use std::cell::RefCell; use rustc::ty::{self, layout::Size}; use rustc::hir::{Mutability, MutMutable, MutImmutable}; use crate::{ EvalResult, EvalErrorKind, MiriEvalContext, HelpersEvalContextExt, Evaluator, MutValueVisitor, MemoryKind, MiriMemoryKind, RangeMap, AllocId, Allocation, AllocationExtra, InboundsCheck, Pointer, MemPlace, Scalar, Immediate, ImmTy, PlaceTy, MPlaceTy, }; pub type Timestamp = u64; /// Information about which kind of borrow was used to create the reference this is tagged /// with. #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum Borrow { /// A unique (mutable) reference. Uniq(Timestamp), /// A shared reference. This is also used by raw pointers, which do not track details /// of how or when they were created, hence the timestamp is optional. /// Shr(Some(_)) does NOT mean that the destination of this reference is frozen; /// that depends on the type! Only those parts outside of an `UnsafeCell` are actually /// frozen. Shr(Option), } impl Borrow { #[inline(always)] pub fn is_shared(self) -> bool { match self { Borrow::Shr(_) => true, _ => false, } } #[inline(always)] pub fn is_unique(self) -> bool { match self { Borrow::Uniq(_) => true, _ => false, } } } impl Default for Borrow { fn default() -> Self { Borrow::Shr(None) } } /// An item in the per-location borrow stack #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum BorStackItem { /// Indicates the unique reference that may mutate. Uniq(Timestamp), /// Indicates that the location has been shared. Used for raw pointers, but /// also for shared references. The latter *additionally* get frozen /// when there is no `UnsafeCell`. Shr, /// A barrier, tracking the function it belongs to by its index on the call stack #[allow(dead_code)] // for future use FnBarrier(usize) } impl BorStackItem { #[inline(always)] pub fn is_fn_barrier(self) -> bool { match self { BorStackItem::FnBarrier(_) => true, _ => false, } } } /// Extra per-location state #[derive(Clone, Debug)] pub struct Stack { borrows: Vec, // used as a stack; never empty frozen_since: Option, // virtual frozen "item" on top of the stack } impl Default for Stack { fn default() -> Self { Stack { borrows: vec![BorStackItem::Shr], frozen_since: None, } } } impl Stack { #[inline(always)] pub fn is_frozen(&self) -> bool { self.frozen_since.is_some() } } /// What kind of reference is being used? #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum RefKind { /// &mut Unique, /// & without interior mutability Frozen, /// * (raw pointer) or & to `UnsafeCell` Raw, } /// Extra global machine state #[derive(Clone, Debug)] pub struct State { clock: Timestamp } impl State { pub fn new() -> State { State { clock: 0 } } fn increment_clock(&mut self) -> Timestamp { let val = self.clock; self.clock = val + 1; val } } /// Extra per-allocation state #[derive(Clone, Debug, Default)] pub struct Stacks { // Even reading memory can have effects on the stack, so we need a `RefCell` here. stacks: RefCell>, } /// Core per-location operations: deref, access, create. /// We need to make at least the following things true: /// /// U1: After creating a Uniq, it is at the top (+unfrozen). /// U2: If the top is Uniq (+unfrozen), accesses must be through that Uniq or pop it. /// U3: If an access (deref sufficient?) happens with a Uniq, it requires the Uniq to be in the stack. /// /// F1: After creating a &, the parts outside `UnsafeCell` are frozen. /// F2: If a write access happens, it unfreezes. /// F3: If an access (well, a deref) happens with an & outside `UnsafeCell`, it requires the location to still be frozen. impl<'tcx> Stack { /// Deref `bor`: Check if the location is frozen and the tag in the stack. /// This dos *not* constitute an access! "Deref" refers to the `*` operator /// in Rust, and includs cases like `&*x` or `(*x).foo` where no or only part /// of the memory actually gets accessed. Also we cannot know if we are /// going to read or write. /// Returns the index of the item we matched, `None` if it was the frozen one. /// `kind` indicates which kind of reference is being dereferenced. fn deref(&self, bor: Borrow, kind: RefKind) -> Result, String> { // Exclude unique ref and frozen tag. match (kind, bor) { (RefKind::Unique, Borrow::Shr(Some(_))) => return Err(format!