// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Translation Item Collection //! =========================== //! //! This module is responsible for discovering all items that will contribute to //! to code generation of the crate. The important part here is that it not only //! needs to find syntax-level items (functions, structs, etc) but also all //! their monomorphized instantiations. Every non-generic, non-const function //! maps to one LLVM artifact. Every generic function can produce //! from zero to N artifacts, depending on the sets of type arguments it //! is instantiated with. //! This also applies to generic items from other crates: A generic definition //! in crate X might produce monomorphizations that are compiled into crate Y. //! We also have to collect these here. //! //! The following kinds of "translation items" are handled here: //! //! - Functions //! - Methods //! - Closures //! - Statics //! - Drop glue //! //! The following things also result in LLVM artifacts, but are not collected //! here, since we instantiate them locally on demand when needed in a given //! codegen unit: //! //! - Constants //! - Vtables //! - Object Shims //! //! //! General Algorithm //! ----------------- //! Let's define some terms first: //! //! - A "translation item" is something that results in a function or global in //! the LLVM IR of a codegen unit. Translation items do not stand on their //! own, they can reference other translation items. For example, if function //! `foo()` calls function `bar()` then the translation item for `foo()` //! references the translation item for function `bar()`. In general, the //! definition for translation item A referencing a translation item B is that //! the LLVM artifact produced for A references the LLVM artifact produced //! for B. //! //! - Translation items and the references between them for a directed graph, //! where the translation items are the nodes and references form the edges. //! Let's call this graph the "translation item graph". //! //! - The translation item graph for a program contains all translation items //! that are needed in order to produce the complete LLVM IR of the program. //! //! The purpose of the algorithm implemented in this module is to build the //! translation item graph for the current crate. It runs in two phases: //! //! 1. Discover the roots of the graph by traversing the HIR of the crate. //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR //! representation of the item corresponding to a given node, until no more //! new nodes are found. //! //! ### Discovering roots //! //! The roots of the translation item graph correspond to the non-generic //! syntactic items in the source code. We find them by walking the HIR of the //! crate, and whenever we hit upon a function, method, or static item, we //! create a translation item consisting of the items DefId and, since we only //! consider non-generic items, an empty type-substitution set. //! //! ### Finding neighbor nodes //! Given a translation item node, we can discover neighbors by inspecting its //! MIR. We walk the MIR and any time we hit upon something that signifies a //! reference to another translation item, we have found a neighbor. Since the //! translation item we are currently at is always monomorphic, we also know the //! concrete type arguments of its neighbors, and so all neighbors again will be //! monomorphic. The specific forms a reference to a neighboring node can take //! in MIR are quite diverse. Here is an overview: //! //! #### Calling Functions/Methods //! The most obvious form of one translation item referencing another is a //! function or method call (represented by a CALL terminator in MIR). But //! calls are not the only thing that might introduce a reference between two //! function translation items, and as we will see below, they are just a //! specialized of the form described next, and consequently will don't get any //! special treatment in the algorithm. //! //! #### Taking a reference to a function or method //! A function does not need to actually be called in order to be a neighbor of //! another function. It suffices to just take a reference in order to introduce //! an edge. Consider the following example: //! //! ```rust //! fn print_val(x: T) { //! println!