use rustc::hir::def_id::DefId; use rustc::infer::canonical::{Canonical, QueryResponse}; use rustc::traits::query::dropck_outlives::{DropckOutlivesResult, DtorckConstraint}; use rustc::traits::query::{CanonicalTyGoal, NoSolution}; use rustc::traits::{TraitEngine, Normalized, ObligationCause, TraitEngineExt}; use rustc::ty::query::Providers; use rustc::ty::subst::{Subst, InternalSubsts}; use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt}; use rustc::util::nodemap::FxHashSet; use syntax::source_map::{Span, DUMMY_SP}; crate fn provide(p: &mut Providers<'_>) { *p = Providers { dropck_outlives, adt_dtorck_constraint, ..*p }; } fn dropck_outlives<'tcx>( tcx: TyCtxt<'tcx>, canonical_goal: CanonicalTyGoal<'tcx>, ) -> Result<&'tcx Canonical<'tcx, QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution> { debug!("dropck_outlives(goal={:#?})", canonical_goal); tcx.infer_ctxt().enter_with_canonical( DUMMY_SP, &canonical_goal, |ref infcx, goal, canonical_inference_vars| { let tcx = infcx.tcx; let ParamEnvAnd { param_env, value: for_ty, } = goal; let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![], }; // A stack of types left to process. Each round, we pop // something from the stack and invoke // `dtorck_constraint_for_ty`. This may produce new types that // have to be pushed on the stack. This continues until we have explored // all the reachable types from the type `for_ty`. // // Example: Imagine that we have the following code: // // ```rust // struct A { // value: B, // children: Vec, // } // // struct B { // value: u32 // } // // fn f() { // let a: A = ...; // .. // } // here, `a` is dropped // ``` // // at the point where `a` is dropped, we need to figure out // which types inside of `a` contain region data that may be // accessed by any destructors in `a`. We begin by pushing `A` // onto the stack, as that is the type of `a`. We will then // invoke `dtorck_constraint_for_ty` which will expand `A` // into the types of its fields `(B, Vec)`. These will get // pushed onto the stack. Eventually, expanding `Vec` will // lead to us trying to push `A` a second time -- to prevent // infinite recursion, we notice that `A` was already pushed // once and stop. let mut ty_stack = vec![(for_ty, 0)]; // Set used to detect infinite recursion. let mut ty_set = FxHashSet::default(); let mut fulfill_cx = TraitEngine::new(infcx.tcx); let cause = ObligationCause::dummy(); while let Some((ty, depth)) = ty_stack.pop() { let DtorckConstraint { dtorck_types, outlives, overflows, } = dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty)?; // "outlives" represent types/regions that may be touched // by a destructor. result.kinds.extend(outlives); result.overflows.extend(overflows); // dtorck types are "types that will get dropped but which // do not themselves define a destructor", more or less. We have // to push them onto the stack to be expanded. for ty in dtorck_types { match infcx.at(&cause, param_env).normalize(&ty) { Ok(Normalized { value: ty, obligations, }) => { fulfill_cx.register_predicate_obligations(infcx, obligations); debug!("dropck_outlives: ty from dtorck_types = {:?}", ty); match ty.sty { // All parameters live for the duration of the // function. ty::Param(..) => {} // A projection that we couldn't resolve - it // might have a destructor. ty::Projection(..) | ty::Opaque(..) => { result.kinds.push(ty.into()); } _ => { if ty_set.insert(ty) { ty_stack.push((ty, depth + 1)); } } } } // We don't actually expect to fail to normalize. // That implies a WF error somewhere else. Err(NoSolution) => { return Err(NoSolution); } } } } debug!("dropck_outlives: result = {:#?}", result); infcx.make_canonicalized_query_response( canonical_inference_vars, result, &mut *fulfill_cx ) }, ) } /// Returns a set of constraints that needs to be satisfied in /// order for `ty` to be valid for destruction. fn dtorck_constraint_for_ty<'tcx>( tcx: TyCtxt<'tcx>, span: Span, for_ty: Ty<'tcx>, depth: usize, ty: Ty<'tcx>, ) -> Result, NoSolution> { debug!