("Encountered mutable reference with frozen tag")), _ => {} } // Checks related to freezing match bor { Borrow::Shr(Some(bor_t)) if kind == RefKind::Frozen => { // We need the location to be frozen. This ensures F3. let frozen = self.frozen_since.map_or(false, |itm_t| itm_t <= bor_t); return if frozen { Ok(None) } else { Err(format!("Location is not frozen long enough")) } } Borrow::Shr(_) if self.frozen_since.is_some() => { return Ok(None) // Shared deref to frozen location, looking good } _ => {} // Not sufficient, go on looking. } // If we got here, we have to look for our item in the stack. for (idx, &itm) in self.borrows.iter().enumerate().rev() { match (itm, bor) { (BorStackItem::FnBarrier(_), _) => break, (BorStackItem::Uniq(itm_t), Borrow::Uniq(bor_t)) if itm_t == bor_t => { // Found matching unique item. This satisfies U3. return Ok(Some(idx)) } (BorStackItem::Shr, Borrow::Shr(_)) => { // Found matching shared/raw item. return Ok(Some(idx)) } // Go on looking. _ => {} } } // If we got here, we did not find our item. We have to error to satisfy U3. Err(format!( "Borrow being dereferenced ({:?}) does not exist on the stack, or is guarded by a barrier", bor )) } /// Perform an actual memory access using `bor`. We do not know any types here /// or whether things should be frozen, but we *do* know if this is reading /// or writing. fn access(&mut self, bor: Borrow, is_write: bool) -> EvalResult<'tcx> { // Check if we can match the frozen "item". // Not possible on writes! if self.is_frozen() { if !is_write { // When we are frozen, we just accept all reads. No harm in this. // The deref already checked that `Uniq` items are in the stack, and that // the location is frozen if it should be. return Ok(()); } trace!("access: Unfreezing"); } // Unfreeze on writes. This ensures F2. self.frozen_since = None; // Pop the stack until we have something matching. while let Some(&itm) = self.borrows.last() { match (itm, bor) { (BorStackItem::FnBarrier(_), _) => break, (BorStackItem::Uniq(itm_t), Borrow::Uniq(bor_t)) if itm_t == bor_t => { // Found matching unique item. return Ok(()) } (BorStackItem::Shr, _) if !is_write => { // When reading, everything can use a shared item! // We do not want to do this when writing: Writing to an `&mut` // should reaffirm its exclusivity (i.e., make sure it is // on top of the stack). return Ok(()) } (BorStackItem::Shr, Borrow::Shr(_)) => { // Found matching shared item. return Ok(()) } _ => { // Pop this. This ensures U2. let itm = self.borrows.pop().unwrap(); trace!("access: Popping {:?}", itm); } } } // If we got here, we did not find our item. err!(MachineError(format!( "Borrow being accessed ({:?}) does not exist on the stack, or is guarded by a barrier", bor ))) } /// Initiate `bor`; mostly this means pushing. /// This operation cannot fail; it is up to the caller to ensure that the precondition /// is met: We cannot push `Uniq` onto frozen stacks. /// `kind` indicates which kind of reference is being created. fn create(&mut self, bor: Borrow, kind: RefKind) { // First, push the item. We do this even if we will later freeze, because we // will allow mutation of shared data at the expense of unfreezing. if self.frozen_since.is_some() { // A frozen location, this should be impossible! bug!("We should never try pushing to a frozen stack"); } // First, push. let itm = match bor { Borrow::Uniq(t) => BorStackItem::Uniq(t), Borrow::Shr(_) => BorStackItem::Shr, }; if *self.borrows.last().unwrap() == itm { assert!(bor.is_shared()); trace!("create: Sharing a shared location is a NOP"); } else { // This ensures U1. trace!("create: Pushing {:?}", itm); self.borrows.push(itm); } // Then, maybe freeze. This is part 2 of ensuring F1. if kind == RefKind::Frozen { let bor_t = match bor { Borrow::Shr(Some(t)) => t, _ => bug!("Creating illegal borrow {:?} for frozen ref", bor), }; trace!("create: Freezing"); self.frozen_since = Some(bor_t); } } } /// Higher-level per-location operations: deref, access, reborrow. impl<'tcx> Stacks { /// Check that this stack is fine with being dereferenced fn deref( &self, ptr: Pointer, size: Size, kind: RefKind, ) -> EvalResult<'tcx> { trace!("deref for tag {:?} as {:?}: {:?}, size {}", ptr.tag, kind, ptr, size.bytes()); let mut stacks = self.stacks.borrow_mut(); // We need `iter_mut` because `iter` would skip gaps! for stack in stacks.iter_mut(ptr.offset, size) { stack.deref(ptr.tag, kind).map_err(EvalErrorKind::MachineError)?; } Ok(()) } /// `ptr` got used, reflect that in the stack. fn access( &self, ptr: Pointer, size: Size, is_write: bool, ) -> EvalResult<'tcx> { trace!("{} access of tag {:?}: {:?}, size {}", if is_write { "read" } else { "write" }, ptr.tag, ptr, size.bytes()); // Even reads can have a side-effect, by invalidating other references. // This is fundamentally necessary since `&mut` asserts that there // are no accesses through other references, not even reads. let mut stacks = self.stacks.borrow_mut(); for stack in stacks.iter_mut(ptr.offset, size) { stack.access(ptr.tag, is_write)?; } Ok(()) } /// Reborrow the given pointer to the new tag for the given kind of reference. /// This works on `&self` because we might encounter references to constant memory. fn reborrow( &self, ptr: Pointer, size: Size, new_bor: Borrow, new_kind: RefKind, ) -> EvalResult<'tcx> { assert_eq!(new_bor.is_unique(), new_kind == RefKind::Unique); trace!("reborrow for tag {:?} to {:?} as {:?}: {:?}, size {}", ptr.tag, new_bor, new_kind, ptr, size.bytes()); let mut stacks = self.stacks.borrow_mut(); for stack in stacks.iter_mut(ptr.offset, size) { // Access source `ptr`, create new ref. let ptr_idx = stack.deref(ptr.tag, new_kind).map_err(EvalErrorKind::MachineError)?; // If we can deref the new tag already, and if that tag lives higher on // the stack than the one we come from, just use that. // IOW, we check if `new_bor` *already* is "derived from" `ptr.tag`. // This also checks frozenness, if required. let bor_redundant = match (ptr_idx, stack.deref(new_bor, new_kind)) { // If the new borrow works with the frozen item, or else if it lives // above the old one in the stack, our job here is done. (_, Ok(None)) => true, (Some(ptr_idx), Ok(Some(new_idx))) if new_idx >= ptr_idx => true, // Otherwise we need to create a new borrow. _ => false, }; if bor_redundant { assert!(new_bor.is_shared(), "A unique reborrow can never be redundant"); trace!("reborrow is redundant"); continue; } // We need to do some actual work. stack.access(ptr.tag, new_kind == RefKind::Unique)?; stack.create(new_bor, new_kind); } Ok(()) } } /// Hooks and glue impl AllocationExtra for Stacks { #[inline(always)] fn memory_read<'tcx>( alloc: &Allocation, ptr: Pointer, size: Size, ) -> EvalResult<'tcx> { alloc.extra.access(ptr, size, /*is_write*/false) } #[inline(always)] fn memory_written<'tcx>( alloc: &mut Allocation, ptr: Pointer, size: Size, ) -> EvalResult<'tcx> { alloc.extra.access(ptr, size, /*is_write*/true) } #[inline(always)] fn memory_deallocated<'tcx>( alloc: &mut Allocation, ptr: Pointer, size: Size, ) -> EvalResult<'tcx> { // This is like mutating alloc.extra.access(ptr, size, /*is_write*/true) // FIXME: Error out of there are any barriers? } } impl<'tcx> Stacks { /// Pushes the first item to the stacks. pub fn first_item( &mut self, itm: BorStackItem, size: Size ) { assert!(!itm.is_fn_barrier()); for stack in self.stacks.get_mut().iter_mut(Size::ZERO, size) { assert!(stack.borrows.len() == 1); assert_eq!(stack.borrows.pop().unwrap(), BorStackItem::Shr); stack.borrows.push(itm); } } } pub trait EvalContextExt<'tcx> { fn ptr_dereference( &self, place: MPlaceTy<'tcx, Borrow>, size: Size, mutability: Option, ) -> EvalResult<'tcx>; fn tag_new_allocation( &mut self, id: AllocId, kind: MemoryKind, ) -> Borrow; /// Reborrow the given place, returning the newly tagged ptr to it. fn reborrow( &mut self, place: MPlaceTy<'tcx, Borrow>, size: Size, new_bor: Borrow ) -> EvalResult<'tcx, Pointer>; /// Retag an indidual pointer, returning the retagged version. fn retag_reference( &mut self, ptr: ImmTy<'tcx, Borrow>, mutbl: Mutability, ) -> EvalResult<'tcx, Immediate>; fn retag( &mut self, fn_entry: bool, place: PlaceTy<'tcx, Borrow> ) -> EvalResult<'tcx>; fn escape_to_raw( &mut self, place: MPlaceTy<'tcx, Borrow>, size: Size, ) -> EvalResult<'tcx>; } impl<'a, 'mir, 'tcx> EvalContextExt<'tcx> for MiriEvalContext<'a, 'mir, 'tcx> { fn tag_new_allocation( &mut self, id: AllocId, kind: MemoryKind, ) -> Borrow { let time = match kind { MemoryKind::Stack => { // New unique borrow. This `Uniq` is not accessible by the program, // so it will only ever be used when using the local directly (i.e., // not through a pointer). IOW, whenever we directly use a local this will pop // everything else off the stack, invalidating all previous pointers // and, in particular, *all* raw pointers. This subsumes the explicit // `reset` which the blog post [1] says to perform when accessing a local. // // [1] https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html self.machine.stacked_borrows.increment_clock() } _ => { // Nothing to do for everything else return Borrow::default() } }; // Make this the active borrow for this allocation let alloc = self.memory_mut().get_mut(id).expect("This is a new allocation, it must still exist"); let size = Size::from_bytes(alloc.bytes.len() as u64); alloc.extra.first_item(BorStackItem::Uniq(time), size); Borrow::Uniq(time) } /// Called for value-to-place conversion. `mutability` is `None` for raw pointers. /// /// Note that this does NOT mean that all this memory will actually get accessed/referenced! /// We could be in the middle of `&(*var).1`. fn ptr_dereference( &self, place: MPlaceTy<'tcx, Borrow>, size: Size, mutability: Option, ) -> EvalResult<'tcx> { trace!("ptr_dereference: Accessing {} reference for {:?} (pointee {})", if let Some(mutability) = mutability { format!("{:?}", mutability) } else { format!("raw") }, place.ptr, place.layout.ty); let ptr = place.ptr.to_ptr()?; if mutability.is_none() { // No further checks on raw derefs -- only the access itself will be checked. return Ok(()); } // Get the allocation self.memory().check_bounds(ptr, size, InboundsCheck::Live)?; let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!"); // If we got here, we do some checking, *but* we leave the tag unchanged. if let Borrow::Shr(Some(_)) = ptr.tag { assert_eq!(mutability, Some(MutImmutable)); // We need a frozen-sensitive check self.