// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust abstract syntax tree. use codemap::{Span, Spanned}; use abi::AbiSet; use opt_vec::OptVec; use parse::token::{interner_get, str_to_ident}; use std::hashmap::HashMap; use std::option::Option; use std::to_str::ToStr; use extra::serialize::{Encodable, Decodable, Encoder, Decoder}; // FIXME #6993: in librustc, uses of "ident" should be replaced // by just "Name". // an identifier contains a Name (index into the interner // table) and a SyntaxContext to track renaming and // macro expansion per Flatt et al., "Macros // That Work Together" #[deriving(Clone, Eq, IterBytes, ToStr)] pub struct Ident { name: Name, ctxt: SyntaxContext } impl Ident { /// Construct an identifier with the given name and an empty context: pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}} } // defining eq in this way is a way of guaranteeing that later stages of the // compiler don't compare identifiers unhygienically. Unfortunately, some tests // (specifically debuginfo in no-opt) want to do these comparisons, and that // seems fine. If only I could find a nice way to statically ensure that // the compiler "proper" never compares identifiers.... I'm leaving this // code here (commented out) for potential use in debugging. Specifically, if // there's a bug where "identifiers aren't matching", it may be because // they should be compared using mtwt_resolve. In such a case, re-enabling this // code (and disabling deriving(Eq) for Idents) could help to isolate the // problem /* impl Eq for Ident { fn eq(&self, other: &Ident) -> bool { if (self.ctxt == other.ctxt) { self.name == other.name } else { fail!(fmt!("not allowed to compare these idents: %?, %?", self, other)); } } fn ne(&self, other: &Ident) -> bool { ! self.eq(other) } } */ /// A SyntaxContext represents a chain of macro-expandings /// and renamings. Each macro expansion corresponds to /// a fresh uint // I'm representing this syntax context as an index into // a table, in order to work around a compiler bug // that's causing unreleased memory to cause core dumps // and also perhaps to save some work in destructor checks. // the special uint '0' will be used to indicate an empty // syntax context. // this uint is a reference to a table stored in thread-local // storage. pub type SyntaxContext = uint; pub struct SCTable { table : ~[SyntaxContext_], mark_memo : HashMap<(SyntaxContext,Mrk),SyntaxContext>, rename_memo : HashMap<(SyntaxContext,Ident,Name),SyntaxContext> } // NB: these must be placed in any SCTable... pub static EMPTY_CTXT : uint = 0; pub static ILLEGAL_CTXT : uint = 1; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum SyntaxContext_ { EmptyCtxt, Mark (Mrk,SyntaxContext), // flattening the name and syntaxcontext into the rename... // HIDDEN INVARIANTS: // 1) the first name in a Rename node // can only be a programmer-supplied name. // 2) Every Rename node with a given Name in the // "to" slot must have the same name and context // in the "from" slot. In essence, they're all // pointers to a single "rename" event node. Rename (Ident,Name,SyntaxContext), // actually, IllegalCtxt may not be necessary. IllegalCtxt } /// A name is a part of an identifier, representing a string or gensym. It's /// the result of interning. pub type Name = uint; /// A mark represents a unique id associated with a macro expansion pub type Mrk = uint; impl Encodable for Ident { fn encode(&self, s: &mut S) { s.emit_str(interner_get(self.name)); } } #[deriving(IterBytes)] impl Decodable for Ident { fn decode(d: &mut D) -> Ident { str_to_ident(d.read_str()) } } /// Function name (not all functions have names) pub type FnIdent = Option; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Lifetime { id: NodeId, span: Span, ident: Ident } // a "Path" is essentially Rust's notion of a name; // for instance: std::cmp::Eq . It's represented // as a sequence of identifiers, along with a bunch // of supporting information. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Path { span: Span, /// A `::foo` path, is relative to the crate root rather than current /// module (like paths in an import). global: bool, /// The segments in the path: the things separated by `::`. segments: ~[PathSegment], } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct PathSegment { /// The identifier portion of this path segment. identifier: Ident, /// The lifetime parameter for this path segment. Currently only one /// lifetime parameter is allowed. lifetime: Option, /// The type parameters for this path segment, if present. types: OptVec, } pub type CrateNum = int; pub type NodeId = int; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes, ToStr)] pub struct DefId { crate: CrateNum, node: NodeId, } pub static LOCAL_CRATE: CrateNum = 0; pub static CRATE_NODE_ID: NodeId = 0; // The AST represents all type param bounds as types. // typeck::collect::compute_bounds matches these against // the "special" built-in traits (see middle::lang_items) and // detects Copy, Send, Send, and Freeze. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum TyParamBound { TraitTyParamBound(trait_ref), RegionTyParamBound } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct TyParam { ident: Ident, id: NodeId, bounds: OptVec } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Generics { lifetimes: OptVec, ty_params: OptVec, } impl Generics { pub fn is_parameterized(&self) -> bool { self.lifetimes.len() + self.ty_params.len() > 0 } pub fn is_lt_parameterized(&self) -> bool { self.lifetimes.len() > 0 } pub fn is_type_parameterized(&self) -> bool { self.ty_params.len() > 0 } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum MethodProvenance { FromTrait(DefId), FromImpl(DefId), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Def { DefFn(DefId, purity), DefStaticMethod(/* method */ DefId, MethodProvenance, purity), DefSelf(NodeId), DefSelfTy(/* trait id */ NodeId), DefMod(DefId), DefForeignMod(DefId), DefStatic(DefId, bool /* is_mutbl */), DefArg(NodeId, bool /* is_mutbl */), DefLocal(NodeId, bool /* is_mutbl */), DefVariant(DefId /* enum */, DefId /* variant */), DefTy(DefId), DefTrait(DefId), DefPrimTy(prim_ty), DefTyParam(DefId, uint), DefBinding(NodeId, BindingMode), DefUse(DefId), DefUpvar(NodeId, // id of closed over var @Def, // closed over def NodeId, // expr node that creates the closure NodeId), // id for the block/body of the closure expr DefStruct(DefId), DefTyParamBinder(NodeId), /* struct, impl or trait with ty params */ DefRegion(NodeId), DefLabel(NodeId), DefMethod(DefId /* method */, Option /* trait */), } // The set of MetaItems that define the compilation environment of the crate, // used to drive conditional compilation pub type CrateConfig = ~[@MetaItem]; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Crate { module: _mod, attrs: ~[Attribute], config: CrateConfig, span: Span, } pub type MetaItem = Spanned; #[deriving(Clone, Encodable, Decodable, IterBytes)] pub enum MetaItem_ { MetaWord(@str), MetaList(@str, ~[@MetaItem]), MetaNameValue(@str, lit), } // can't be derived because the MetaList requires an unordered comparison impl Eq for MetaItem_ { fn eq(&self, other: &MetaItem_) -> bool { match *self { MetaWord(ref ns) => match *other { MetaWord(ref no) => (*ns) == (*no), _ => false }, MetaNameValue(ref ns, ref vs) => match *other { MetaNameValue(ref no, ref vo) => { (*ns) == (*no) && vs.node == vo.node } _ => false }, MetaList(ref ns, ref miss) => match *other { MetaList(ref no, ref miso) => { ns == no && miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node)) } _ => false } } } } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct Block { view_items: ~[view_item], stmts: ~[@Stmt], expr: Option<@Expr>, id: NodeId, rules: BlockCheckMode, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Pat { id: NodeId, node: Pat_, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct FieldPat { ident: Ident, pat: @Pat, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum BindingMode { BindByRef(Mutability), BindInfer } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Pat_ { PatWild, // A pat_ident may either be a new bound variable, // or a nullary enum (in which case the second field // is