// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! # Token Streams //! //! TokenStreams represent syntactic objects before they are converted into ASTs. //! A `TokenStream` is, roughly speaking, a sequence (eg stream) of `TokenTree`s, //! which are themselves either a single Token, a Delimited subsequence of tokens, //! or a SequenceRepetition specifier (for the purpose of sequence generation during macro //! expansion). //! //! ## Ownership //! TokenStreams are persistant data structures construced as ropes with reference //! counted-children. In general, this means that calling an operation on a TokenStream //! (such as `slice`) produces an entirely new TokenStream from the borrowed reference to //! the original. This essentially coerces TokenStreams into 'views' of their subparts, //! and a borrowed TokenStream is sufficient to build an owned TokenStream without taking //! ownership of the original. use ast::{self, AttrStyle, LitKind}; use syntax_pos::{Span, DUMMY_SP, NO_EXPANSION}; use codemap::{Spanned, combine_spans}; use ext::base; use ext::tt::macro_parser; use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; use parse::{self, Directory}; use parse::token::{self, Token, Lit, Nonterminal}; use print::pprust; use symbol::Symbol; use std::fmt; use std::iter::*; use std::ops::{self, Index}; use std::rc::Rc; /// A delimited sequence of token trees #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct Delimited { /// The type of delimiter pub delim: token::DelimToken, /// The span covering the opening delimiter pub open_span: Span, /// The delimited sequence of token trees pub tts: Vec, /// The span covering the closing delimiter pub close_span: Span, } impl Delimited { /// Returns the opening delimiter as a token. pub fn open_token(&self) -> token::Token { token::OpenDelim(self.delim) } /// Returns the closing delimiter as a token. pub fn close_token(&self) -> token::Token { token::CloseDelim(self.delim) } /// Returns the opening delimiter as a token tree. pub fn open_tt(&self) -> TokenTree { TokenTree::Token(self.open_span, self.open_token()) } /// Returns the closing delimiter as a token tree. pub fn close_tt(&self) -> TokenTree { TokenTree::Token(self.close_span, self.close_token()) } /// Returns the token trees inside the delimiters. pub fn subtrees(&self) -> &[TokenTree] { &self.tts } } /// A sequence of token trees #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] pub struct SequenceRepetition { /// The sequence of token trees pub tts: Vec, /// The optional separator pub separator: Option, /// Whether the sequence can be repeated zero (*), or one or more times (+) pub op: KleeneOp, /// The number of `MatchNt`s that appear in the sequence (and subsequences) pub num_captures: usize, } /// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star) /// for token sequences. #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] pub enum KleeneOp { ZeroOrMore, OneOrMore, } /// When the main rust parser encounters a syntax-extension invocation, it /// parses the arguments to the invocation as a token-tree. This is a very /// loose structure, such that all sorts of different AST-fragments can /// be passed to syntax extensions using a uniform type. /// /// If the syntax extension is an MBE macro, it will attempt to match its /// LHS token tree against the provided token tree, and if it finds a /// match, will transcribe the RHS token tree, splicing in any captured /// macro_parser::matched_nonterminals into the `SubstNt`s it finds. /// /// The RHS of an MBE macro is the only place `SubstNt`s are substituted. /// Nothing special happens to misnamed or misplaced `SubstNt`s. #[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] pub enum TokenTree { /// A single token Token(Span, token::Token), /// A delimited sequence of token trees Delimited(Span, Rc), // This only makes sense in MBE macros. /// A kleene-style repetition sequence with a span Sequence(Span, Rc), } impl TokenTree { pub fn len(&self) -> usize { match *self { TokenTree::Token(_, token::DocComment(name)) => { match doc_comment_style(&name.as_str()) { AttrStyle::Outer => 2, AttrStyle::Inner => 3, } } TokenTree::Token(_, token::Interpolated(ref nt)) => { if let Nonterminal::NtTT(..) = **nt { 1 } else { 0 } }, TokenTree::Token(_, token::MatchNt(..)) => 3, TokenTree::Delimited(_, ref delimed) => match delimed.delim { token::NoDelim => delimed.tts.len(), _ => delimed.tts.len() + 2, }, TokenTree::Sequence(_, ref seq) => seq.tts.len(), TokenTree::Token(..) => 0, } } pub fn get_tt(&self, index: usize) -> TokenTree { match (self, index) { (&TokenTree::Token(sp, token::DocComment(_)), 0) => TokenTree::Token(sp, token::Pound), (&TokenTree::Token(sp, token::DocComment(name)), 1) if doc_comment_style(&name.as_str()) == AttrStyle::Inner => { TokenTree::Token(sp, token::Not) } (&TokenTree::Token(sp, token::DocComment(name)), _) => { let stripped = strip_doc_comment_decoration(&name.as_str()); // Searches for the occurrences of `"#*` and returns the minimum number of `#`s // required to wrap the text. let num_of_hashes = stripped.chars() .scan(0, |cnt, x| { *cnt = if x == '"' { 1 } else if *cnt != 0 && x == '#' { *cnt + 1 } else { 0 }; Some(*cnt) }) .max() .unwrap_or(0); TokenTree::Delimited(sp, Rc::new(Delimited { delim: token::Bracket, open_span: sp, tts: vec![TokenTree::Token(sp, token::Ident(ast::Ident::from_str("doc"))), TokenTree::Token(sp, token::Eq), TokenTree::Token(sp, token::Literal( token::StrRaw(Symbol::intern(&stripped), num_of_hashes), None))], close_span: sp, })) } (&TokenTree::Delimited(_, ref delimed), _) if delimed.delim == token::NoDelim => { delimed.tts[index].clone() } (&TokenTree::Delimited(_, ref delimed), _) => { if index == 0 { return delimed.open_tt(); } if index == delimed.tts.len() + 1 { return delimed.close_tt(); } delimed.tts[index - 1].clone() } (&TokenTree::Token(sp, token::MatchNt(name, kind)), _) => { let v = [TokenTree::Token(sp, token::SubstNt(name)), TokenTree::Token(sp, token::Colon), TokenTree::Token(sp, token::Ident(kind))]; v[index].clone() } (&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(), _ => panic!("Cannot expand a token tree"), } } /// Returns the `Span` corresponding to this token tree. pub fn get_span(&self) -> Span { match *self { TokenTree::Token(span, _) => span, TokenTree::Delimited(span, _) => span, TokenTree::Sequence(span, _) => span, } } /// Use this token tree as a matcher to parse given tts. pub fn parse(cx: &base::ExtCtxt, mtch: &[TokenTree], tts: &[TokenTree]) -> macro_parser::NamedParseResult { // `None` is because we're not interpolating let directory = Directory { path: cx.current_expansion.module.directory.clone(), ownership: cx.current_expansion.directory_ownership, }; macro_parser::parse(cx.parse_sess(), tts.iter().cloned().collect(), mtch, Some(directory)) } /// Check if this TokenTree is equal to the other, regardless of span information. pub fn eq_unspanned(&self, other: &TokenTree) -> bool { match (self, other) { (&TokenTree::Token(_, ref tk), &TokenTree::Token(_, ref tk2)) => tk == tk2, (&TokenTree::Delimited(_, ref dl), &TokenTree::Delimited(_, ref dl2)) => { (*dl).delim == (*dl2).delim && dl.tts.len() == dl2.tts.len() && { for (tt1, tt2) in dl.tts.iter().zip(dl2.tts.iter()) { if !tt1.eq_unspanned(tt2) { return false; } } true } } (_, _) => false, } } /// Retrieve the TokenTree's span. pub fn span(&self) -> Span { match *self { TokenTree::Token(sp, _) | TokenTree::Delimited(sp, _) | TokenTree::Sequence(sp, _) => sp, } } /// Indicates if the stream is a token that is equal to the provided token. pub fn eq_token(&self, t: Token) -> bool { match *self { TokenTree::Token(_, ref tk) => *tk == t, _ => false, } } /// Indicates if the token is an identifier. pub fn is_ident(&self) -> bool { self.maybe_ident().is_some() } /// Returns an identifier. pub fn maybe_ident(&self) -> Option { match *self { TokenTree::Token(_, Token::Ident(t)) => Some(t.clone()), TokenTree::Delimited(_, ref dl) => { let tts = dl.subtrees(); if tts.len() != 1 { return None; } tts[0].maybe_ident() } _ => None, } } /// Returns a Token literal. pub fn maybe_lit(&self) -> Option { match *self { TokenTree::Token(_, Token::Literal(l, _)) => Some(l.clone()), TokenTree::Delimited(_, ref dl) => { let tts = dl.subtrees(); if tts.len() != 1 { return None; } tts[0].maybe_lit() } _ => None, } } /// Returns an AST string literal. pub fn maybe_str(&self) -> Option { match *self { TokenTree::Token(sp, Token::Literal(Lit::Str_(s), _)) => { let l = LitKind::Str(Symbol::intern(&parse::str_lit(&s.as_str())), ast::StrStyle::Cooked); Some(Spanned { node: l, span: sp, }) } TokenTree::Token(sp, Token::Literal(Lit::StrRaw(s, n), _)) => { let l = LitKind::Str(Symbol::intern(&parse::raw_str_lit(&s.as_str())), ast::StrStyle::Raw(n)); Some(Spanned { node: l, span: sp, }) } _ => None, } } } /// #Token Streams /// /// TokenStreams are a syntactic abstraction over TokenTrees. The goal is for procedural /// macros to work over TokenStreams instead of arbitrary syntax. For now, however, we /// are going to cut a few corners (i.e., use some of the AST structure) when we need to /// for backwards compatibility. /// TokenStreams are collections of TokenTrees that represent a syntactic structure. The /// struct itself shouldn't be directly manipulated; the internal structure is not stable, /// and may be changed at any time in the future. The operators will not, however (except /// for signatures, later on). #[derive(Clone, Eq, Hash, RustcEncodable, RustcDecodable)] pub struct TokenStream { ts: InternalTS, } // This indicates the maximum size for a leaf in the concatenation algorithm. // If two leafs will be collectively smaller than this, they will be merged. // If a leaf is larger than this, it will be concatenated at the top. const LEAF_SIZE : usize = 32; // NB If Leaf access proves to be slow, inroducing a secondary Leaf without the bounds // for unsliced Leafs may lead to some performance improvemenet. #[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub enum InternalTS { Empty(Span), Leaf { tts: Rc>, offset: usize, len: usize, sp: Span, }, Node { left: Rc, right: Rc, len: usize, sp: Span, }, } impl fmt::Debug for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.ts.fmt(f) } } impl fmt::Debug for InternalTS { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { InternalTS::Empty(..) => Ok(()), InternalTS::Leaf { ref tts, offset, len, .. } => { for t in tts.iter().skip(offset).take(len) { try!(write!(f, "{:?}", t)); } Ok(()) } InternalTS::Node { ref left, ref right, .. } => { try!(left.fmt(f)); right.fmt(f) } } } } /// Checks if two TokenStreams are equivalent (including spans). For unspanned /// equality, see `eq_unspanned`. impl PartialEq for TokenStream { fn eq(&self, other: &TokenStream) -> bool { self.iter().eq(other.iter()) } } // NB this will disregard gaps. if we have [a|{2,5} , b|{11,13}], the resultant span // will be at {2,13}. Without finer-grained span structures, however, this seems to be // our only recourse. // FIXME Do something smarter to compute the expansion id. fn covering_span(trees: &[TokenTree]) -> Span { // disregard any dummy spans we have let trees = trees.iter().filter(|t| t.span() != DUMMY_SP).collect::>(); // if we're out of spans, stop if trees.len() < 1 { return DUMMY_SP; } // set up the initial values let fst_span = trees[0].span(); let mut lo_span = fst_span.lo; let mut hi_span = fst_span.hi; let mut expn_id = fst_span.expn_id; // compute the spans iteratively for t in trees.iter().skip(1) { let sp = t.span(); if sp.lo < lo_span { lo_span = sp.lo; } if hi_span < sp.hi { hi_span = sp.hi; } if expn_id != sp.expn_id { expn_id = NO_EXPANSION; } } Span { lo: lo_span, hi: hi_span, expn_id: expn_id, } } impl InternalTS { fn len(&self) -> usize { match *self { InternalTS::Empty(..) => 0, InternalTS::Leaf { len, .. } => len, InternalTS::Node { len, .. } => len, } } fn span(&self) -> Span { match *self { InternalTS::Empty(sp) | InternalTS::Leaf { sp, .. } | InternalTS::Node { sp, .. } => sp, } } fn slice(&self, range: ops::Range) -> TokenStream { let from = range.start; let to = range.end; if from == to { return TokenStream::mk_empty(); } if from > to { panic!("Invalid range: {} to {}", from, to); } if from == 0 && to == self.len() { return TokenStream { ts: self.clone() }; /* should be cheap */ } match *self { InternalTS::Empty(..) => panic!("Invalid index"), InternalTS::Leaf { ref tts, offset, .. } => { let offset = offset + from; let len = to - from; TokenStream::mk_sub_leaf(tts.clone(), offset, len, covering_span(&tts[offset..offset + len])) } InternalTS::Node { ref left, ref right, .. } => { let left_len = left.len(); if to <= left_len { left.slice(range) } else if from >= left_len { right.slice(from - left_len..to - left_len) } else { TokenStream::concat(left.slice(from..left_len), right.slice(0..to - left_len)) } } } } fn to_vec(&self) -> Vec<&TokenTree> { let mut res = Vec::with_capacity(self.len()); fn traverse_and_append<'a>(res: &mut Vec<&'a TokenTree>, ts: &'a InternalTS) { match *ts { InternalTS::Empty(..) => {}, InternalTS::Leaf { ref tts, offset, len, .. } => { let mut to_app = tts[offset..offset + len].iter().collect(); res.append(&mut to_app); } InternalTS::Node { ref left, ref right, .. } => { traverse_and_append(res, left); traverse_and_append(res, right); } } } traverse_and_append(&mut res, self); res } fn to_tts(&self) -> Vec { self.to_vec().into_iter().cloned().collect::>() } // Returns an internal node's children. fn children(&self) -> Option<(Rc, Rc)> { match *self { InternalTS::Node { ref left, ref right, .. } => Some((left.clone(), right.clone())), _ => None, } } } /// TokenStream operators include basic destructuring, boolean operations, `maybe_...` /// operations, and `maybe_..._prefix` operations. Boolean operations are straightforward, /// indicating information about the structure of the stream. The `maybe_...` operations /// return `Some<...>` if the tokenstream contains the appropriate item. /// /// Similarly, the `maybe_..._prefix` operations potentially return a /// partially-destructured stream as a pair where the first element is the expected item /// and the second is the remainder of the stream. As anb example, /// /// `maybe_path_prefix("a::b::c(a,b,c).foo()") -> (a::b::c, "(a,b,c).foo()")` impl TokenStream { // Construct an empty node with a dummy span. pub fn mk_empty() -> TokenStream { TokenStream { ts: InternalTS::Empty(DUMMY_SP) } } // Construct an empty node with the provided span. fn mk_spanned_empty(sp: Span) -> TokenStream { TokenStream { ts: InternalTS::Empty(sp) } } // Construct a leaf node with a 0 offset and length equivalent to the input. fn mk_leaf(tts: Rc>, sp: Span) -> TokenStream { let len = tts.len(); TokenStream { ts: InternalTS::Leaf { tts: tts, offset: 0, len: len, sp: sp, }, } } // Construct a leaf node with the provided values. fn mk_sub_leaf(tts: Rc>, offset: usize, len: usize, sp: Span) -> TokenStream { TokenStream { ts: InternalTS::Leaf { tts: tts, offset: offset, len: len, sp: sp, }, } } // Construct an internal node with the provided values. fn mk_int_node(left: Rc, right: Rc, len: usize, sp: Span) -> TokenStream { TokenStream { ts: InternalTS::Node { left: left, right: right, len: len, sp: sp, }, } } /// Convert a vector of `TokenTree`s into a `TokenStream`. pub fn from_tts(trees: Vec) -> TokenStream { let span = covering_span(&trees[..]); TokenStream::mk_leaf(Rc::new(trees), span) } /// Convert a vector of Tokens into a TokenStream. pub fn from_tokens(tokens: Vec) -> TokenStream { // FIXME do something nicer with the spans TokenStream::from_tts(tokens.into_iter().map(|t| TokenTree::Token(DUMMY_SP, t)).collect()) } /// Manually change a TokenStream's span. pub fn respan(self, span: Span) -> TokenStream { match self.ts { InternalTS::Empty(..) => TokenStream::mk_spanned_empty(span), InternalTS::Leaf { tts, offset, len, .. } => { TokenStream::mk_sub_leaf(tts, offset, len, span) } InternalTS::Node { left, right, len, .. } => { TokenStream::mk_int_node(left, right, len, span) } } } /// Concatenates two TokenStreams into a new TokenStream. pub fn concat(left: TokenStream, right: TokenStream) -> TokenStream { // This internal procedure performs 'aggressive compacting' during concatenation as // follows: // - If the nodes' combined total total length is less than 32, we copy both of // them into a new vector and build a new leaf node. // - If one node is an internal node and the other is a 'small' leaf (length<32), // we recur down the internal node on the appropriate side. // - Otherwise, we construct a new internal node that points to them as left and // right. fn concat_internal(left: Rc, right: Rc) -> TokenStream { let llen = left.len(); let rlen = right.len(); let len = llen + rlen; let span = combine_spans(left.span(), right.span()); if len <= LEAF_SIZE { let mut new_vec = left.to_tts(); let mut rvec = right.to_tts(); new_vec.append(&mut rvec); return TokenStream::mk_leaf(Rc::new(new_vec), span); } match (left.children(), right.children()) { (Some((lleft, lright)), None) => { if rlen <= LEAF_SIZE { let new_right = concat_internal(lright, right); TokenStream::mk_int_node(lleft, Rc::new(new_right.ts), len, span) } else { TokenStream::mk_int_node(left, right, len, span) } } (None, Some((rleft, rright))) => { if rlen <= LEAF_SIZE { let new_left = concat_internal(left, rleft); TokenStream::mk_int_node(Rc::new(new_left.ts), rright, len, span) } else { TokenStream::mk_int_node(left, right, len, span) } } (_, _) => TokenStream::mk_int_node(left, right, len, span), } } if left.is_empty() { right } else if right.is_empty() { left } else { concat_internal(Rc::new(left.ts), Rc::new(right.ts)) } } /// Indicate if the TokenStream is empty. pub fn is_empty(&self) -> bool { self.len() == 0 } /// Return a TokenStream's length. pub fn len(&self) -> usize { self.ts.len() } /// Convert a TokenStream into a vector of borrowed TokenTrees. pub fn to_vec(&self) -> Vec<&TokenTree> { self.ts.to_vec() } /// Convert a TokenStream into a vector of TokenTrees (by cloning the TokenTrees). /// (This operation is an O(n) deep copy of the underlying structure.) pub fn to_tts(&self) -> Vec { self.ts.to_tts() } /// Return the TokenStream's span. pub fn span(&self) -> Span { self.ts.span() } /// Returns an iterator over a TokenStream (as a sequence of TokenTrees). pub fn iter<'a>(&self) -> Iter { Iter { vs: self, idx: 0 } } /// Splits a TokenStream based on the provided `&TokenTree -> bool` predicate. pub fn split

(&self, pred: P) -> Split

where P: FnMut(&TokenTree) -> bool { Split { vs: self, pred: pred, finished: false, idx: 0, } } /// Produce a slice of the input TokenStream from the `from` index, inclusive, to the /// `to` index, non-inclusive. pub fn slice(&self, range: ops::Range) -> TokenStream { self.ts.slice(range) } /// Slice starting at the provided index, inclusive. pub fn slice_from(&self, from: ops::RangeFrom) -> TokenStream { self.slice(from.start..self.len()) } /// Slice up to the provided index, non-inclusive. pub fn slice_to(&self, to: ops::RangeTo) -> TokenStream { self.slice(0..to.end) } /// Indicates where the stream is a single, delimited expression (e.g., `(a,b,c)` or /// `{a,b,c}`). pub fn is_delimited(&self) -> bool { self.maybe_delimited().is_some() } /// Returns the inside of the delimited term as a new TokenStream. pub fn maybe_delimited(&self) -> Option { if !(self.len() == 1) { return None; } // FIXME It would be nice to change Delimited to move the Rc around the TokenTree // vector directly in order to avoid the clone here. match self[0] { TokenTree::Delimited(_, ref rc) => Some(TokenStream::from_tts(rc.tts.clone())), _ => None, } } /// Indicates if the stream is exactly one identifier. pub fn is_ident(&self) -> bool { self.maybe_ident().is_some() } /// Returns an identifier pub fn maybe_ident(&self) -> Option { if !(self.len() == 1) { return None; } match self[0] { TokenTree::Token(_, Token::Ident(t)) => Some(t), _ => None, } } /// Compares two TokenStreams, checking equality without regarding span information. pub fn eq_unspanned(&self, other: &TokenStream) -> bool { for (t1, t2) in self.iter().zip(other.iter()) { if !t1.eq_unspanned(t2) { return false; } } true } /// Convert a vector of TokenTrees into a parentheses-delimited TokenStream. pub fn as_delimited_stream(tts: Vec, delim: token::DelimToken) -> TokenStream { let new_sp = covering_span(&tts); let new_delim = Rc::new(Delimited { delim: delim, open_span: DUMMY_SP, tts: tts, close_span: DUMMY_SP, }); TokenStream::from_tts(vec![TokenTree::Delimited(new_sp, new_delim)]) } } impl fmt::Display for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str(&pprust::tts_to_string(&self.to_tts())) } } // FIXME Reimplement this iterator to hold onto a slice iterator for a leaf, getting the // next leaf's iterator when the current one is exhausted. pub struct Iter<'a> { vs: &'a TokenStream, idx: usize, } impl<'a> Iterator for Iter<'a> { type Item = &'a TokenTree; fn next(&mut self) -> Option<&'a TokenTree> { if self.vs.is_empty() || self.idx >= self.vs.len() { return None; } let ret = Some(&self.vs[self.idx]); self.idx = self.idx + 1; ret } } pub struct Split<'a, P> where P: FnMut(&TokenTree) -> bool { vs: &'a TokenStream, pred: P, finished: bool, idx: usize, } impl<'a, P> Iterator for Split<'a, P> where P: FnMut(&TokenTree) -> bool { type Item = TokenStream; fn next(&mut self) -> Option { if self.finished { return None; } if self.idx >= self.vs.len() { self.finished = true; return None; } let mut lookup = self.vs.iter().skip(self.idx); match lookup.position(|x| (self.pred)(&x)) { None => { self.finished = true; Some(self.vs.slice_from(self.idx..)) } Some(edx) => { let ret = Some(self.vs.slice(self.idx..self.idx + edx)); self.idx += edx + 1; ret } } } } impl Index for TokenStream { type Output = TokenTree; fn index(&self, index: usize) -> &TokenTree { &self.ts[index] } } impl Index for InternalTS { type Output = TokenTree; fn index(&self, index: usize) -> &TokenTree { if self.len() <= index { panic!("Index {} too large for {:?}", index, self); } match *self { InternalTS::Empty(..) => panic!("Invalid index"), InternalTS::Leaf { ref tts, offset, .. } => tts.get(index + offset).unwrap(), InternalTS::Node { ref left, ref right, .. } => { let left_len = left.len(); if index < left_len { Index::index(&**left, index) } else { Index::index(&**right, index - left_len) } } } } } #[cfg(test)] mod tests { use super::*; use syntax::ast::Ident; use syntax_pos::{Span, BytePos, NO_EXPANSION, DUMMY_SP}; use parse::token::{self, Token}; use util::parser_testing::string_to_tts; use std::rc::Rc; fn sp(a: u32, b: u32) -> Span { Span { lo: BytePos(a), hi: BytePos(b), expn_id: NO_EXPANSION, } } fn as_paren_delimited_stream(tts: Vec) -> TokenStream { TokenStream::as_delimited_stream(tts, token::DelimToken::Paren) } #[test] fn test_concat() { let test_res = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())); let test_fst = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); let test_snd = TokenStream::from_tts(string_to_tts("::baz".to_string())); let eq_res = TokenStream::concat(test_fst, test_snd); assert_eq!