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| { let kind = if frozen { RefKind::Frozen } else { RefKind::Raw }; alloc.extra.deref(cur_ptr, size, kind) })?; } else { // Just treat this as one big chunk let kind = if mutability == Some(MutMutable) { RefKind::Unique } else { RefKind::Raw }; alloc.extra.deref(ptr, size, kind)?; } // All is good Ok(()) } /// The given place may henceforth be accessed through raw pointers. #[inline(always)] fn escape_to_raw( &mut self, place: MPlaceTy<'tcx, Borrow>, size: Size, ) -> EvalResult<'tcx> { self.reborrow(place, size, Borrow::default())?; Ok(()) } fn reborrow( &mut self, place: MPlaceTy<'tcx, Borrow>, size: Size, new_bor: Borrow ) -> EvalResult<'tcx, Pointer> { let ptr = place.ptr.to_ptr()?; let new_ptr = Pointer::new_with_tag(ptr.alloc_id, ptr.offset, new_bor); trace!("reborrow: Creating new reference for {:?} (pointee {}): {:?}", ptr, place.layout.ty, new_bor); // Get the allocation. It might not be mutable, so we cannot use `get_mut`. self.memory().check_bounds(ptr, size, InboundsCheck::Live)?; let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!"); // Update the stacks. if let Borrow::Shr(Some(_)) = new_bor { // Reference that cares about freezing. We need a frozen-sensitive reborrow. self.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| { let kind = if frozen { RefKind::Frozen } else { RefKind::Raw }; alloc.extra.reborrow(cur_ptr, size, new_bor, kind) })?; } else { // Just treat this as one big chunk. let kind = if new_bor.is_unique() { RefKind::Unique } else { RefKind::Raw }; alloc.extra.reborrow(ptr, size, new_bor, kind)?; } Ok(new_ptr) } fn retag_reference( &mut self, val: ImmTy<'tcx, Borrow>, mutbl: Mutability, ) -> EvalResult<'tcx, Immediate> { // We want a place for where the ptr *points to*, so we get one. let place = self.ref_to_mplace(val)?; let size = self.size_and_align_of_mplace(place)? .map(|(size, _)| size) .unwrap_or_else(|| place.layout.size); if size == Size::ZERO { // Nothing to do for ZSTs. return Ok(*val); } // Compute new borrow. let time = self.machine.stacked_borrows.increment_clock(); let new_bor = match mutbl { MutMutable => Borrow::Uniq(time), MutImmutable => Borrow::Shr(Some(time)), }; // Reborrow. let new_ptr = self.reborrow(place, size, new_bor)?; // Return new ptr let new_place = MemPlace { ptr: Scalar::Ptr(new_ptr), ..*place }; Ok(new_place.to_ref()) } fn retag( &mut self, _fn_entry: bool, place: PlaceTy<'tcx, Borrow> ) -> EvalResult<'tcx> { // TODO: Honor `fn_entry`. // We need a visitor to visit all references. However, that requires // a `MemPlace`, so we have a fast path for reference types that // avoids allocating. // Cannot use `builtin_deref` because that reports *immutable* for `Box`, // making it useless. if let Some(mutbl) = match place.layout.ty.sty { ty::Ref(_, _, mutbl) => Some(mutbl), ty::Adt(..) if place.layout.ty.is_box() => Some(MutMutable), _ => None, // handled with the general case below } { // fast path let val = self.read_immediate(self.place_to_op(place)?)?; let val = self.retag_reference(val, mutbl)?; self.write_immediate(val, place)?; return Ok(()); } let place = self.force_allocation(place)?; let mut visitor = RetagVisitor { ecx: self }; visitor.visit_value(place)?; // The actual visitor struct RetagVisitor<'ecx, 'a, 'mir, 'tcx> { ecx: &'ecx mut MiriEvalContext<'a, 'mir, 'tcx>, } impl<'ecx, 'a, 'mir, 'tcx> MutValueVisitor<'a, 'mir, 'tcx, Evaluator<'tcx>> for RetagVisitor<'ecx, 'a, 'mir, 'tcx> { type V = MPlaceTy<'tcx, Borrow>; #[inline(always)] fn ecx(&mut self) -> &mut MiriEvalContext<'a, 'mir, 'tcx> { &mut self.ecx } // Primitives of reference type, that is the one thing we are interested in. fn visit_primitive(&mut self, place: MPlaceTy<'tcx, Borrow>) -> EvalResult<'tcx> { // Cannot use `builtin_deref` because that reports *immutable* for `Box`, // making it useless. let mutbl = match place.layout.ty.sty { ty::Ref(_, _, mutbl) => mutbl, ty::Adt(..) if place.layout.ty.is_box() => MutMutable, _ => return Ok(()), // nothing to do }; let val = self.ecx.read_immediate(place.into())?; let val = self.ecx.retag_reference(val, mutbl)?; self.ecx.write_immediate(val, place.into())?; Ok(()) } } Ok(()) } }