None). // In the nullary enum case, the parser can't determine // which it is. The resolver determines this, and // records this pattern's NodeId in an auxiliary // set (of "pat_idents that refer to nullary enums") PatIdent(BindingMode, Path, Option<@Pat>), PatEnum(Path, Option<~[@Pat]>), /* "none" means a * pattern where * we don't bind the fields to names */ PatStruct(Path, ~[FieldPat], bool), PatTup(~[@Pat]), PatBox(@Pat), PatUniq(@Pat), PatRegion(@Pat), // borrowed pointer pattern PatLit(@Expr), PatRange(@Expr, @Expr), // [a, b, ..i, y, z] is represented as // pat_vec(~[a, b], Some(i), ~[y, z]) PatVec(~[@Pat], Option<@Pat>, ~[@Pat]) } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Mutability { MutMutable, MutImmutable, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Sigil { BorrowedSigil, OwnedSigil, ManagedSigil } impl ToStr for Sigil { fn to_str(&self) -> ~str { match *self { BorrowedSigil => ~"&", OwnedSigil => ~"~", ManagedSigil => ~"@" } } } #[deriving(Eq, Encodable, Decodable, IterBytes)] pub enum Vstore { // FIXME (#3469): Change uint to @expr (actually only constant exprs) VstoreFixed(Option), // [1,2,3,4] VstoreUniq, // ~[1,2,3,4] VstoreBox, // @[1,2,3,4] VstoreSlice(Option) // &'foo? [1,2,3,4] } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum ExprVstore { ExprVstoreUniq, // ~[1,2,3,4] ExprVstoreBox, // @[1,2,3,4] ExprVstoreMutBox, // @mut [1,2,3,4] ExprVstoreSlice, // &[1,2,3,4] ExprVstoreMutSlice, // &mut [1,2,3,4] } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum BinOp { BiAdd, BiSub, BiMul, BiDiv, BiRem, BiAnd, BiOr, BiBitXor, BiBitAnd, BiBitOr, BiShl, BiShr, BiEq, BiLt, BiLe, BiNe, BiGe, BiGt, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum UnOp { UnBox(Mutability), UnUniq, UnDeref, UnNot, UnNeg } pub type Stmt = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Stmt_ { // could be an item or a local (let) binding: StmtDecl(@Decl, NodeId), // expr without trailing semi-colon (must have unit type): StmtExpr(@Expr, NodeId), // expr with trailing semi-colon (may have any type): StmtSemi(@Expr, NodeId), // bool: is there a trailing sem-colon? StmtMac(mac, bool), } // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct Local { is_mutbl: bool, ty: Ty, pat: @Pat, init: Option<@Expr>, id: NodeId, span: Span, } pub type Decl = Spanned; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum Decl_ { // a local (let) binding: DeclLocal(@Local), // an item binding: DeclItem(@item), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Arm { pats: ~[@Pat], guard: Option<@Expr>, body: Block, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Field { ident: Ident, expr: @Expr, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum BlockCheckMode { DefaultBlock, UnsafeBlock, } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct Expr { id: NodeId, node: Expr_, span: Span, } impl Expr { pub fn get_callee_id(&self) -> Option { match self.node { ExprMethodCall(callee_id, _, _, _, _, _) | ExprIndex(callee_id, _, _) | ExprBinary(callee_id, _, _, _) | ExprAssignOp(callee_id, _, _, _) | ExprUnary(callee_id, _, _) => Some(callee_id), _ => None, } } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum CallSugar { NoSugar, DoSugar, ForSugar } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Expr_ { ExprVstore(@Expr, ExprVstore), ExprVec(~[@Expr], Mutability), ExprCall(@Expr, ~[@Expr], CallSugar), ExprMethodCall(NodeId, @Expr, Ident, ~[Ty], ~[@Expr], CallSugar), ExprTup(~[@Expr]), ExprBinary(NodeId, BinOp, @Expr, @Expr), ExprUnary(NodeId, UnOp, @Expr), ExprLit(@lit), ExprCast(@Expr, Ty), ExprIf(@Expr, Block, Option<@Expr>), ExprWhile(@Expr, Block), ExprForLoop(@Pat, @Expr, Block), /* Conditionless loop (can be exited with break, cont, or ret) Same semantics as while(true) { body }, but typestate knows that the (implicit) condition is always true. */ ExprLoop(Block, Option), ExprMatch(@Expr, ~[Arm]), ExprFnBlock(fn_decl, Block), ExprDoBody(@Expr), ExprBlock(Block), ExprAssign(@Expr, @Expr), ExprAssignOp(NodeId, BinOp, @Expr, @Expr), ExprField(@Expr, Ident, ~[Ty]), ExprIndex(NodeId, @Expr, @Expr), ExprPath(Path), /// The