(test_res.len(), 5); assert_eq!(eq_res.len(), 5); assert_eq!(test_res.eq_unspanned(&eq_res), true); } #[test] fn test_from_to_bijection() { let test_start = string_to_tts("foo::bar(baz)".to_string()); let test_end = TokenStream::from_tts(string_to_tts("foo::bar(baz)".to_string())).to_tts(); assert_eq!(test_start, test_end) } #[test] fn test_to_from_bijection() { let test_start = TokenStream::from_tts(string_to_tts("foo::bar(baz)".to_string())); let test_end = TokenStream::from_tts(test_start.clone().to_tts()); assert_eq!(test_start, test_end) } #[test] fn test_eq_0() { let test_res = TokenStream::from_tts(string_to_tts("foo".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("foo".to_string())); assert_eq!(test_res, test_eqs) } #[test] fn test_eq_1() { let test_res = TokenStream::from_tts(string_to_tts("::bar::baz".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("::bar::baz".to_string())); assert_eq!(test_res, test_eqs) } #[test] fn test_eq_2() { let test_res = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())); assert_eq!(test_res, test_eqs.slice(0..3)) } #[test] fn test_eq_3() { let test_res = TokenStream::from_tts(string_to_tts("".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("".to_string())); assert_eq!(test_res, test_eqs) } #[test] fn test_diseq_0() { let test_res = TokenStream::from_tts(string_to_tts("::bar::baz".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("bar::baz".to_string())); assert_eq!(test_res == test_eqs, false) } #[test] fn test_diseq_1() { let test_res = TokenStream::from_tts(string_to_tts("(bar,baz)".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("bar,baz".to_string())); assert_eq!(test_res == test_eqs, false) } #[test] fn test_slice_0() { let test_res = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); let test_eqs = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())); assert_eq!(test_res, test_eqs.slice(0..3)) } #[test] fn test_slice_1() { let test_res = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())) .slice(2..3); let test_eqs = TokenStream::from_tts(vec![TokenTree::Token(sp(5,8), token::Ident(Ident::from_str("bar")))]); assert_eq!(test_res, test_eqs) } #[test] fn test_is_empty() { let test0 = TokenStream::from_tts(Vec::new()); let test1 = TokenStream::from_tts( vec![TokenTree::Token(sp(0, 1), Token::Ident(Ident::from_str("a")))] ); let test2 = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string())); assert_eq!(test0.is_empty(), true); assert_eq!(test1.is_empty(), false); assert_eq!(test2.is_empty(), false); } #[test] fn test_is_delimited() { let test0 = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string())); let test1 = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string())); let test2 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string())); let test3 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab,oof)".to_string())); let test4 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string())); let test5 = TokenStream::from_tts(string_to_tts("".to_string())); assert_eq!(test0.is_delimited(), false); assert_eq!(test1.is_delimited(), true); assert_eq!(test2.is_delimited(), true); assert_eq!(test3.is_delimited(), false); assert_eq!(test4.is_delimited(), false); assert_eq!(test5.is_delimited(), false); } #[test] fn test_is_ident() { let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string())); let test1 = TokenStream::from_tts(string_to_tts("5".to_string())); let test2 = TokenStream::from_tts(string_to_tts("foo".to_string())); let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string())); assert_eq!