("{}", x); //! } //! //! fn call_fn(f: &Fn(i32), x: i32) { //! f(x); //! } //! //! fn main() { //! let print_i32 = print_val::; //! call_fn(&print_i32, 0); //! } //! ``` //! The MIR of none of these functions will contain an explicit call to //! `print_val::`. Nonetheless, in order to translate this program, we need //! an instance of this function. Thus, whenever we encounter a function or //! method in operand position, we treat it as a neighbor of the current //! translation item. Calls are just a special case of that. //! //! #### Closures //! In a way, closures are a simple case. Since every closure object needs to be //! constructed somewhere, we can reliably discover them by observing //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also //! true for closures inlined from other crates. //! //! #### Drop glue //! Drop glue translation items are introduced by MIR drop-statements. The //! generated translation item will again have drop-glue item neighbors if the //! type to be dropped contains nested values that also need to be dropped. It //! might also have a function item neighbor for the explicit `Drop::drop` //! implementation of its type. //! //! #### Unsizing Casts //! A subtle way of introducing neighbor edges is by casting to a trait object. //! Since the resulting fat-pointer contains a reference to a vtable, we need to //! instantiate all object-save methods of the trait, as we need to store //! pointers to these functions even if they never get called anywhere. This can //! be seen as a special case of taking a function reference. //! //! #### Boxes //! Since `Box` expression have special compiler support, no explicit calls to //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the //! compiler will generate them. We have to observe `Rvalue::Box` expressions //! and Box-typed drop-statements for that purpose. //! //! //! Interaction with Cross-Crate Inlining //! ------------------------------------- //! The binary of a crate will not only contain machine code for the items //! defined in the source code of that crate. It will also contain monomorphic //! instantiations of any extern generic functions and of functions marked with //! #[inline]. //! The collection algorithm handles this more or less transparently. If it is //! about to create a translation item for something with an external `DefId`, //! it will take a look if the MIR for that item is available, and if so just //! proceed normally. If the MIR is not available, it assumes that the item is //! just linked to and no node is created; which is exactly what we want, since //! no machine code should be generated in the current crate for such an item. //! //! Eager and Lazy Collection Mode //! ------------------------------ //! Translation item collection can be performed in one of two modes: //! //! - Lazy mode means that items will only be instantiated when actually //! referenced. The goal is to produce the least amount of machine code //! possible. //! //! - Eager mode is meant to be used in conjunction with incremental compilation //! where a stable set of translation items is more important than a minimal //! one. Thus, eager mode will instantiate drop-glue for every drop-able type //! in the crate, even of no drop call for that type exists (yet). It will //! also instantiate default implementations of trait methods, something that //! otherwise is only done on demand. //! //! //! Open Issues //! ----------- //! Some things are not yet fully implemented in the current version of this //! module. //! //! ### Initializers of Constants and Statics //! Since no MIR is constructed yet for initializer expressions of constants and //! statics we cannot inspect these properly. //! //! ### Const Fns //! Ideally, no translation item should be generated for const fns unless there //! is a call to them that cannot be evaluated at compile time. At the moment //! this is not implemented however: a translation item will be produced //! regardless of whether it is actually needed or not. use rustc::hir; use rustc::hir::intravisit as hir_visit; use rustc::hir::map as hir_map; use rustc::hir::def_id::DefId; use rustc::middle::lang_items::{ExchangeFreeFnLangItem, ExchangeMallocFnLangItem}; use rustc::traits; use rustc::ty::subst::{Substs, Subst}; use rustc::ty::{self, TypeFoldable, TyCtxt}; use rustc::ty::adjustment::CustomCoerceUnsized; use rustc::mir::{self, Location}; use rustc::mir::visit as mir_visit; use rustc::mir::visit::Visitor as MirVisitor; use rustc_const_eval as const_eval; use syntax::abi::Abi; use syntax_pos::DUMMY_SP; use base::custom_coerce_unsize_info; use context::SharedCrateContext; use common::{fulfill_obligation, type_is_sized}; use glue::{self, DropGlueKind}; use monomorphize::{self, Instance}; use util::nodemap::{FnvHashSet, FnvHashMap, DefIdMap}; use trans_item::{TransItem, type_to_string, def_id_to_string}; #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)] pub enum TransItemCollectionMode { Eager, Lazy } /// Maps every translation item to all translation items it references in its /// body. pub struct InliningMap<'tcx> { // Maps a source translation item to a range of target translation items // that are potentially inlined by LLVM into the source. // The two numbers in the tuple are the start (inclusive) and // end index (exclusive) within the `targets` vecs. index: FnvHashMap, (usize, usize)>, targets: Vec>, } impl<'tcx> InliningMap<'tcx> { fn new() -> InliningMap<'tcx> { InliningMap { index: FnvHashMap(), targets: Vec::new(), } } fn record_inlining_canditates(&mut self, source: TransItem<'tcx>, targets: I) where I: Iterator> { assert!(!self.index.contains_key(&source)); let start_index = self.targets.len(); self.targets.extend(targets); let end_index = self.targets.len(); self.index.insert(source, (start_index, end_index)); } // Internally iterate over all items referenced by `source` which will be // made available for inlining. pub fn with_inlining_candidates(&self, source: TransItem<'tcx>, mut f: F) where F: FnMut(TransItem<'tcx>) { if let Some(&(start_index, end_index)) = self.index.get(&source) { for candidate in &self.targets[start_index .. end_index] { f(*candidate) } } } } pub fn collect_crate_translation_items<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, mode: TransItemCollectionMode) -> (FnvHashSet>, InliningMap<'tcx>) { // We are not tracking dependencies of this pass as it has to be re-executed // every time no matter what. scx.tcx().dep_graph.with_ignore(|| { let roots = collect_roots(scx, mode); debug!("Building translation item graph, beginning at roots"); let mut visited = FnvHashSet(); let mut recursion_depths = DefIdMap(); let mut inlining_map = InliningMap::new(); for root in roots { collect_items_rec(scx, root, &mut visited, &mut recursion_depths, &mut inlining_map); } (visited, inlining_map) }) } // Find all non-generic items by walking the HIR. These items serve as roots to // start monomorphizing from. fn collect_roots<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, mode: TransItemCollectionMode) -> Vec> { debug!("Collecting roots"); let mut roots = Vec::new(); { let mut visitor = RootCollector { scx: scx, mode: mode, output: &mut roots, enclosing_item: None, }; scx.tcx().map.krate().visit_all_items(&mut visitor); } roots } // Collect all monomorphized translation items reachable from `starting_point` fn collect_items_rec<'a, 'tcx: 'a>(scx: &SharedCrateContext<'a, 'tcx>, starting_point: TransItem<'tcx>, visited: &mut FnvHashSet>, recursion_depths: &mut DefIdMap, inlining_map: &mut InliningMap<'tcx>) { if !visited.insert(starting_point.clone()) { // We've been here already, no need to search again. return; } debug!("BEGIN collect_items_rec({})", starting_point.to_string(scx.tcx())); let mut neighbors = Vec::new(); let recursion_depth_reset; match starting_point { TransItem::DropGlue(t) => { find_drop_glue_neighbors(scx, t, &mut neighbors); recursion_depth_reset = None; } TransItem::Static(node_id) => { let def_id = scx.tcx().map.local_def_id(node_id); let ty = scx.tcx().lookup_item_type(def_id).ty; let ty = glue::get_drop_glue_type(scx.tcx(), ty); neighbors.push(TransItem::DropGlue(DropGlueKind::Ty(ty))); recursion_depth_reset = None; // Scan the MIR in order to find function calls, closures, and // drop-glue let mir = scx.tcx().item_mir(def_id); let empty_substs = scx.empty_substs_for_def_id(def_id); let visitor = MirNeighborCollector { scx: scx, mir: &mir, output: &mut neighbors, param_substs: empty_substs }; visit_mir_and_promoted(visitor, &mir); } TransItem::Fn(instance) => { // Keep track of the monomorphization recursion depth recursion_depth_reset = Some(check_recursion_limit(scx.tcx(), instance, recursion_depths)); // Scan the MIR in order to find function calls, closures, and // drop-glue let mir = scx.tcx().item_mir(instance.def); let visitor = MirNeighborCollector { scx: scx, mir: &mir, output: &mut neighbors, param_substs: instance.substs }; visit_mir_and_promoted(visitor, &mir); } } record_inlining_canditates(scx.tcx(), starting_point, &neighbors[..], inlining_map); for neighbour in neighbors { collect_items_rec(scx, neighbour, visited, recursion_depths, inlining_map); } if let Some((def_id, depth)) = recursion_depth_reset { recursion_depths.insert(def_id, depth); } debug!("END collect_items_rec({})", starting_point.to_string(scx.tcx())); } fn record_inlining_canditates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, caller: TransItem<'tcx>, callees: &[TransItem<'tcx>], inlining_map: &mut InliningMap<'tcx>) { let is_inlining_candidate = |trans_item: &TransItem<'tcx>| { trans_item.needs_local_copy(tcx) }; let inlining_candidates = callees.into_iter() .map(|x| *x) .filter(is_inlining_candidate); inlining_map.record_inlining_canditates(caller, inlining_candidates); } fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: Instance<'tcx>, recursion_depths: &mut DefIdMap) -> (DefId, usize) { let recursion_depth = recursion_depths.get(&instance.def) .map(|x| *x) .unwrap_or(0); debug!(" => recursion depth={}", recursion_depth); // Code that needs to instantiate the same function recursively // more than the recursion limit is assumed to be causing an // infinite expansion. if recursion_depth > tcx.sess.recursion_limit.get() { let error = format!("reached the recursion limit while instantiating `{}`", instance); if let Some(node_id) = tcx.map.as_local_node_id(instance.def) { tcx.sess.span_fatal(tcx.map.span(node_id), &error); } else { tcx.sess.fatal(&error); } } recursion_depths.insert(instance.def, recursion_depth + 1); (instance.def, recursion_depth) } struct MirNeighborCollector<'a, 'tcx: 'a> { scx: &'a SharedCrateContext<'a, 'tcx>, mir: &'a mir::Mir<'tcx>, output: &'a mut Vec>, param_substs: &'tcx Substs<'tcx> } impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) { debug!("visiting rvalue {:?}", *rvalue); match *rvalue { mir::Rvalue::Aggregate(mir::AggregateKind::Closure(def_id, ref substs), _) => { let mir = self.scx.tcx().item_mir(def_id); let concrete_substs = monomorphize::apply_param_substs(self.scx, self.param_substs, &substs.func_substs); let concrete_substs = self.scx.tcx().erase_regions(&concrete_substs); let visitor = MirNeighborCollector { scx: self.scx, mir: &mir, output: self.output, param_substs: concrete_substs }; visit_mir_and_promoted(visitor, &mir); } // When doing an cast from a regular pointer to a fat pointer, we // have to instantiate all methods of the trait being cast to, so we // can build the appropriate vtable. mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => { let target_ty = monomorphize::apply_param_substs(self.scx, self.param_substs, &target_ty); let source_ty = operand.ty(self.mir, self.scx.tcx()); let source_ty = monomorphize::apply_param_substs(self.scx, self.param_substs, &source_ty); let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.scx, source_ty, target_ty); // This could also be a different Unsize instruction, like // from a fixed sized array to a slice. But we are only // interested in things that produce a vtable. if target_ty.is_trait() && !source_ty.is_trait() { create_trans_items_for_vtable_methods(self.scx, target_ty, source_ty, self.output); } } mir::Rvalue::Box(..) => { let exchange_malloc_fn_def_id = self.scx .tcx() .lang_items .require(ExchangeMallocFnLangItem) .unwrap_or_else(|e| self.scx.sess().fatal(&e)); assert!(can_have_local_instance(self.scx.tcx(), exchange_malloc_fn_def_id)); let empty_substs = self.scx.empty_substs_for_def_id(exchange_malloc_fn_def_id); let exchange_malloc_fn_trans_item = create_fn_trans_item(self.scx, exchange_malloc_fn_def_id, empty_substs, self.param_substs); self.output.push(exchange_malloc_fn_trans_item); } _ => { /* not interesting */ } } self.super_rvalue(rvalue, location); } fn visit_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>, context: mir_visit::LvalueContext<'tcx>, location: Location) { debug!("visiting lvalue {:?}", *lvalue); if let mir_visit::LvalueContext::Drop = context { let ty = lvalue.ty(self.mir, self.scx.tcx()) .to_ty(self.scx.tcx()); let ty = monomorphize::apply_param_substs(self.scx, self.param_substs, &ty); assert!(ty.is_normalized_for_trans()); let ty = glue::get_drop_glue_type(self.scx.tcx(), ty); self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty))); } self.super_lvalue(lvalue, context, location); } fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) { debug!("visiting operand {:?}", *operand); let callee = match *operand { mir::Operand::Constant(ref constant) => { if let ty::TyFnDef(def_id, substs, _) = constant.ty.sty { // This is something that can act as a callee, proceed Some((def_id, substs)) } else { // This is not a callee, but we still have to look for // references to `const` items if let mir::Literal::Item { def_id, substs } = constant.literal { let tcx = self.scx.tcx(); let substs = monomorphize::apply_param_substs(self.scx, self.param_substs, &substs); // If the constant referred to here is an associated // item of a trait, we need to resolve it to the actual // constant in the corresponding impl. Luckily // const_eval::lookup_const_by_id() does that for us. if let Some((expr, _)) = const_eval::lookup_const_by_id(tcx, def_id, Some(substs)) { // The hir::Expr we get here is the initializer of // the constant, what we really want is the item // DefId. let const_node_id = tcx.map.get_parent(expr.id); let def_id = if tcx.map.is_inlined_node_id(const_node_id) { tcx.sess.cstore.defid_for_inlined_node(const_node_id).unwrap() } else { tcx.map.local_def_id(const_node_id) }; collect_const_item_neighbours(self.scx, def_id, substs, self.output); } } None } } _ => None }; if let Some((callee_def_id, callee_substs)) = callee { debug!(" => operand is callable"); // `callee_def_id` might refer to a trait method instead of a // concrete implementation, so we have to find the actual // implementation. For example, the call might look like // // std::cmp::partial_cmp(0i32, 1i32) // // Calling do_static_dispatch() here will map the def_id of // `std::cmp::partial_cmp` to the def_id of `i32::partial_cmp` let dispatched = do_static_dispatch(self.scx, callee_def_id, callee_substs, self.param_substs); if let Some((callee_def_id, callee_substs)) = dispatched { // if we have a concrete impl (which we might not have // in the case of something compiler generated like an // object shim or a closure that is handled differently), // we check if the callee is something that will actually // result in a translation item ... if can_result_in_trans_item(self.scx.tcx(), callee_def_id) { // ... and create one if it does. let trans_item = create_fn_trans_item(self.scx, callee_def_id, callee_substs, self.param_substs); self.output.push(trans_item); } } } self.super_operand(operand, location); fn can_result_in_trans_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool { match tcx.lookup_item_type(def_id).ty.sty { ty::TyFnDef(def_id, _, f) => { // Some constructors also have type TyFnDef but they are // always instantiated inline and don't result in // translation item. Same for FFI functions. if let Some(hir_map::NodeForeignItem(_)) = tcx.map.get_if_local(def_id) { return false; } if let Some(adt_def) = f.sig.output().skip_binder().ty_adt_def() { if adt_def.variants.iter().any(|v| def_id == v.did) { return false; } } } ty::TyClosure(..) => {} _ => return false } can_have_local_instance(tcx, def_id) } } // This takes care of the "drop_in_place" intrinsic for which we otherwise // we would not register drop-glues. fn visit_terminator_kind(&mut self, block: mir::BasicBlock, kind: &mir::TerminatorKind<'tcx>, location: Location) { let tcx = self.scx.tcx(); match *kind { mir::TerminatorKind::Call { func: mir::Operand::Constant(ref constant), ref args, .. } => { match constant.ty.sty { ty::TyFnDef(def_id, _, bare_fn_ty) if is_drop_in_place_intrinsic(tcx, def_id, bare_fn_ty) => { let operand_ty = args[0].ty(self.mir, tcx); if let ty::TyRawPtr(mt) = operand_ty.sty { let operand_ty = monomorphize::apply_param_substs(self.scx, self.param_substs, &mt.ty); let ty = glue::get_drop_glue_type(tcx, operand_ty); self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty))); } else { bug!("Has the drop_in_place() intrinsic's signature changed?") } } _ => { /* Nothing to do. */ } } } _ => { /* Nothing to do. */ } } self.super_terminator_kind(block, kind, location); fn is_drop_in_place_intrinsic<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, bare_fn_ty: &ty::BareFnTy<'tcx>) -> bool { (bare_fn_ty.abi == Abi::RustIntrinsic || bare_fn_ty.abi == Abi::PlatformIntrinsic) && tcx.item_name(def_id).as_str() == "drop_in_place" } } } fn can_have_local_instance<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool { // Take a look if we have the definition available. If not, we // will not emit code for this item in the local crate, and thus // don't create a translation item for it. def_id.is_local() || tcx.sess.cstore.is_item_mir_available(def_id) } fn find_drop_glue_neighbors<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, dg: DropGlueKind<'tcx>, output: &mut Vec>) { let ty = match dg { DropGlueKind::Ty(ty) => ty, DropGlueKind::TyContents(_) => { // We already collected the neighbors of this item via the // DropGlueKind::Ty variant. return } }; debug!("find_drop_glue_neighbors: {}", type_to_string(scx.tcx(), ty)); // Make sure the exchange_free_fn() lang-item gets translated if // there is a boxed value. if let ty::TyBox(_) = ty.sty { let exchange_free_fn_def_id = scx.tcx() .lang_items .require(ExchangeFreeFnLangItem) .unwrap_or_else(|e| scx.sess().fatal(&e)); assert!(can_have_local_instance(scx.tcx(), exchange_free_fn_def_id)); let fn_substs = scx.empty_substs_for_def_id(exchange_free_fn_def_id); let exchange_free_fn_trans_item = create_fn_trans_item(scx, exchange_free_fn_def_id, fn_substs, scx.tcx().intern_substs(&[])); output.push(exchange_free_fn_trans_item); } // If the type implements Drop, also add a translation item for the // monomorphized Drop::drop() implementation. let destructor_did = match ty.sty { ty::TyAdt(def, _) => def.destructor(), _ => None }; if let Some(destructor_did) = destructor_did { use rustc::ty::ToPolyTraitRef; let drop_trait_def_id = scx.tcx() .lang_items .drop_trait() .unwrap(); let self_type_substs = scx.tcx().mk_substs_trait(ty, &[]); let trait_ref = ty::TraitRef { def_id: drop_trait_def_id, substs: self_type_substs, }.to_poly_trait_ref(); let substs = match fulfill_obligation(scx, DUMMY_SP, trait_ref) { traits::VtableImpl(data) => data.substs, _ => bug!() }; if can_have_local_instance(scx.tcx(), destructor_did) { let trans_item = create_fn_trans_item(scx, destructor_did, substs, scx.tcx().intern_substs(&[])); output.push(trans_item); } // This type has a Drop implementation, we'll need the contents-only // version of the glue too. output.push(TransItem::DropGlue(DropGlueKind::TyContents(ty))); } // Finally add the types of nested values match ty.sty { ty::TyBool | ty::TyChar | ty::TyInt(_) | ty::TyUint(_) | ty::TyStr | ty::TyFloat(_) | ty::TyRawPtr(_) | ty::TyRef(..) | ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyNever | ty::TyTrait(_) => { /* nothing to do */ } ty::TyAdt(adt_def, substs) => { for field in adt_def.all_fields() { let field_type = monomorphize::apply_param_substs(scx, substs, &field.unsubst_ty()); let field_type = glue::get_drop_glue_type(scx.tcx(), field_type); if glue::type_needs_drop(scx.tcx(), field_type) { output.push(TransItem::DropGlue(DropGlueKind::Ty(field_type))); } } } ty::TyClosure(_, substs) => { for upvar_ty in substs.upvar_tys { let upvar_ty = glue::get_drop_glue_type(scx.tcx(), upvar_ty); if glue::type_needs_drop(scx.tcx(), upvar_ty) { output.push(TransItem::DropGlue(DropGlueKind::Ty(upvar_ty))); } } } ty::TyBox(inner_type) | ty::TySlice(inner_type) | ty::TyArray(inner_type, _) => { let inner_type = glue::get_drop_glue_type(scx.tcx(), inner_type); if glue::type_needs_drop(scx.tcx(), inner_type) { output.push(TransItem::DropGlue(DropGlueKind::Ty(inner_type))); } } ty::TyTuple(args) => { for arg in args { let arg = glue::get_drop_glue_type(scx.tcx(), arg); if glue::type_needs_drop(scx.tcx(), arg) { output.push(TransItem::DropGlue(DropGlueKind::Ty(arg))); } } } ty::TyProjection(_) | ty::TyParam(_) | ty::TyInfer(_) | ty::TyAnon(..) | ty::TyError => { bug!("encountered unexpected type"); } } } fn do_static_dispatch<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, fn_def_id: DefId, fn_substs: &'tcx Substs<'tcx>, param_substs: &'tcx Substs<'tcx>) -> Option<(DefId, &'tcx Substs<'tcx>)> { debug!("do_static_dispatch(fn_def_id={}, fn_substs={:?}, param_substs={:?})", def_id_to_string(scx.tcx(), fn_def_id), fn_substs, param_substs); if let Some(trait_def_id) = scx.tcx().trait_of_item(fn_def_id) { match scx.tcx().impl_or_trait_item(fn_def_id) { ty::MethodTraitItem(ref method) => { debug!(" => trait method, attempting to find impl"); do_static_trait_method_dispatch(scx, method, trait_def_id, fn_substs, param_substs) } _ => bug!() } } else { debug!(" => regular function"); // The function is not part of an impl or trait, no dispatching // to be done Some((fn_def_id, fn_substs)) } } // Given a trait-method and substitution information, find out the actual // implementation of the trait method. fn do_static_trait_method_dispatch<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, trait_method: &ty::Method, trait_id: DefId, callee_substs: &'tcx Substs<'tcx>, param_substs: &'tcx Substs<'tcx>) -> Option<(DefId, &'tcx Substs<'tcx>)> { let tcx = scx.tcx(); debug!("do_static_trait_method_dispatch(trait_method={}, \ trait_id={}, \ callee_substs={:?}, \ param_substs={:?}", def_id_to_string(scx.tcx(), trait_method.def_id), def_id_to_string(scx.tcx(), trait_id), callee_substs, param_substs); let rcvr_substs = monomorphize::apply_param_substs(scx, param_substs, &callee_substs); let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_substs); let vtbl = fulfill_obligation(scx, DUMMY_SP, ty::Binder(trait_ref)); // Now that we know which impl is being used, we can dispatch to // the actual function: match vtbl { traits::VtableImpl(impl_data) => { Some(traits::find_method(tcx, trait_method.name, rcvr_substs, &impl_data)) } // If we have a closure or a function pointer, we will also encounter // the concrete closure/function somewhere else (during closure or fn // pointer construction). That's where we track those things. traits::VtableClosure(..) | traits::VtableFnPointer(..) | traits::VtableObject(..) => { None } _ => { bug!("static call to invalid vtable: {:?}", vtbl) } } } /// For given pair of source and target type that occur in an unsizing coercion, /// this function finds the pair of types that determines the vtable linking /// them. /// /// For example, the source type might be `&SomeStruct` and the target type\ /// might be `&SomeTrait` in a cast like: /// /// let src: &SomeStruct = ...; /// let target = src as &SomeTrait; /// /// Then the output of this function would be (SomeStruct, SomeTrait) since for /// constructing the `target` fat-pointer we need the vtable for that pair. /// /// Things can get more complicated though because there's also the case where /// the unsized type occurs as a field: /// /// ```rust /// struct ComplexStruct { /// a: u32, /// b: f64, /// c: T /// } /// ``` /// /// In this case, if `T` is sized, `&ComplexStruct` is a thin pointer. If `T` /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is /// for the pair of `T` (which is a trait) and the concrete type that `T` was /// originally coerced from: /// /// let src: &ComplexStruct = ...; /// let target = src as &ComplexStruct; /// /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair /// `(SomeStruct, SomeTrait)`. /// /// Finally, there is also the case of custom unsizing coercions, e.g. for /// smart pointers such as `Rc` and `Arc`. fn find_vtable_types_for_unsizing<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, source_ty: ty::Ty<'tcx>, target_ty: ty::Ty<'tcx>) -> (ty::Ty<'tcx>, ty::Ty<'tcx>) { match (&source_ty.sty, &target_ty.sty) { (&ty::TyBox(a), &ty::TyBox(b)) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) | (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => { let (inner_source, inner_target) = (a, b); if !type_is_sized(scx.tcx(), inner_source) { (inner_source, inner_target) } else { scx.tcx().struct_lockstep_tails(inner_source, inner_target) } } (&ty::TyAdt(source_adt_def, source_substs), &ty::TyAdt(target_adt_def, target_substs)) => { assert_eq!(source_adt_def, target_adt_def); let kind = custom_coerce_unsize_info(scx, source_ty, target_ty); let coerce_index = match kind { CustomCoerceUnsized::Struct(i) => i }; let source_fields = &source_adt_def.struct_variant().fields; let target_fields = &target_adt_def.struct_variant().fields; assert!(coerce_index < source_fields.len() && source_fields.len() == target_fields.len()); find_vtable_types_for_unsizing(scx, source_fields[coerce_index].ty(scx.tcx(), source_substs), target_fields[coerce_index].ty(scx.tcx(), target_substs)) } _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", source_ty, target_ty) } } fn create_fn_trans_item<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, def_id: DefId, fn_substs: &'tcx Substs<'tcx>, param_substs: &'tcx Substs<'tcx>) -> TransItem<'tcx> { let tcx = scx.tcx(); debug!("create_fn_trans_item(def_id={}, fn_substs={:?}, param_substs={:?})", def_id_to_string(tcx, def_id), fn_substs, param_substs); // We only get here, if fn_def_id either designates a local item or // an inlineable external item. Non-inlineable external items are // ignored because we don't want to generate any code for them. let concrete_substs = monomorphize::apply_param_substs(scx, param_substs, &fn_substs); assert!(concrete_substs.is_normalized_for_trans(), "concrete_substs not normalized for trans: {:?}", concrete_substs); TransItem::Fn(Instance::new(def_id, concrete_substs)) } /// Creates a `TransItem` for each method that is referenced by the vtable for /// the given trait/impl pair. fn create_trans_items_for_vtable_methods<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, trait_ty: ty::Ty<'tcx>, impl_ty: ty::Ty<'tcx>, output: &mut Vec>) { assert!(!trait_ty.needs_subst() && !impl_ty.needs_subst()); if let ty::TyTrait(ref trait_ty) = trait_ty.sty { let poly_trait_ref = trait_ty.principal.with_self_ty(scx.tcx(), impl_ty); let param_substs = scx.tcx().intern_substs(&[]); // Walk all methods of the trait, including those of its supertraits let methods = traits::get_vtable_methods(scx.tcx(), poly_trait_ref); let methods = methods.filter_map(|method| method) .filter_map(|(def_id, substs)| do_static_dispatch(scx, def_id, substs, param_substs)) .filter(|&(def_id, _)| can_have_local_instance(scx.tcx(), def_id)) .map(|(def_id, substs)| create_fn_trans_item(scx, def_id, substs, param_substs)); output.extend(methods); // Also add the destructor let dg_type = glue::get_drop_glue_type(scx.tcx(), impl_ty); output.push(TransItem::DropGlue(DropGlueKind::Ty(dg_type))); } } //=----------------------------------------------------------------------------- // Root Collection //=----------------------------------------------------------------------------- struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> { scx: &'b SharedCrateContext<'a, 'tcx>, mode: TransItemCollectionMode, output: &'b mut Vec>, enclosing_item: Option<&'tcx hir::Item>, } impl<'b, 'a, 'v> hir_visit::Visitor<'v> for RootCollector<'b, 'a, 'v> { fn visit_item(&mut self, item: &'v hir::Item) { let old_enclosing_item = self.enclosing_item; self.enclosing_item = Some(item); match item.node { hir::ItemExternCrate(..) | hir::ItemUse(..) | hir::ItemForeignMod(..) | hir::ItemTy(..) | hir::ItemDefaultImpl(..) | hir::ItemTrait(..) | hir::ItemMod(..) => { // Nothing to do, just keep recursing... } hir::ItemImpl(..) => { if self.mode == TransItemCollectionMode::Eager { create_trans_items_for_default_impls(self.scx, item, self.output); } } hir::ItemEnum(_, ref generics) | hir::ItemStruct(_, ref generics) | hir::ItemUnion(_, ref generics) => { if !generics.is_parameterized() { let ty = self.scx.tcx().tables().node_types[&item.id]; if self.mode == TransItemCollectionMode::Eager { debug!