special identifier `self`. ExprSelf, ExprAddrOf(Mutability, @Expr), ExprBreak(Option), ExprAgain(Option), ExprRet(Option<@Expr>), ExprLog(@Expr, @Expr), ExprInlineAsm(inline_asm), ExprMac(mac), // A struct literal expression. ExprStruct(Path, ~[Field], Option<@Expr> /* base */), // A vector literal constructed from one repeated element. ExprRepeat(@Expr /* element */, @Expr /* count */, Mutability), // No-op: used solely so we can pretty-print faithfully ExprParen(@Expr) } // When the main rust parser encounters a syntax-extension invocation, it // parses the arguments to the invocation as a token-tree. This is a very // loose structure, such that all sorts of different AST-fragments can // be passed to syntax extensions using a uniform type. // // If the syntax extension is an MBE macro, it will attempt to match its // LHS "matchers" against the provided token tree, and if it finds a // match, will transcribe the RHS token tree, splicing in any captured // macro_parser::matched_nonterminals into the tt_nonterminals it finds. // // The RHS of an MBE macro is the only place a tt_nonterminal or tt_seq // makes any real sense. You could write them elsewhere but nothing // else knows what to do with them, so you'll probably get a syntax // error. // #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] #[doc="For macro invocations; parsing is delegated to the macro"] pub enum token_tree { // a single token tt_tok(Span, ::parse::token::Token), // a delimited sequence (the delimiters appear as the first // and last elements of the vector) tt_delim(@mut ~[token_tree]), // These only make sense for right-hand-sides of MBE macros: // a kleene-style repetition sequence with a span, a tt_forest, // an optional separator, and a boolean where true indicates // zero or more (*), and false indicates one or more (+). tt_seq(Span, @mut ~[token_tree], Option<::parse::token::Token>, bool), // a syntactic variable that will be filled in by macro expansion. tt_nonterminal(Span, Ident) } // // Matchers are nodes defined-by and recognized-by the main rust parser and // language, but they're only ever found inside syntax-extension invocations; // indeed, the only thing that ever _activates_ the rules in the rust parser // for parsing a matcher is a matcher looking for the 'matchers' nonterminal // itself. Matchers represent a small sub-language for pattern-matching // token-trees, and are thus primarily used by the macro-defining extension // itself. // // match_tok // --------- // // A matcher that matches a single token, denoted by the token itself. So // long as there's no $ involved. // // // match_seq // --------- // // A matcher that matches a sequence of sub-matchers, denoted various // possible ways: // // $(M)* zero or more Ms // $(M)+ one or more Ms // $(M),+ one or more comma-separated Ms // $(A B C);* zero or more semi-separated 'A B C' seqs // // // match_nonterminal // ----------------- // // A matcher that matches one of a few interesting named rust // nonterminals, such as types, expressions, items, or raw token-trees. A // black-box matcher on expr, for example, binds an expr to a given ident, // and that ident can re-occur as an interpolation in the RHS of a // macro-by-example rule. For example: // // $foo:expr => 1 + $foo // interpolate an expr // $foo:tt => $foo // interpolate a token-tree // $foo:tt => bar! $foo // only other valid interpolation // // is in arg position for another // // macro // // As a final, horrifying aside, note that macro-by-example's input is // also matched by one of these matchers. Holy self-referential! It is matched // by an match_seq, specifically this one: // // $( $lhs:matchers => $rhs:tt );+ // // If you understand that, you have closed to loop and understand the whole // macro system. Congratulations. // pub type matcher = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum matcher_ { // match one token match_tok(::parse::token::Token), // match repetitions of a sequence: body, separator, zero ok?, // lo, hi position-in-match-array used: match_seq(~[matcher], Option<::parse::token::Token>, bool, uint, uint), // parse a Rust NT: name to bind, name of NT, position in match array: // NOTE: 'name of NT' shouldnt really be represented as an ident, should it? match_nonterminal(Ident, Ident, uint) } pub type mac = Spanned; // represents a macro invocation. The Path indicates which macro // is being invoked, and the vector of token-trees contains the source // of the macro invocation. // There's only one flavor, now, so this could presumably be simplified. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum mac_ { mac_invoc_tt(Path,~[token_tree],SyntaxContext), // new macro-invocation } pub type lit = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum lit_ { lit_str(@str), lit_char(u32), lit_int(i64, int_ty), lit_uint(u64, uint_ty), lit_int_unsuffixed(i64), lit_float(@str, float_ty), lit_float_unsuffixed(@str), lit_nil, lit_bool(bool), } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct mt { ty: ~Ty, mutbl: Mutability, } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct TypeField { ident: Ident, mt: mt, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct TypeMethod { ident: Ident, attrs: ~[Attribute], purity: purity, decl: fn_decl, generics: Generics, explicit_self: explicit_self, id: NodeId, span: Span, } // A trait method is either required (meaning it doesn't have an // implementation, just a signature) or provided (meaning it has a default // implementation). #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum trait_method { required(TypeMethod), provided(@method), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum int_ty { ty_i, ty_i8, ty_i16, ty_i32, ty_i64, } impl ToStr for int_ty { fn to_str(&self) -> ~str { ::ast_util::int_ty_to_str(*self) } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum uint_ty { ty_u, ty_u8, ty_u16, ty_u32, ty_u64, } impl ToStr for uint_ty { fn to_str(&self) -> ~str { ::ast_util::uint_ty_to_str(*self) } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum float_ty { ty_f, ty_f32, ty_f64, } impl ToStr for float_ty { fn to_str(&self) -> ~str { ::ast_util::float_ty_to_str(*self) } } // NB Eq method appears below. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Ty { id: NodeId, node: ty_, span: Span, } // Not represented directly in the AST, referred to by name through a ty_path. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum prim_ty { ty_int(int_ty), ty_uint(uint_ty), ty_float(float_ty), ty_str, ty_bool, ty_char } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Onceness { Once, Many } #[deriving(IterBytes)] impl ToStr for Onceness { fn to_str(&self) -> ~str { match *self { Once => ~"once", Many => ~"many" } } } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct TyClosure { sigil: Sigil, region: Option, lifetimes: OptVec, purity: purity, onceness: Onceness, decl: fn_decl, // Optional optvec distinguishes between "fn()" and "fn:()" so we can // implement issue #7264. None means "fn()", which means infer a default // bound based on pointer sigil during typeck. Some(Empty) means "fn:()", // which means use no bounds (e.g., not even Owned on a ~fn()). bounds: Option>, } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct TyBareFn { purity: purity, abis: AbiSet, lifetimes: OptVec, decl: fn_decl } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum ty_ { ty_nil, ty_bot, /* bottom type */ ty_box(mt), ty_uniq(mt), ty_vec(mt), ty_fixed_length_vec(mt, @Expr), ty_ptr(mt), ty_rptr(Option, mt), ty_closure(@TyClosure), ty_bare_fn(@TyBareFn), ty_tup(~[Ty]), ty_path(Path, Option>, NodeId), // for #7264; see above ty_mac(mac), ty_typeof(@Expr), // ty_infer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. ty_infer, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum asm_dialect { asm_att, asm_intel } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct inline_asm { asm: @str, clobbers: @str, inputs: ~[(@str, @Expr)], outputs: ~[(@str, @Expr)], volatile: bool, alignstack: bool, dialect: asm_dialect } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct arg { is_mutbl: bool, ty: Ty, pat: @Pat, id: NodeId, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct fn_decl { inputs: ~[arg], output: Ty, cf: ret_style, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum purity { unsafe_fn, // declared with "unsafe fn" impure_fn, // declared with "fn" extern_fn, // declared with "extern fn" } #[deriving(IterBytes)] impl ToStr for purity { fn to_str(&self) -> ~str { match *self { impure_fn => ~"impure", unsafe_fn => ~"unsafe", extern_fn => ~"extern" } } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum ret_style { noreturn, // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return_val, // everything else } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum explicit_self_ { sty_static, // no self sty_value, // `self` sty_region(Option, Mutability), // `&'lt self` sty_box(Mutability), // `@self` sty_uniq // `~self` } pub type explicit_self = Spanned; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct method { ident: Ident, attrs: ~[Attribute], generics: Generics, explicit_self: explicit_self, purity: purity, decl: fn_decl, body: Block, id: NodeId, span: Span, self_id: NodeId, vis: visibility, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct _mod { view_items: ~[view_item], items: ~[@item], } // Foreign mods can be named or anonymous #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub enum foreign_mod_sort { named, anonymous, } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct foreign_mod { sort: foreign_mod_sort, abis: AbiSet, view_items: ~[view_item], items: ~[@foreign_item], } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct variant_arg { ty: Ty, id: NodeId, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum variant_kind { tuple_variant_kind(~[variant_arg]), struct_variant_kind(@struct_def), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct enum_def { variants: ~[variant], } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct variant_ { name: Ident, attrs: ~[Attribute], kind: variant_kind, id: NodeId, disr_expr: Option<@Expr>, vis: visibility, } pub type variant = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct path_list_ident_ { name: Ident, id: NodeId, } pub type path_list_ident = Spanned; pub type view_path = Spanned; #[deriving(Eq, Encodable, Decodable, IterBytes)] pub enum view_path_ { // quux = foo::bar::baz // // or just // // foo::bar::baz (with 'baz =' implicitly on the left) view_path_simple(Ident, Path, NodeId), // foo::bar::* view_path_glob(Path, NodeId), // foo::bar::{a,b,c} view_path_list(Path, ~[path_list_ident], NodeId) } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct view_item { node: view_item_, attrs: ~[Attribute], vis: visibility, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum view_item_ { // ident: name used to refer to this crate in the code // optional @str: if present, this is a location (containing // arbitrary characters) from which to fetch the crate sources // For example, extern mod whatever = "github.com/mozilla/rust" view_item_extern_mod(Ident, Option<@str>, ~[@MetaItem], NodeId), view_item_use(~[@view_path]), } // Meta-data associated with an item pub type Attribute = Spanned; // Distinguishes between Attributes that decorate items and Attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub enum AttrStyle { AttrOuter, AttrInner, } // doc-comments are promoted to attributes that have is_sugared_doc = true #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct Attribute_ { style: AttrStyle, value: @MetaItem, is_sugared_doc: bool, } /* trait_refs appear in impls. resolve maps each trait_ref's ref_id to its defining trait; that's all that the ref_id is for. The impl_id maps to the "self type" of this impl. If this impl is an item_impl, the impl_id is redundant (it could be the same as the impl's node id). */ #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct trait_ref { path: Path, ref_id: NodeId, } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub enum visibility { public, private, inherited, } impl visibility { pub fn inherit_from(&self, parent_visibility: visibility) -> visibility { match self { &inherited => parent_visibility, &public | &private => *self } } } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct struct_field_ { kind: struct_field_kind, id: NodeId, ty: Ty, attrs: ~[Attribute], } pub type struct_field = Spanned; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum struct_field_kind { named_field(Ident, visibility), unnamed_field // element of a tuple-like struct } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct struct_def { fields: ~[@struct_field], /* fields, not including ctor */ /* ID of the constructor. This is only used for tuple- or enum-like * structs. */ ctor_id: Option } /* FIXME (#3300): Should allow items to be anonymous. Right now we just use dummy names for anon items. */ #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct item { ident: Ident, attrs: ~[Attribute], id: NodeId, node: item_, vis: visibility, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum item_ { item_static(Ty, Mutability, @Expr), item_fn(fn_decl, purity, AbiSet, Generics, Block), item_mod(_mod), item_foreign_mod(foreign_mod), item_ty(Ty, Generics), item_enum(enum_def, Generics), item_struct(@struct_def, Generics), item_trait(Generics, ~[trait_ref], ~[trait_method]), item_impl(Generics, Option, // (optional) trait this impl implements Ty, // self ~[@method]), // a macro invocation (which includes macro definition) item_mac(mac), } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct foreign_item { ident: Ident, attrs: ~[Attribute], node: foreign_item_, id: NodeId, span: Span, vis: visibility, } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum foreign_item_ { foreign_item_fn(fn_decl, Generics), foreign_item_static(Ty, /* is_mutbl */ bool), } // The data we save and restore about an inlined item or method. This is not // part of the AST that we parse from a file, but it becomes part of the tree // that we trans. #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum inlined_item { ii_item(@item), ii_method(DefId /* impl id */, bool /* is provided */, @method), ii_foreign(@foreign_item), } /* hold off on tests ... they appear in a later merge. #[cfg(test)] mod test { use std::option::{None, Option, Some}; use std::uint; use extra; use codemap::*; use super::*; #[test] fn xorpush_test () { let mut s = ~[]; xorPush(&mut s,14); assert_eq!(s,~[14]); xorPush(&mut s,14); assert_eq!(s,~[]); xorPush(&mut s,14); assert_eq!(s,~[14]); xorPush(&mut s,15); assert_eq!(s,~[14,15]); xorPush (&mut s,16); assert_eq! (s,~[14,15,16]); xorPush (&mut s,16); assert_eq! (s,~[14,15]); xorPush (&mut s,15); assert_eq! (s,~[14]); } #[test] fn test_marksof () { let stopname = uints_to_name(&~[12,14,78]); assert_eq!(s,~[]); xorPush(&mut s,14); assert_eq!(s,~[14]); xorPush(&mut s,15); assert_eq!(s,~[14,15]); xorPush (&mut s,16); assert_eq! (s,~[14,15,16]); xorPush (&mut s,16); assert_eq! (s,~[14,15]); xorPush (&mut s,15); assert_eq! (s,~[14]); } #[test] fn test_marksof () { let stopname = uints_to_name(&~[12,14,78]); let name1 = uints_to_name(&~[4,9,7]); assert_eq!(marksof (MT,stopname),~[]); assert_eq! (marksof (Mark (4,@Mark(98,@MT)),stopname),~[4,98]); // does xoring work? assert_eq! (marksof (Mark (5, @Mark (5, @Mark (16,@MT))),stopname), ~[16]); // does nested xoring work? assert_eq! (marksof (Mark (5, @Mark (10, @Mark (10, @Mark (5, @Mark (16,@MT))))), stopname), ~[16]); // stop has no effect on marks assert_eq! (marksof (Mark (9, @Mark (14, @Mark (12, @MT))),stopname), ~[9,14,12]); // rename where stop doesn't match: assert_eq! (marksof (Mark (9, @Rename (name1, @Mark (4, @MT), uints_to_name(&~[100,101,102]), @Mark (14, @MT))), stopname), ~[9,14]); // rename where stop does match ; assert_eq! (marksof (Mark(9, @Rename (name1, @Mark (4, @MT), stopname, @Mark (14, @MT))), stopname), ~[9]); } // are ASTs encodable? #[test] fn check_asts_encodable() { let bogus_span = span {lo:BytePos(10), hi:BytePos(20), expn_info:None}; let e : crate = spanned{ node: crate_{ module: _mod {view_items: ~[], items: ~[]}, attrs: ~[], config: ~[] }, span: bogus_span}; // doesn't matter which encoder we use.... let _f = (@e as @extra::serialize::Encodable); } } */ // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //