.entry(closure_id).kind { EntryKind::Closure(data) => data.decode(self).kind, _ => bug!(), } } pub fn closure_ty(&self, closure_id: DefIndex, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::PolyFnSig<'tcx> { match self.entry(closure_id).kind { EntryKind::Closure(data) => data.decode(self).ty.decode((self, tcx)), _ => bug!(), } } pub fn def_key(&self, index: DefIndex) -> DefKey { self.def_path_table.def_key(index) } // Returns the path leading to the thing with this `id`. pub fn def_path(&self, id: DefIndex) -> DefPath { debug!("def_path(id={:?})", id); DefPath::make(self.cnum, id, |parent| self.def_path_table.def_key(parent)) } /// Imports the codemap from an external crate into the codemap of the crate /// currently being compiled (the "local crate"). /// /// The import algorithm works analogous to how AST items are inlined from an /// external crate's metadata: /// For every FileMap in the external codemap an 'inline' copy is created in the /// local codemap. The correspondence relation between external and local /// FileMaps is recorded in the `ImportedFileMap` objects returned from this /// function. When an item from an external crate is later inlined into this /// crate, this correspondence information is used to translate the span /// information of the inlined item so that it refers the correct positions in /// the local codemap (see `>`). /// /// The import algorithm in the function below will reuse FileMaps already /// existing in the local codemap. For example, even if the FileMap of some /// source file of libstd gets imported many times, there will only ever be /// one FileMap object for the corresponding file in the local codemap. /// /// Note that imported FileMaps do not actually contain the source code of the /// file they represent, just information about length, line breaks, and /// multibyte characters. This information is enough to generate valid debuginfo /// for items inlined from other crates. pub fn imported_filemaps(&'a self, local_codemap: &codemap::CodeMap) -> Ref<'a, Vec> { { let filemaps = self.codemap_import_info.borrow(); if !filemaps.is_empty() { return filemaps; } } let external_codemap = self.root.codemap.decode(self); let imported_filemaps = external_codemap.map(|filemap_to_import| { // Try to find an existing FileMap that can be reused for the filemap to // be imported. A FileMap is reusable if it is exactly the same, just // positioned at a different offset within the codemap. let reusable_filemap = { local_codemap.files .borrow() .iter() .find(|fm| are_equal_modulo_startpos(&fm, &filemap_to_import)) .map(|rc| rc.clone()) }; match reusable_filemap { Some(fm) => { debug!("CrateMetaData::imported_filemaps reuse \ filemap {:?} original (start_pos {:?} end_pos {:?}) \ translated (start_pos {:?} end_pos {:?})", filemap_to_import.name, filemap_to_import.start_pos, filemap_to_import.end_pos, fm.start_pos, fm.end_pos); cstore::ImportedFileMap { original_start_pos: filemap_to_import.start_pos, original_end_pos: filemap_to_import.end_pos, translated_filemap: fm, } } None => { // We can't reuse an existing FileMap, so allocate a new one // containing the information we need. let syntax_pos::FileMap { name, abs_path, start_pos, end_pos, lines, multibyte_chars, .. } = filemap_to_import; let source_length = (end_pos - start_pos).to_usize(); // Translate line-start positions and multibyte character // position into frame of reference local to file. // `CodeMap::new_imported_filemap()` will then translate those // coordinates to their new global frame of reference when the // offset of the FileMap is known. let mut lines = lines.into_inner(); for pos in &mut lines { *pos = *pos - start_pos; } let mut multibyte_chars = multibyte_chars.into_inner(); for mbc in &mut multibyte_chars { mbc.pos = mbc.pos - start_pos; } let local_version = local_codemap.new_imported_filemap(name, abs_path, source_length, lines, multibyte_chars); debug!("CrateMetaData::imported_filemaps alloc \ filemap {:?} original (start_pos {:?} end_pos {:?}) \ translated (start_pos {:?} end_pos {:?})", local_version.name, start_pos, end_pos, local_version.start_pos, local_version.end_pos); cstore::ImportedFileMap { original_start_pos: start_pos, original_end_pos: end_pos, translated_filemap: local_version, } } } }) .collect(); // This shouldn't borrow twice, but there is no way to downgrade RefMut to Ref. *self.codemap_import_info.borrow_mut() = imported_filemaps; self.codemap_import_info.borrow() } } fn are_equal_modulo_startpos(fm1: &syntax_pos::FileMap, fm2: &syntax_pos::FileMap) -> bool { if fm1.byte_length() != fm2.byte_length() { return false; } if fm1.name != fm2.name { return false; } let lines1 = fm1.lines.borrow(); let lines2 = fm2.lines.borrow(); if lines1.len() != lines2.len() { return false; } for (&line1, &line2) in lines1.iter().zip(lines2.iter()) { if (line1 - fm1.start_pos) != (line2 - fm2.start_pos) { return false; } } let multibytes1 = fm1.multibyte_chars.borrow(); let multibytes2 = fm2.multibyte_chars.borrow(); if multibytes1.len() != multibytes2.len() { return false; } for (mb1, mb2) in multibytes1.iter().zip(multibytes2.iter()) { if (mb1.bytes != mb2.bytes) || ((mb1.pos - fm1.start_pos) != (mb2.pos - fm2.start_pos)) { return false; } } true }