// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use driver::session::Session; use metadata::csearch; use metadata::decoder::{DefLike, DlDef, DlField, DlImpl}; use middle::lang_items::LanguageItems; use middle::lint::{unnecessary_qualification, unused_imports}; use middle::pat_util::pat_bindings; use syntax::ast::*; use syntax::ast; use syntax::ast_util::{def_id_of_def, local_def, mtwt_resolve}; use syntax::ast_util::{path_to_ident, walk_pat, trait_method_to_ty_method}; use syntax::parse::token; use syntax::parse::token::{ident_interner, interner_get}; use syntax::parse::token::special_idents; use syntax::print::pprust::path_to_str; use syntax::codemap::{Span, dummy_sp, Pos}; use syntax::opt_vec::OptVec; use syntax::visit; use syntax::visit::Visitor; use std::cell::Cell; use std::uint; use std::hashmap::{HashMap, HashSet}; use std::util; // Definition mapping pub type DefMap = @mut HashMap; struct binding_info { span: Span, binding_mode: BindingMode, } // Map from the name in a pattern to its binding mode. type BindingMap = HashMap; // Trait method resolution pub type TraitMap = HashMap; // This is the replacement export map. It maps a module to all of the exports // within. pub type ExportMap2 = @mut HashMap; pub struct Export2 { name: @str, // The name of the target. def_id: DefId, // The definition of the target. reexport: bool, // Whether this is a reexport. } // This set contains all exported definitions from external crates. The set does // not contain any entries from local crates. pub type ExternalExports = HashSet; // XXX: dox pub type LastPrivateMap = HashMap; pub enum LastPrivate { AllPublic, DependsOn(DefId), } impl LastPrivate { fn or(self, other: LastPrivate) -> LastPrivate { match (self, other) { (me, AllPublic) => me, (_, other) => other, } } } #[deriving(Eq)] enum PatternBindingMode { RefutableMode, LocalIrrefutableMode, ArgumentIrrefutableMode, } #[deriving(Eq)] enum Namespace { TypeNS, ValueNS } #[deriving(Eq)] enum NamespaceError { NoError, ModuleError, TypeError, ValueError } /// A NamespaceResult represents the result of resolving an import in /// a particular namespace. The result is either definitely-resolved, /// definitely- unresolved, or unknown. enum NamespaceResult { /// Means that resolve hasn't gathered enough information yet to determine /// whether the name is bound in this namespace. (That is, it hasn't /// resolved all `use` directives yet.) UnknownResult, /// Means that resolve has determined that the name is definitely /// not bound in the namespace. UnboundResult, /// Means that resolve has determined that the name is bound in the Module /// argument, and specified by the NameBindings argument. BoundResult(@mut Module, @mut NameBindings) } impl NamespaceResult { fn is_unknown(&self) -> bool { match *self { UnknownResult => true, _ => false } } } enum NameDefinition { NoNameDefinition, //< The name was unbound. ChildNameDefinition(Def, LastPrivate), //< The name identifies an immediate child. ImportNameDefinition(Def, LastPrivate) //< The name identifies an import. } enum SelfBinding { NoSelfBinding, HasSelfBinding(NodeId, explicit_self) } impl Visitor<()> for Resolver { fn visit_item(&mut self, item:@item, _:()) { self.resolve_item(item); } fn visit_arm(&mut self, arm:&Arm, _:()) { self.resolve_arm(arm); } fn visit_block(&mut self, block:P, _:()) { self.resolve_block(block); } fn visit_expr(&mut self, expr:@Expr, _:()) { self.resolve_expr(expr); } fn visit_local(&mut self, local:@Local, _:()) { self.resolve_local(local); } fn visit_ty(&mut self, ty:&Ty, _:()) { self.resolve_type(ty); } } /// Contains data for specific types of import directives. enum ImportDirectiveSubclass { SingleImport(Ident /* target */, Ident /* source */), GlobImport } /// The context that we thread through while building the reduced graph. #[deriving(Clone)] enum ReducedGraphParent { ModuleReducedGraphParent(@mut Module) } enum ResolveResult { Failed, // Failed to resolve the name. Indeterminate, // Couldn't determine due to unresolved globs. Success(T) // Successfully resolved the import. } impl ResolveResult { fn indeterminate(&self) -> bool { match *self { Indeterminate => true, _ => false } } } enum TypeParameters<'a> { NoTypeParameters, //< No type parameters. HasTypeParameters(&'a Generics, //< Type parameters. NodeId, //< ID of the enclosing item // The index to start numbering the type parameters at. // This is zero if this is the outermost set of type // parameters, or equal to the number of outer type // parameters. For example, if we have: // // impl I { // fn method() { ... } // } // // The index at the method site will be 1, because the // outer T had index 0. uint, // The kind of the rib used for type parameters. RibKind) } // The rib kind controls the translation of argument or local definitions // (`def_arg` or `def_local`) to upvars (`def_upvar`). enum RibKind { // No translation needs to be applied. NormalRibKind, // We passed through a function scope at the given node ID. Translate // upvars as appropriate. FunctionRibKind(NodeId /* func id */, NodeId /* body id */), // We passed through an impl or trait and are now in one of its // methods. Allow references to ty params that impl or trait // binds. Disallow any other upvars (including other ty params that are // upvars). // parent; method itself MethodRibKind(NodeId, MethodSort), // We passed through a function *item* scope. Disallow upvars. OpaqueFunctionRibKind, // We're in a constant item. Can't refer to dynamic stuff. ConstantItemRibKind } // Methods can be required or provided. Required methods only occur in traits. enum MethodSort { Required, Provided(NodeId) } enum UseLexicalScopeFlag { DontUseLexicalScope, UseLexicalScope } enum SearchThroughModulesFlag { DontSearchThroughModules, SearchThroughModules } enum ModulePrefixResult { NoPrefixFound, PrefixFound(@mut Module, uint) } #[deriving(Eq)] enum AllowCapturingSelfFlag { AllowCapturingSelf, //< The "self" definition can be captured. DontAllowCapturingSelf, //< The "self" definition cannot be captured. } #[deriving(Eq)] enum NameSearchType { /// We're doing a name search in order to resolve a `use` directive. ImportSearch, /// We're doing a name search in order to resolve a path type, a path /// expression, or a path pattern. PathSearch, } enum BareIdentifierPatternResolution { FoundStructOrEnumVariant(Def, LastPrivate), FoundConst(Def, LastPrivate), BareIdentifierPatternUnresolved } // Specifies how duplicates should be handled when adding a child item if // another item exists with the same name in some namespace. #[deriving(Eq)] enum DuplicateCheckingMode { ForbidDuplicateModules, ForbidDuplicateTypes, ForbidDuplicateValues, ForbidDuplicateTypesAndValues, OverwriteDuplicates } /// One local scope. struct Rib { bindings: @mut HashMap, self_binding: @mut Option, kind: RibKind, } impl Rib { fn new(kind: RibKind) -> Rib { Rib { bindings: @mut HashMap::new(), self_binding: @mut None, kind: kind } } } /// One import directive. struct ImportDirective { module_path: ~[Ident], subclass: @ImportDirectiveSubclass, span: Span, id: NodeId, is_public: bool, // see note in ImportResolution about how to use this } impl ImportDirective { fn new(module_path: ~[Ident], subclass: @ImportDirectiveSubclass, span: Span, id: NodeId, is_public: bool) -> ImportDirective { ImportDirective { module_path: module_path, subclass: subclass, span: span, id: id, is_public: is_public, } } } /// The item that an import resolves to. struct Target { target_module: @mut Module, bindings: @mut NameBindings, } impl Target { fn new(target_module: @mut Module, bindings: @mut NameBindings) -> Target { Target { target_module: target_module, bindings: bindings } } } /// An ImportResolution represents a particular `use` directive. struct ImportResolution { /// Whether this resolution came from a `use` or a `pub use`. Note that this /// should *not* be used whenever resolution is being performed, this is /// only looked at for glob imports statements currently. Privacy testing /// occurs during a later phase of compilation. is_public: bool, // The number of outstanding references to this name. When this reaches // zero, outside modules can count on the targets being correct. Before // then, all bets are off; future imports could override this name. outstanding_references: uint, /// The value that this `use` directive names, if there is one. value_target: Option, /// The source node of the `use` directive leading to the value target /// being non-none value_id: NodeId, /// The type that this `use` directive names, if there is one. type_target: Option, /// The source node of the `use` directive leading to the type target /// being non-none type_id: NodeId, } impl ImportResolution { fn new(id: NodeId, is_public: bool) -> ImportResolution { ImportResolution { type_id: id, value_id: id, outstanding_references: 0, value_target: None, type_target: None, is_public: is_public, } } fn target_for_namespace(&self, namespace: Namespace) -> Option { match namespace { TypeNS => return self.type_target, ValueNS => return self.value_target, } } fn id(&self, namespace: Namespace) -> NodeId { match namespace { TypeNS => self.type_id, ValueNS => self.value_id, } } } /// The link from a module up to its nearest parent node. enum ParentLink { NoParentLink, ModuleParentLink(@mut Module, Ident), BlockParentLink(@mut Module, NodeId) } /// The type of module this is. #[deriving(Eq)] enum ModuleKind { NormalModuleKind, ExternModuleKind, TraitModuleKind, ImplModuleKind, AnonymousModuleKind, } /// One node in the tree of modules. struct Module { parent_link: ParentLink, def_id: Cell>, kind: Cell, is_public: bool, children: @mut HashMap, imports: @mut ~[@ImportDirective], // The external module children of this node that were declared with // `extern mod`. external_module_children: @mut HashMap, // The anonymous children of this node. Anonymous children are pseudo- // modules that are implicitly created around items contained within // blocks. // // For example, if we have this: // // fn f() { // fn g() { // ... // } // } // // There will be an anonymous module created around `g` with the ID of the // entry block for `f`. anonymous_children: @mut HashMap, // The status of resolving each import in this module. import_resolutions: @mut HashMap, // The number of unresolved globs that this module exports. glob_count: Cell, // The index of the import we're resolving. resolved_import_count: Cell, // Whether this module is populated. If not populated, any attempt to // access the children must be preceded with a // `populate_module_if_necessary` call. populated: Cell, } impl Module { fn new(parent_link: ParentLink, def_id: Option, kind: ModuleKind, external: bool, is_public: bool) -> Module { Module { parent_link: parent_link, def_id: Cell::new(def_id), kind: Cell::new(kind), is_public: is_public, children: @mut HashMap::new(), imports: @mut ~[], external_module_children: @mut HashMap::new(), anonymous_children: @mut HashMap::new(), import_resolutions: @mut HashMap::new(), glob_count: Cell::new(0), resolved_import_count: Cell::new(0), populated: Cell::new(!external), } } fn all_imports_resolved(&self) -> bool { let imports = &mut *self.imports; return imports.len() == self.resolved_import_count.get(); } } // Records a possibly-private type definition. struct TypeNsDef { is_public: bool, // see note in ImportResolution about how to use this module_def: Option<@mut Module>, type_def: Option, type_span: Option } // Records a possibly-private value definition. struct ValueNsDef { is_public: bool, // see note in ImportResolution about how to use this def: Def, value_span: Option, } // Records the definitions (at most one for each namespace) that a name is // bound to. struct NameBindings { type_def: Option, //< Meaning in type namespace. value_def: Option, //< Meaning in value namespace. } /// Ways in which a trait can be referenced enum TraitReferenceType { TraitImplementation, // impl SomeTrait for T { ... } TraitDerivation, // trait T : SomeTrait { ... } TraitBoundingTypeParameter, // fn f() { ... } } impl NameBindings { /// Creates a new module in this set of name bindings. fn define_module(&mut self, parent_link: ParentLink, def_id: Option, kind: ModuleKind, external: bool, is_public: bool, sp: Span) { // Merges the module with the existing type def or creates a new one. let module_ = @mut Module::new(parent_link, def_id, kind, external, is_public); match self.type_def { None => { self.type_def = Some(TypeNsDef { is_public: is_public, module_def: Some(module_), type_def: None, type_span: Some(sp) }); } Some(type_def) => { self.type_def = Some(TypeNsDef { is_public: is_public, module_def: Some(module_), type_span: Some(sp), type_def: type_def.type_def }); } } } /// Sets the kind of the module, creating a new one if necessary. fn set_module_kind(&mut self, parent_link: ParentLink, def_id: Option, kind: ModuleKind, external: bool, is_public: bool, _sp: Span) { match self.type_def { None => { let module = @mut Module::new(parent_link, def_id, kind, external, is_public); self.type_def = Some(TypeNsDef { is_public: is_public, module_def: Some(module), type_def: None, type_span: None, }) } Some(type_def) => { match type_def.module_def { None => { let module = @mut Module::new(parent_link, def_id, kind, external, is_public); self.type_def = Some(TypeNsDef { is_public: is_public, module_def: Some(module), type_def: type_def.type_def, type_span: None, }) } Some(module_def) => module_def.kind.set(kind), } } } } /// Records a type definition. fn define_type(&mut self, def: Def, sp: Span, is_public: bool) { // Merges the type with the existing type def or creates a new one. match self.type_def { None => { self.type_def = Some(TypeNsDef { module_def: None, type_def: Some(def), type_span: Some(sp), is_public: is_public, }); } Some(type_def) => { self.type_def = Some(TypeNsDef { type_def: Some(def), type_span: Some(sp), module_def: type_def.module_def, is_public: is_public, }); } } } /// Records a value definition. fn define_value(&mut self, def: Def, sp: Span, is_public: bool) { self.value_def = Some(ValueNsDef { def: def, value_span: Some(sp), is_public: is_public }); } /// Returns the module node if applicable. fn get_module_if_available(&self) -> Option<@mut Module> { match self.type_def { Some(ref type_def) => (*type_def).module_def, None => None } } /** * Returns the module node. Fails if this node does not have a module * definition. */ fn get_module(&mut self) -> @mut Module { match self.get_module_if_available() { None => { fail!("get_module called on a node with no module \ definition!") } Some(module_def) => module_def } } fn defined_in_namespace(&self, namespace: Namespace) -> bool { match namespace { TypeNS => return self.type_def.is_some(), ValueNS => return self.value_def.is_some() } } fn defined_in_public_namespace(&self, namespace: Namespace) -> bool { match namespace { TypeNS => match self.type_def { Some(def) => def.is_public, None => false }, ValueNS => match self.value_def { Some(def) => def.is_public, None => false } } } fn def_for_namespace(&self, namespace: Namespace) -> Option { match namespace { TypeNS => { match self.type_def { None => None, Some(ref type_def) => { match (*type_def).type_def { Some(type_def) => Some(type_def), None => { match type_def.module_def { Some(module) => { match module.def_id.get() { Some(did) => Some(DefMod(did)), None => None, } } None => None, } } } } } } ValueNS => { match self.value_def { None => None, Some(value_def) => Some(value_def.def) } } } } fn span_for_namespace(&self, namespace: Namespace) -> Option { if self.defined_in_namespace(namespace) { match namespace { TypeNS => { match self.type_def { None => None, Some(type_def) => type_def.type_span } } ValueNS => { match self.value_def { None => None, Some(value_def) => value_def.value_span } } } } else { None } } } fn NameBindings() -> NameBindings { NameBindings { type_def: None, value_def: None } } /// Interns the names of the primitive types. struct PrimitiveTypeTable { primitive_types: HashMap, } impl PrimitiveTypeTable { fn intern(&mut self, string: &str, primitive_type: prim_ty) { self.primitive_types.insert(token::intern(string), primitive_type); } } fn PrimitiveTypeTable() -> PrimitiveTypeTable { let mut table = PrimitiveTypeTable { primitive_types: HashMap::new() }; table.intern("bool", ty_bool); table.intern("char", ty_char); table.intern("f32", ty_float(ty_f32)); table.intern("f64", ty_float(ty_f64)); table.intern("int", ty_int(ty_i)); table.intern("i8", ty_int(ty_i8)); table.intern("i16", ty_int(ty_i16)); table.intern("i32", ty_int(ty_i32)); table.intern("i64", ty_int(ty_i64)); table.intern("str", ty_str); table.intern("uint", ty_uint(ty_u)); table.intern("u8", ty_uint(ty_u8)); table.intern("u16", ty_uint(ty_u16)); table.intern("u32", ty_uint(ty_u32)); table.intern("u64", ty_uint(ty_u64)); return table; } fn namespace_error_to_str(ns: NamespaceError) -> &'static str { match ns { NoError => "", ModuleError => "module", TypeError => "type", ValueError => "value", } } fn Resolver(session: Session, lang_items: LanguageItems, crate_span: Span) -> Resolver { let graph_root = @mut NameBindings(); graph_root.define_module(NoParentLink, Some(DefId { crate: 0, node: 0 }), NormalModuleKind, false, true, crate_span); let current_module = graph_root.get_module(); let this = Resolver { session: @session, lang_items: lang_items, // The outermost module has def ID 0; this is not reflected in the // AST. graph_root: graph_root, method_map: @mut HashMap::new(), structs: HashSet::new(), unresolved_imports: 0, current_module: current_module, value_ribs: @mut ~[], type_ribs: @mut ~[], label_ribs: @mut ~[], current_trait_refs: None, self_ident: special_idents::self_, type_self_ident: special_idents::type_self, primitive_type_table: @PrimitiveTypeTable(), namespaces: ~[ TypeNS, ValueNS ], def_map: @mut HashMap::new(), export_map2: @mut HashMap::new(), trait_map: HashMap::new(), used_imports: HashSet::new(), external_exports: HashSet::new(), last_private: HashMap::new(), emit_errors: true, intr: session.intr() }; this } /// The main resolver class. struct Resolver { session: @Session, lang_items: LanguageItems, intr: @ident_interner, graph_root: @mut NameBindings, method_map: @mut HashMap>, structs: HashSet, // The number of imports that are currently unresolved. unresolved_imports: uint, // The module that represents the current item scope. current_module: @mut Module, // The current set of local scopes, for values. // FIXME #4948: Reuse ribs to avoid allocation. value_ribs: @mut ~[@Rib], // The current set of local scopes, for types. type_ribs: @mut ~[@Rib], // The current set of local scopes, for labels. label_ribs: @mut ~[@Rib], // The trait that the current context can refer to. current_trait_refs: Option<~[DefId]>, // The ident for the keyword "self". self_ident: Ident, // The ident for the non-keyword "Self". type_self_ident: Ident, // The idents for the primitive types. primitive_type_table: @PrimitiveTypeTable, // The four namespaces. namespaces: ~[Namespace], def_map: DefMap, export_map2: ExportMap2, trait_map: TraitMap, external_exports: ExternalExports, last_private: LastPrivateMap, // Whether or not to print error messages. Can be set to true // when getting additional info for error message suggestions, // so as to avoid printing duplicate errors emit_errors: bool, used_imports: HashSet, } struct BuildReducedGraphVisitor<'a> { resolver: &'a mut Resolver, } impl<'a> Visitor for BuildReducedGraphVisitor<'a> { fn visit_item(&mut self, item:@item, context:ReducedGraphParent) { let p = self.resolver.build_reduced_graph_for_item(item, context); visit::walk_item(self, item, p); } fn visit_foreign_item(&mut self, foreign_item: @foreign_item, context:ReducedGraphParent) { self.resolver.build_reduced_graph_for_foreign_item(foreign_item, context, |r, c| { let mut v = BuildReducedGraphVisitor{ resolver: r }; visit::walk_foreign_item(&mut v, foreign_item, c); }) } fn visit_view_item(&mut self, view_item:&view_item, context:ReducedGraphParent) { self.resolver.build_reduced_graph_for_view_item(view_item, context); } fn visit_block(&mut self, block:P, context:ReducedGraphParent) { let np = self.resolver.build_reduced_graph_for_block(block, context); visit::walk_block(self, block, np); } } struct UnusedImportCheckVisitor<'a> { resolver: &'a Resolver } impl<'a> Visitor<()> for UnusedImportCheckVisitor<'a> { fn visit_view_item(&mut self, vi:&view_item, _:()) { self.resolver.check_for_item_unused_imports(vi); visit::walk_view_item(self, vi, ()); } } impl Resolver { /// The main name resolution procedure. fn resolve(&mut self, crate: &ast::Crate) { self.build_reduced_graph(crate); self.session.abort_if_errors(); self.resolve_imports(); self.session.abort_if_errors(); self.record_exports(); self.session.abort_if_errors(); self.resolve_crate(crate); self.session.abort_if_errors(); self.check_for_unused_imports(crate); } // // Reduced graph building // // Here we build the "reduced graph": the graph of the module tree without // any imports resolved. // /// Constructs the reduced graph for the entire crate. fn build_reduced_graph(&mut self, crate: &ast::Crate) { let initial_parent = ModuleReducedGraphParent(self.graph_root.get_module()); let mut visitor = BuildReducedGraphVisitor { resolver: self, }; visit::walk_crate(&mut visitor, crate, initial_parent); } /// Returns the current module tracked by the reduced graph parent. fn get_module_from_parent(&mut self, reduced_graph_parent: ReducedGraphParent) -> @mut Module { match reduced_graph_parent { ModuleReducedGraphParent(module_) => { return module_; } } } /** * Adds a new child item to the module definition of the parent node and * returns its corresponding name bindings as well as the current parent. * Or, if we're inside a block, creates (or reuses) an anonymous module * corresponding to the innermost block ID and returns the name bindings * as well as the newly-created parent. * * If this node does not have a module definition and we are not inside * a block, fails. */ fn add_child(&mut self, name: Ident, reduced_graph_parent: ReducedGraphParent, duplicate_checking_mode: DuplicateCheckingMode, // For printing errors sp: Span) -> (@mut NameBindings, ReducedGraphParent) { // If this is the immediate descendant of a module, then we add the // child name directly. Otherwise, we create or reuse an anonymous // module and add the child to that. let module_; match reduced_graph_parent { ModuleReducedGraphParent(parent_module) => { module_ = parent_module; } } // Add or reuse the child. let new_parent = ModuleReducedGraphParent(module_); match module_.children.find(&name.name) { None => { let child = @mut NameBindings(); module_.children.insert(name.name, child); return (child, new_parent); } Some(&child) => { // Enforce the duplicate checking mode: // // * If we're requesting duplicate module checking, check that // there isn't a module in the module with the same name. // // * If we're requesting duplicate type checking, check that // there isn't a type in the module with the same name. // // * If we're requesting duplicate value checking, check that // there isn't a value in the module with the same name. // // * If we're requesting duplicate type checking and duplicate // value checking, check that there isn't a duplicate type // and a duplicate value with the same name. // // * If no duplicate checking was requested at all, do // nothing. let mut duplicate_type = NoError; let ns = match duplicate_checking_mode { ForbidDuplicateModules => { if (child.get_module_if_available().is_some()) { duplicate_type = ModuleError; } Some(TypeNS) } ForbidDuplicateTypes => { match child.def_for_namespace(TypeNS) { Some(DefMod(_)) | None => {} Some(_) => duplicate_type = TypeError } Some(TypeNS) } ForbidDuplicateValues => { if child.defined_in_namespace(ValueNS) { duplicate_type = ValueError; } Some(ValueNS) } ForbidDuplicateTypesAndValues => { let mut n = None; match child.def_for_namespace(TypeNS) { Some(DefMod(_)) | None => {} Some(_) => { n = Some(TypeNS); duplicate_type = TypeError; } }; if child.defined_in_namespace(ValueNS) { duplicate_type = ValueError; n = Some(ValueNS); } n } OverwriteDuplicates => None }; if (duplicate_type != NoError) { // Return an error here by looking up the namespace that // had the duplicate. let ns = ns.unwrap(); self.resolve_error(sp, format!("duplicate definition of {} `{}`", namespace_error_to_str(duplicate_type), self.session.str_of(name))); { let r = child.span_for_namespace(ns); for sp in r.iter() { self.session.span_note(*sp, format!("first definition of {} `{}` here", namespace_error_to_str(duplicate_type), self.session.str_of(name))); } } } return (child, new_parent); } } } fn block_needs_anonymous_module(&mut self, block: &Block) -> bool { // If the block has view items, we need an anonymous module. if block.view_items.len() > 0 { return true; } // Check each statement. for statement in block.stmts.iter() { match statement.node { StmtDecl(declaration, _) => { match declaration.node { DeclItem(_) => { return true; } _ => { // Keep searching. } } } _ => { // Keep searching. } } } // If we found neither view items nor items, we don't need to create // an anonymous module. return false; } fn get_parent_link(&mut self, parent: ReducedGraphParent, name: Ident) -> ParentLink { match parent { ModuleReducedGraphParent(module_) => { return ModuleParentLink(module_, name); } } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(&mut self, item: @item, parent: ReducedGraphParent) -> ReducedGraphParent { let ident = item.ident; let sp = item.span; let is_public = item.vis == ast::public; match item.node { item_mod(..) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(new_parent, ident); let def_id = DefId { crate: 0, node: item.id }; name_bindings.define_module(parent_link, Some(def_id), NormalModuleKind, false, item.vis == ast::public, sp); ModuleReducedGraphParent(name_bindings.get_module()) } item_foreign_mod(..) => parent, // These items live in the value namespace. item_static(_, m, _) => { let (name_bindings, _) = self.add_child(ident, parent, ForbidDuplicateValues, sp); let mutbl = m == ast::MutMutable; name_bindings.define_value (DefStatic(local_def(item.id), mutbl), sp, is_public); parent } item_fn(_, purity, _, _, _) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateValues, sp); let def = DefFn(local_def(item.id), purity); name_bindings.define_value(def, sp, is_public); new_parent } // These items live in the type namespace. item_ty(..) => { let (name_bindings, _) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); name_bindings.define_type (DefTy(local_def(item.id)), sp, is_public); parent } item_enum(ref enum_definition, _) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); name_bindings.define_type (DefTy(local_def(item.id)), sp, is_public); for &variant in (*enum_definition).variants.iter() { self.build_reduced_graph_for_variant( variant, local_def(item.id), new_parent, is_public); } parent } // These items live in both the type and value namespaces. item_struct(struct_def, _) => { // Adding to both Type and Value namespaces or just Type? let (forbid, ctor_id) = match struct_def.ctor_id { Some(ctor_id) => (ForbidDuplicateTypesAndValues, Some(ctor_id)), None => (ForbidDuplicateTypes, None) }; let (name_bindings, new_parent) = self.add_child(ident, parent, forbid, sp); // Define a name in the type namespace. name_bindings.define_type(DefTy(local_def(item.id)), sp, is_public); // If this is a newtype or unit-like struct, define a name // in the value namespace as well ctor_id.while_some(|cid| { name_bindings.define_value(DefStruct(local_def(cid)), sp, is_public); None }); // Record the def ID of this struct. self.structs.insert(local_def(item.id)); new_parent } item_impl(_, None, ty, ref methods) => { // If this implements an anonymous trait, then add all the // methods within to a new module, if the type was defined // within this module. // // FIXME (#3785): This is quite unsatisfactory. Perhaps we // should modify anonymous traits to only be implementable in // the same module that declared the type. // Create the module and add all methods. match ty.node { ty_path(ref path, _, _) if path.segments.len() == 1 => { let name = path_to_ident(path); let new_parent = match parent.children.find(&name.name) { // It already exists Some(&child) if child.get_module_if_available() .is_some() && child.get_module().kind.get() == ImplModuleKind => { ModuleReducedGraphParent(child.get_module()) } // Create the module _ => { let (name_bindings, new_parent) = self.add_child(name, parent, ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(new_parent, ident); let def_id = local_def(item.id); let ns = TypeNS; let is_public = !name_bindings.defined_in_namespace(ns) || name_bindings.defined_in_public_namespace(ns); name_bindings.define_module(parent_link, Some(def_id), ImplModuleKind, false, is_public, sp); ModuleReducedGraphParent( name_bindings.get_module()) } }; // For each method... for method in methods.iter() { // Add the method to the module. let ident = method.ident; let (method_name_bindings, _) = self.add_child(ident, new_parent, ForbidDuplicateValues, method.span); let def = match method.explicit_self.node { sty_static => { // Static methods become // `def_static_method`s. DefStaticMethod(local_def(method.id), FromImpl(local_def( item.id)), method.purity) } _ => { // Non-static methods become // `def_method`s. DefMethod(local_def(method.id), None) } }; let is_public = method.vis == ast::public; method_name_bindings.define_value(def, method.span, is_public); } } _ => {} } parent } item_impl(_, Some(_), _, _) => parent, item_trait(_, _, ref methods) => { let (name_bindings, new_parent) = self.add_child(ident, parent, ForbidDuplicateTypes, sp); // Add all the methods within to a new module. let parent_link = self.get_parent_link(parent, ident); name_bindings.define_module(parent_link, Some(local_def(item.id)), TraitModuleKind, false, item.vis == ast::public, sp); let module_parent = ModuleReducedGraphParent(name_bindings. get_module()); // Add the names of all the methods to the trait info. let mut method_names = HashMap::new(); for method in methods.iter() { let ty_m = trait_method_to_ty_method(method); let ident = ty_m.ident; // Add it as a name in the trait module. let def = match ty_m.explicit_self.node { sty_static => { // Static methods become `def_static_method`s. DefStaticMethod(local_def(ty_m.id), FromTrait(local_def(item.id)), ty_m.purity) } _ => { // Non-static methods become `def_method`s. DefMethod(local_def(ty_m.id), Some(local_def(item.id))) } }; let (method_name_bindings, _) = self.add_child(ident, module_parent, ForbidDuplicateValues, ty_m.span); method_name_bindings.define_value(def, ty_m.span, true); // Add it to the trait info if not static. match ty_m.explicit_self.node { sty_static => {} _ => { method_names.insert(ident.name, ()); } } } let def_id = local_def(item.id); for (name, _) in method_names.iter() { if !self.method_map.contains_key(name) { self.method_map.insert(*name, HashSet::new()); } match self.method_map.find_mut(name) { Some(s) => { s.insert(def_id); }, _ => fail!("Can't happen"), } } name_bindings.define_type(DefTrait(def_id), sp, is_public); new_parent } item_mac(..) => { fail!("item macros unimplemented") } } } // Constructs the reduced graph for one variant. Variants exist in the // type and/or value namespaces. fn build_reduced_graph_for_variant(&mut self, variant: &variant, item_id: DefId, parent: ReducedGraphParent, parent_public: bool) { let ident = variant.node.name; // XXX: this is unfortunate to have to do this privacy calculation // here. This should be living in middle::privacy, but it's // necessary to keep around in some form becaues of glob imports... let is_public = parent_public && variant.node.vis != ast::private; match variant.node.kind { tuple_variant_kind(_) => { let (child, _) = self.add_child(ident, parent, ForbidDuplicateValues, variant.span); child.define_value(DefVariant(item_id, local_def(variant.node.id), false), variant.span, is_public); } struct_variant_kind(_) => { let (child, _) = self.add_child(ident, parent, ForbidDuplicateTypesAndValues, variant.span); child.define_type(DefVariant(item_id, local_def(variant.node.id), true), variant.span, is_public); self.structs.insert(local_def(variant.node.id)); } } } /// Constructs the reduced graph for one 'view item'. View items consist /// of imports and use directives. fn build_reduced_graph_for_view_item(&mut self, view_item: &view_item, parent: ReducedGraphParent) { match view_item.node { view_item_use(ref view_paths) => { for view_path in view_paths.iter() { // Extract and intern the module part of the path. For // globs and lists, the path is found directly in the AST; // for simple paths we have to munge the path a little. let mut module_path = ~[]; match view_path.node { view_path_simple(_, ref full_path, _) => { let path_len = full_path.segments.len(); assert!(path_len != 0); for (i, segment) in full_path.segments .iter() .enumerate() { if i != path_len - 1 { module_path.push(segment.identifier) } } } view_path_glob(ref module_ident_path, _) | view_path_list(ref module_ident_path, _, _) => { for segment in module_ident_path.segments.iter() { module_path.push(segment.identifier) } } } // Build up the import directives. let module_ = self.get_module_from_parent(parent); let is_public = view_item.vis == ast::public; match view_path.node { view_path_simple(binding, ref full_path, id) => { let source_ident = full_path.segments.last().identifier; let subclass = @SingleImport(binding, source_ident); self.build_import_directive(module_, module_path, subclass, view_path.span, id, is_public); } view_path_list(_, ref source_idents, _) => { for source_ident in source_idents.iter() { let name = source_ident.node.name; let subclass = @SingleImport(name, name); self.build_import_directive( module_, module_path.clone(), subclass, source_ident.span, source_ident.node.id, is_public); } } view_path_glob(_, id) => { self.build_import_directive(module_, module_path, @GlobImport, view_path.span, id, is_public); } } } } view_item_extern_mod(name, _, _, node_id) => { // n.b. we don't need to look at the path option here, because cstore already did match self.session.cstore.find_extern_mod_stmt_cnum(node_id) { Some(crate_id) => { let def_id = DefId { crate: crate_id, node: 0 }; self.external_exports.insert(def_id); let parent_link = ModuleParentLink (self.get_module_from_parent(parent), name); let external_module = @mut Module::new(parent_link, Some(def_id), NormalModuleKind, false, true); parent.external_module_children.insert( name.name, external_module); self.build_reduced_graph_for_external_crate( external_module); } None => {} // Ignore. } } } } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(&mut self, foreign_item: @foreign_item, parent: ReducedGraphParent, f: |&mut Resolver, ReducedGraphParent|) { let name = foreign_item.ident; let is_public = foreign_item.vis == ast::public; let (name_bindings, new_parent) = self.add_child(name, parent, ForbidDuplicateValues, foreign_item.span); match foreign_item.node { foreign_item_fn(_, ref generics) => { let def = DefFn(local_def(foreign_item.id), unsafe_fn); name_bindings.define_value(def, foreign_item.span, is_public); self.with_type_parameter_rib( HasTypeParameters(generics, foreign_item.id, 0, NormalRibKind), |this| f(this, new_parent)); } foreign_item_static(_, m) => { let def = DefStatic(local_def(foreign_item.id), m); name_bindings.define_value(def, foreign_item.span, is_public); f(self, new_parent) } } } fn build_reduced_graph_for_block(&mut self, block: &Block, parent: ReducedGraphParent) -> ReducedGraphParent { if self.block_needs_anonymous_module(block) { let block_id = block.id; debug!("(building reduced graph for block) creating a new \ anonymous module for block {}", block_id); let parent_module = self.get_module_from_parent(parent); let new_module = @mut Module::new( BlockParentLink(parent_module, block_id), None, AnonymousModuleKind, false, false); parent_module.anonymous_children.insert(block_id, new_module); ModuleReducedGraphParent(new_module) } else { parent } } fn handle_external_def(&mut self, def: Def, vis: visibility, child_name_bindings: @mut NameBindings, final_ident: &str, ident: Ident, new_parent: ReducedGraphParent) { debug!("(building reduced graph for \ external crate) building external def, priv {:?}", vis); let is_public = vis == ast::public; let is_exported = is_public && match new_parent { ModuleReducedGraphParent(module) => { match module.def_id.get() { None => true, Some(did) => self.external_exports.contains(&did) } } }; if is_exported { self.external_exports.insert(def_id_of_def(def)); } match def { DefMod(def_id) | DefForeignMod(def_id) | DefStruct(def_id) | DefTy(def_id) => { match child_name_bindings.type_def { Some(TypeNsDef { module_def: Some(module_def), .. }) => { debug!("(building reduced graph for external crate) \ already created module"); module_def.def_id.set(Some(def_id)); } Some(_) | None => { debug!("(building reduced graph for \ external crate) building module \ {}", final_ident); let parent_link = self.get_parent_link(new_parent, ident); child_name_bindings.define_module(parent_link, Some(def_id), NormalModuleKind, true, is_public, dummy_sp()); } } } _ => {} } match def { DefMod(_) | DefForeignMod(_) => {} DefVariant(_, variant_id, is_struct) => { debug!("(building reduced graph for external crate) building \ variant {}", final_ident); // We assume the parent is visible, or else we wouldn't have seen // it. Also variants are public-by-default if the parent was also // public. let is_public = vis != ast::private; if is_struct { child_name_bindings.define_type(def, dummy_sp(), is_public); self.structs.insert(variant_id); } else { child_name_bindings.define_value(def, dummy_sp(), is_public); } } DefFn(..) | DefStaticMethod(..) | DefStatic(..) => { debug!("(building reduced graph for external \ crate) building value (fn/static) {}", final_ident); child_name_bindings.define_value(def, dummy_sp(), is_public); } DefTrait(def_id) => { debug!("(building reduced graph for external \ crate) building type {}", final_ident); // If this is a trait, add all the method names // to the trait info. let method_def_ids = csearch::get_trait_method_def_ids(self.session.cstore, def_id); let mut interned_method_names = HashSet::new(); for &method_def_id in method_def_ids.iter() { let (method_name, explicit_self) = csearch::get_method_name_and_explicit_self(self.session.cstore, method_def_id); debug!("(building reduced graph for \ external crate) ... adding \ trait method '{}'", self.session.str_of(method_name)); // Add it to the trait info if not static. if explicit_self != sty_static { interned_method_names.insert(method_name.name); } if is_exported { self.external_exports.insert(method_def_id); } } for name in interned_method_names.iter() { if !self.method_map.contains_key(name) { self.method_map.insert(*name, HashSet::new()); } match self.method_map.find_mut(name) { Some(s) => { s.insert(def_id); }, _ => fail!("Can't happen"), } } child_name_bindings.define_type(def, dummy_sp(), is_public); // Define a module if necessary. let parent_link = self.get_parent_link(new_parent, ident); child_name_bindings.set_module_kind(parent_link, Some(def_id), TraitModuleKind, true, is_public, dummy_sp()) } DefTy(_) => { debug!("(building reduced graph for external \ crate) building type {}", final_ident); child_name_bindings.define_type(def, dummy_sp(), is_public); } DefStruct(def_id) => { debug!("(building reduced graph for external \ crate) building type and value for {}", final_ident); child_name_bindings.define_type(def, dummy_sp(), is_public); if csearch::get_struct_fields(self.session.cstore, def_id).len() == 0 { child_name_bindings.define_value(def, dummy_sp(), is_public); } self.structs.insert(def_id); } DefMethod(..) => { debug!("(building reduced graph for external crate) \ ignoring {:?}", def); // Ignored; handled elsewhere. } DefSelf(..) | DefArg(..) | DefLocal(..) | DefPrimTy(..) | DefTyParam(..) | DefBinding(..) | DefUse(..) | DefUpvar(..) | DefRegion(..) | DefTyParamBinder(..) | DefLabel(..) | DefSelfTy(..) => { fail!("didn't expect `{:?}`", def); } } } /// Builds the reduced graph for a single item in an external crate. fn build_reduced_graph_for_external_crate_def(&mut self, root: @mut Module, def_like: DefLike, ident: Ident, visibility: visibility) { match def_like { DlDef(def) => { // Add the new child item, if necessary. match def { DefForeignMod(def_id) => { // Foreign modules have no names. Recur and populate // eagerly. csearch::each_child_of_item(self.session.cstore, def_id, |def_like, child_ident, vis| { self.build_reduced_graph_for_external_crate_def( root, def_like, child_ident, vis) }); } _ => { let (child_name_bindings, new_parent) = self.add_child(ident, ModuleReducedGraphParent(root), OverwriteDuplicates, dummy_sp()); self.handle_external_def(def, visibility, child_name_bindings, self.session.str_of(ident), ident, new_parent); } } } DlImpl(def) => { // We only process static methods of impls here. match csearch::get_type_name_if_impl(self.session.cstore, def) { None => {} Some(final_ident) => { let static_methods_opt = csearch::get_static_methods_if_impl(self.session.cstore, def); match static_methods_opt { Some(ref static_methods) if static_methods.len() >= 1 => { debug!("(building reduced graph for \ external crate) processing \ static methods for type name {}", self.session.str_of( final_ident)); let (child_name_bindings, new_parent) = self.add_child( final_ident, ModuleReducedGraphParent(root), OverwriteDuplicates, dummy_sp()); // Process the static methods. First, // create the module. let type_module; match child_name_bindings.type_def { Some(TypeNsDef { module_def: Some(module_def), .. }) => { // We already have a module. This // is OK. type_module = module_def; // Mark it as an impl module if // necessary. type_module.kind.set(ImplModuleKind); } Some(_) | None => { let parent_link = self.get_parent_link(new_parent, final_ident); child_name_bindings.define_module( parent_link, Some(def), ImplModuleKind, true, true, dummy_sp()); type_module = child_name_bindings. get_module(); } } // Add each static method to the module. let new_parent = ModuleReducedGraphParent(type_module); for static_method_info in static_methods.iter() { let ident = static_method_info.ident; debug!("(building reduced graph for \ external crate) creating \ static method '{}'", self.session.str_of(ident)); let (method_name_bindings, _) = self.add_child(ident, new_parent, OverwriteDuplicates, dummy_sp()); let def = DefFn( static_method_info.def_id, static_method_info.purity); method_name_bindings.define_value( def, dummy_sp(), visibility == ast::public); } } // Otherwise, do nothing. Some(_) | None => {} } } } } DlField => { debug!("(building reduced graph for external crate) \ ignoring field"); } } } /// Builds the reduced graph rooted at the given external module. fn populate_external_module(&mut self, module: @mut Module) { debug!("(populating external module) attempting to populate {}", self.module_to_str(module)); let def_id = match module.def_id.get() { None => { debug!("(populating external module) ... no def ID!"); return } Some(def_id) => def_id, }; csearch::each_child_of_item(self.session.cstore, def_id, |def_like, child_ident, visibility| { debug!("(populating external module) ... found ident: {}", token::ident_to_str(&child_ident)); self.build_reduced_graph_for_external_crate_def(module, def_like, child_ident, visibility) }); module.populated.set(true) } /// Ensures that the reduced graph rooted at the given external module /// is built, building it if it is not. fn populate_module_if_necessary(&mut self, module: @mut Module) { if !module.populated.get() { self.populate_external_module(module) } assert!(module.populated.get()) } /// Builds the reduced graph rooted at the 'use' directive for an external /// crate. fn build_reduced_graph_for_external_crate(&mut self, root: @mut Module) { csearch::each_top_level_item_of_crate(self.session.cstore, root.def_id .get() .unwrap() .crate, |def_like, ident, visibility| { self.build_reduced_graph_for_external_crate_def(root, def_like, ident, visibility) }); } /// Creates and adds an import directive to the given module. fn build_import_directive(&mut self, module_: @mut Module, module_path: ~[Ident], subclass: @ImportDirectiveSubclass, span: Span, id: NodeId, is_public: bool) { let directive = @ImportDirective::new(module_path, subclass, span, id, is_public); module_.imports.push(directive); // Bump the reference count on the name. Or, if this is a glob, set // the appropriate flag. match *subclass { SingleImport(target, _) => { debug!("(building import directive) building import \ directive: {}::{}", self.idents_to_str(directive.module_path), self.session.str_of(target)); match module_.import_resolutions.find(&target.name) { Some(&resolution) => { debug!("(building import directive) bumping \ reference"); resolution.outstanding_references += 1; // the source of this name is different now resolution.type_id = id; resolution.value_id = id; } None => { debug!("(building import directive) creating new"); let resolution = @mut ImportResolution::new(id, is_public); resolution.outstanding_references = 1; module_.import_resolutions.insert(target.name, resolution); } } } GlobImport => { // Set the glob flag. This tells us that we don't know the // module's exports ahead of time. module_.glob_count.set(module_.glob_count.get() + 1); } } self.unresolved_imports += 1; } // Import resolution // // This is a fixed-point algorithm. We resolve imports until our efforts // are stymied by an unresolved import; then we bail out of the current // module and continue. We terminate successfully once no more imports // remain or unsuccessfully when no forward progress in resolving imports // is made. /// Resolves all imports for the crate. This method performs the fixed- /// point iteration. fn resolve_imports(&mut self) { let mut i = 0; let mut prev_unresolved_imports = 0; loop { debug!("(resolving imports) iteration {}, {} imports left", i, self.unresolved_imports); let module_root = self.graph_root.get_module(); self.resolve_imports_for_module_subtree(module_root); if self.unresolved_imports == 0 { debug!("(resolving imports) success"); break; } if self.unresolved_imports == prev_unresolved_imports { self.report_unresolved_imports(module_root); break; } i += 1; prev_unresolved_imports = self.unresolved_imports; } } /// Attempts to resolve imports for the given module and all of its /// submodules. fn resolve_imports_for_module_subtree(&mut self, module_: @mut Module) { debug!("(resolving imports for module subtree) resolving {}", self.module_to_str(module_)); self.resolve_imports_for_module(module_); self.populate_module_if_necessary(module_); for (_, &child_node) in module_.children.iter() { match child_node.get_module_if_available() { None => { // Nothing to do. } Some(child_module) => { self.resolve_imports_for_module_subtree(child_module); } } } for (_, &child_module) in module_.anonymous_children.iter() { self.resolve_imports_for_module_subtree(child_module); } } /// Attempts to resolve imports for the given module only. fn resolve_imports_for_module(&mut self, module: @mut Module) { if module.all_imports_resolved() { debug!