( "dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})", span, for_ty, depth, ty ); if depth >= *tcx.sess.recursion_limit.get() { return Ok(DtorckConstraint { outlives: vec![], dtorck_types: vec![], overflows: vec![ty], }); } let result = match ty.sty { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Never | ty::Foreign(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnDef(..) | ty::FnPtr(_) | ty::GeneratorWitness(..) => { // these types never have a destructor Ok(DtorckConstraint::empty()) } ty::Array(ety, _) | ty::Slice(ety) => { // single-element containers, behave like their element dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety) } ty::Tuple(tys) => tys.iter() .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty.expect_ty())) .collect(), ty::Closure(def_id, substs) => substs .upvar_tys(def_id, tcx) .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty)) .collect(), ty::Generator(def_id, substs, _movability) => { // rust-lang/rust#49918: types can be constructed, stored // in the interior, and sit idle when generator yields // (and is subsequently dropped). // // It would be nice to descend into interior of a // generator to determine what effects dropping it might // have (by looking at any drop effects associated with // its interior). // // However, the interior's representation uses things like // GeneratorWitness that explicitly assume they are not // traversed in such a manner. So instead, we will // simplify things for now by treating all generators as // if they were like trait objects, where its upvars must // all be alive for the generator's (potential) // destructor. // // In particular, skipping over `_interior` is safe // because any side-effects from dropping `_interior` can // only take place through references with lifetimes // derived from lifetimes attached to the upvars, and we // *do* incorporate the upvars here. let constraint = DtorckConstraint { outlives: substs.upvar_tys(def_id, tcx).map(|t| t.into()).collect(), dtorck_types: vec![], overflows: vec![], }; debug!( "dtorck_constraint: generator {:?} => {:?}", def_id, constraint ); Ok(constraint) } ty::Adt(def, substs) => { let DtorckConstraint { dtorck_types, outlives, overflows, } = tcx.at(span).adt_dtorck_constraint(def.did)?; Ok(DtorckConstraint { // FIXME: we can try to recursively `dtorck_constraint_on_ty` // there, but that needs some way to handle cycles. dtorck_types: dtorck_types.subst(tcx, substs), outlives: outlives.subst(tcx, substs), overflows: overflows.subst(tcx, substs), }) } // Objects must be alive in order for their destructor // to be called. ty::Dynamic(..) => Ok(DtorckConstraint { outlives: vec![ty.into()], dtorck_types: vec![], overflows: vec![], }), // Types that can't be resolved. Pass them forward. ty::Projection(..) | ty::Opaque(..) | ty::Param(..) => Ok(DtorckConstraint { outlives: vec![], dtorck_types: vec![ty], overflows: vec![], }), ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"), ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => { // By the time this code runs, all type variables ought to // be fully resolved. Err(NoSolution) } }; debug!("dtorck_constraint_for_ty({:?}) = {:?}", ty, result); result } /// Calculates the dtorck constraint for a type. crate fn adt_dtorck_constraint<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> Result, NoSolution> { let def = tcx.adt_def(def_id); let span = tcx.def_span(def_id); debug!("dtorck_constraint: {:?}", def); if def.is_phantom_data() { // The first generic parameter here is guaranteed to be a type because it's // `PhantomData`. let substs = InternalSubsts::identity_for_item(tcx, def_id); assert_eq!(substs.len(), 1); let result = DtorckConstraint { outlives: vec![], dtorck_types: vec![substs.type_at(0)], overflows: vec![], }; debug!("dtorck_constraint: {:?} => {:?}", def, result); return Ok(result); } let mut result = def.all_fields() .map(|field| tcx.type_of(field.did)) .map(|fty| dtorck_constraint_for_ty(tcx, span, fty, 0, fty)) .collect::, NoSolution>>()?; result.outlives.extend(tcx.destructor_constraints(def)); dedup_dtorck_constraint(&mut result); debug!("dtorck_constraint: {:?} => {:?}", def, result); Ok(result) } fn dedup_dtorck_constraint<'tcx>(c: &mut DtorckConstraint<'tcx>) { let mut outlives = FxHashSet::default(); let mut dtorck_types = FxHashSet::default(); c.outlives.retain(|&val| outlives.replace(val).is_none()); c.dtorck_types .retain(|&val| dtorck_types.replace(val).is_none()); }