("RootCollector: ADT drop-glue for {}", def_id_to_string(self.scx.tcx(), self.scx.tcx().map.local_def_id(item.id))); let ty = glue::get_drop_glue_type(self.scx.tcx(), ty); self.output.push(TransItem::DropGlue(DropGlueKind::Ty(ty))); } } } hir::ItemStatic(..) => { debug!("RootCollector: ItemStatic({})", def_id_to_string(self.scx.tcx(), self.scx.tcx().map.local_def_id(item.id))); self.output.push(TransItem::Static(item.id)); } hir::ItemConst(..) => { // const items only generate translation items if they are // actually used somewhere. Just declaring them is insufficient. } hir::ItemFn(.., ref generics, _) => { if !generics.is_type_parameterized() { let def_id = self.scx.tcx().map.local_def_id(item.id); debug!("RootCollector: ItemFn({})", def_id_to_string(self.scx.tcx(), def_id)); let instance = Instance::mono(self.scx, def_id); self.output.push(TransItem::Fn(instance)); } } } hir_visit::walk_item(self, item); self.enclosing_item = old_enclosing_item; } fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) { match ii.node { hir::ImplItemKind::Method(hir::MethodSig { ref generics, .. }, _) => { let hir_map = &self.scx.tcx().map; let parent_node_id = hir_map.get_parent_node(ii.id); let is_impl_generic = match hir_map.expect_item(parent_node_id) { &hir::Item { node: hir::ItemImpl(_, _, ref generics, ..), .. } => { generics.is_type_parameterized() } _ => { bug!() } }; if !generics.is_type_parameterized() && !is_impl_generic { let def_id = self.scx.tcx().map.local_def_id(ii.id); debug!("RootCollector: MethodImplItem({})", def_id_to_string(self.scx.tcx(), def_id)); let instance = Instance::mono(self.scx, def_id); self.output.push(TransItem::Fn(instance)); } } _ => { /* Nothing to do here */ } } hir_visit::walk_impl_item(self, ii) } } fn create_trans_items_for_default_impls<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, item: &'tcx hir::Item, output: &mut Vec>) { let tcx = scx.tcx(); match item.node { hir::ItemImpl(_, _, ref generics, .., ref items) => { if generics.is_type_parameterized() { return } let impl_def_id = tcx.map.local_def_id(item.id); debug!("create_trans_items_for_default_impls(item={})", def_id_to_string(tcx, impl_def_id)); if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) { let callee_substs = tcx.erase_regions(&trait_ref.substs); let overridden_methods: FnvHashSet<_> = items.iter() .map(|item| item.name) .collect(); for method in tcx.provided_trait_methods(trait_ref.def_id) { if overridden_methods.contains(&method.name) { continue; } if !method.generics.types.is_empty() { continue; } // The substitutions we have are on the impl, so we grab // the method type from the impl to substitute into. let impl_substs = Substs::for_item(tcx, impl_def_id, |_, _| tcx.mk_region(ty::ReErased), |_, _| tcx.types.err); let impl_data = traits::VtableImplData { impl_def_id: impl_def_id, substs: impl_substs, nested: vec![] }; let (def_id, substs) = traits::find_method(tcx, method.name, callee_substs, &impl_data); let predicates = tcx.lookup_predicates(def_id).predicates .subst(tcx, substs); if !traits::normalize_and_test_predicates(tcx, predicates) { continue; } if can_have_local_instance(tcx, method.def_id) { let item = create_fn_trans_item(scx, method.def_id, callee_substs, tcx.erase_regions(&substs)); output.push(item); } } } } _ => { bug!() } } } // There are no translation items for constants themselves but their // initializers might still contain something that produces translation items, // such as cast that introduce a new vtable. fn collect_const_item_neighbours<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>, def_id: DefId, substs: &'tcx Substs<'tcx>, output: &mut Vec>) { // Scan the MIR in order to find function calls, closures, and // drop-glue let mir = scx.tcx().item_mir(def_id); let visitor = MirNeighborCollector { scx: scx, mir: &mir, output: output, param_substs: substs }; visit_mir_and_promoted(visitor, &mir); } fn visit_mir_and_promoted<'tcx, V: MirVisitor<'tcx>>(mut visitor: V, mir: &mir::Mir<'tcx>) { visitor.visit_mir(&mir); for promoted in &mir.promoted { visitor.visit_mir(promoted); } }