(test0.is_ident(), false); assert_eq!(test1.is_ident(), false); assert_eq!(test2.is_ident(), true); assert_eq!(test3.is_ident(), false); assert_eq!(test4.is_ident(), false); } #[test] fn test_maybe_delimited() { let test0_input = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string())); let test1_input = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string())); let test2_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string())); let test3_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab)" .to_string())); let test4_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string())); let test5_input = TokenStream::from_tts(string_to_tts("".to_string())); let test0 = test0_input.maybe_delimited(); let test1 = test1_input.maybe_delimited(); let test2 = test2_input.maybe_delimited(); let test3 = test3_input.maybe_delimited(); let test4 = test4_input.maybe_delimited(); let test5 = test5_input.maybe_delimited(); assert_eq!(test0, None); let test1_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4), token::Ident(Ident::from_str("bar"))), TokenTree::Token(sp(4, 6), token::ModSep), TokenTree::Token(sp(6, 9), token::Ident(Ident::from_str("baz")))]); assert_eq!(test1, Some(test1_expected)); let test2_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4), token::Ident(Ident::from_str("foo"))), TokenTree::Token(sp(4, 5), token::Comma), TokenTree::Token(sp(5, 8), token::Ident(Ident::from_str("bar"))), TokenTree::Token(sp(8, 9), token::Comma), TokenTree::Token(sp(9, 12), token::Ident(Ident::from_str("baz")))]); assert_eq!(test2, Some(test2_expected)); assert_eq!(test3, None); assert_eq!(test4, None); assert_eq!(test5, None); } // pub fn maybe_ident(&self) -> Option #[test] fn test_maybe_ident() { let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string())).maybe_ident(); let test1 = TokenStream::from_tts(string_to_tts("5".to_string())).maybe_ident(); let test2 = TokenStream::from_tts(string_to_tts("foo".to_string())).maybe_ident(); let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string())).maybe_ident(); let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string())).maybe_ident(); assert_eq!(test0, None); assert_eq!(test1, None); assert_eq!(test2, Some(Ident::from_str("foo"))); assert_eq!(test3, None); assert_eq!(test4, None); } #[test] fn test_as_delimited_stream() { let test0 = as_paren_delimited_stream(string_to_tts("foo,bar,".to_string())); let test1 = as_paren_delimited_stream(string_to_tts("baz(foo,bar)".to_string())); let test0_tts = vec![TokenTree::Token(sp(0, 3), token::Ident(Ident::from_str("foo"))), TokenTree::Token(sp(3, 4), token::Comma), TokenTree::Token(sp(4, 7), token::Ident(Ident::from_str("bar"))), TokenTree::Token(sp(7, 8), token::Comma)]; let test0_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(0, 8), Rc::new(Delimited { delim: token::DelimToken::Paren, open_span: DUMMY_SP, tts: test0_tts, close_span: DUMMY_SP, }))]); assert_eq!(test0, test0_stream); let test1_tts = vec![TokenTree::Token(sp(4, 7), token::Ident(Ident::from_str("foo"))), TokenTree::Token(sp(7, 8), token::Comma), TokenTree::Token(sp(8, 11), token::Ident(Ident::from_str("bar")))]; let test1_parse = vec![TokenTree::Token(sp(0, 3), token::Ident(Ident::from_str("baz"))), TokenTree::Delimited(sp(3, 12), Rc::new(Delimited { delim: token::DelimToken::Paren, open_span: sp(3, 4), tts: test1_tts, close_span: sp(11, 12), }))]; let test1_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(0, 12), Rc::new(Delimited { delim: token::DelimToken::Paren, open_span: DUMMY_SP, tts: test1_parse, close_span: DUMMY_SP, }))]); assert_eq!(test1, test1_stream); } }