("(resolving imports for module) all imports resolved for \ {}", self.module_to_str(module)); return; } let imports = &mut *module.imports; let import_count = imports.len(); while module.resolved_import_count.get() < import_count { let import_index = module.resolved_import_count.get(); let import_directive = imports[import_index]; match self.resolve_import_for_module(module, import_directive) { Failed => { // We presumably emitted an error. Continue. let msg = format!("failed to resolve import `{}`", self.import_path_to_str( import_directive.module_path, *import_directive.subclass)); self.resolve_error(import_directive.span, msg); } Indeterminate => { // Bail out. We'll come around next time. break; } Success(()) => { // Good. Continue. } } module.resolved_import_count .set(module.resolved_import_count.get() + 1); } } fn idents_to_str(&mut self, idents: &[Ident]) -> ~str { let mut first = true; let mut result = ~""; for ident in idents.iter() { if first { first = false } else { result.push_str("::") } result.push_str(self.session.str_of(*ident)); }; return result; } fn path_idents_to_str(&mut self, path: &Path) -> ~str { let identifiers: ~[ast::Ident] = path.segments .iter() .map(|seg| seg.identifier) .collect(); self.idents_to_str(identifiers) } fn import_directive_subclass_to_str(&mut self, subclass: ImportDirectiveSubclass) -> @str { match subclass { SingleImport(_target, source) => self.session.str_of(source), GlobImport => @"*" } } fn import_path_to_str(&mut self, idents: &[Ident], subclass: ImportDirectiveSubclass) -> @str { if idents.is_empty() { self.import_directive_subclass_to_str(subclass) } else { (format!("{}::{}", self.idents_to_str(idents), self.import_directive_subclass_to_str(subclass))).to_managed() } } /// Attempts to resolve the given import. The return value indicates /// failure if we're certain the name does not exist, indeterminate if we /// don't know whether the name exists at the moment due to other /// currently-unresolved imports, or success if we know the name exists. /// If successful, the resolved bindings are written into the module. fn resolve_import_for_module(&mut self, module_: @mut Module, import_directive: @ImportDirective) -> ResolveResult<()> { let mut resolution_result = Failed; let module_path = &import_directive.module_path; debug!("(resolving import for module) resolving import `{}::...` in \ `{}`", self.idents_to_str(*module_path), self.module_to_str(module_)); // First, resolve the module path for the directive, if necessary. let container = if module_path.len() == 0 { // Use the crate root. Some((self.graph_root.get_module(), AllPublic)) } else { match self.resolve_module_path(module_, *module_path, DontUseLexicalScope, import_directive.span, ImportSearch) { Failed => None, Indeterminate => { resolution_result = Indeterminate; None } Success(container) => Some(container), } }; match container { None => {} Some((containing_module, lp)) => { // We found the module that the target is contained // within. Attempt to resolve the import within it. match *import_directive.subclass { SingleImport(target, source) => { resolution_result = self.resolve_single_import(module_, containing_module, target, source, import_directive, lp); } GlobImport => { resolution_result = self.resolve_glob_import(module_, containing_module, import_directive.id, import_directive.is_public, lp); } } } } // Decrement the count of unresolved imports. match resolution_result { Success(()) => { assert!(self.unresolved_imports >= 1); self.unresolved_imports -= 1; } _ => { // Nothing to do here; just return the error. } } // Decrement the count of unresolved globs if necessary. But only if // the resolution result is indeterminate -- otherwise we'll stop // processing imports here. (See the loop in // resolve_imports_for_module.) if !resolution_result.indeterminate() { match *import_directive.subclass { GlobImport => { assert!(module_.glob_count.get() >= 1); module_.glob_count.set(module_.glob_count.get() - 1); } SingleImport(..) => { // Ignore. } } } return resolution_result; } fn create_name_bindings_from_module(module: @mut Module) -> NameBindings { NameBindings { type_def: Some(TypeNsDef { is_public: false, module_def: Some(module), type_def: None, type_span: None }), value_def: None, } } fn resolve_single_import(&mut self, module_: @mut Module, containing_module: @mut Module, target: Ident, source: Ident, directive: &ImportDirective, lp: LastPrivate) -> ResolveResult<()> { debug!("(resolving single import) resolving `{}` = `{}::{}` from \ `{}` id {}, last private {:?}", self.session.str_of(target), self.module_to_str(containing_module), self.session.str_of(source), self.module_to_str(module_), directive.id, lp); // We need to resolve both namespaces for this to succeed. // let mut value_result = UnknownResult; let mut type_result = UnknownResult; // Search for direct children of the containing module. self.populate_module_if_necessary(containing_module); match containing_module.children.find(&source.name) { None => { // Continue. } Some(child_name_bindings) => { if child_name_bindings.defined_in_namespace(ValueNS) { value_result = BoundResult(containing_module, *child_name_bindings); } if child_name_bindings.defined_in_namespace(TypeNS) { type_result = BoundResult(containing_module, *child_name_bindings); } } } // Unless we managed to find a result in both namespaces (unlikely), // search imports as well. let mut used_reexport = false; match (value_result, type_result) { (BoundResult(..), BoundResult(..)) => {} // Continue. _ => { // If there is an unresolved glob at this point in the // containing module, bail out. We don't know enough to be // able to resolve this import. if containing_module.glob_count.get() > 0 { debug!("(resolving single import) unresolved glob; \ bailing out"); return Indeterminate; } // Now search the exported imports within the containing // module. match containing_module.import_resolutions.find(&source.name) { None => { // The containing module definitely doesn't have an // exported import with the name in question. We can // therefore accurately report that the names are // unbound. if value_result.is_unknown() { value_result = UnboundResult; } if type_result.is_unknown() { type_result = UnboundResult; } } Some(import_resolution) if import_resolution.outstanding_references == 0 => { fn get_binding(this: &mut Resolver, import_resolution: @mut ImportResolution, namespace: Namespace) -> NamespaceResult { // Import resolutions must be declared with "pub" // in order to be exported. if !import_resolution.is_public { return UnboundResult; } match (*import_resolution). target_for_namespace(namespace) { None => { return UnboundResult; } Some(target) => { let id = import_resolution.id(namespace); this.used_imports.insert(id); return BoundResult(target.target_module, target.bindings); } } } // The name is an import which has been fully // resolved. We can, therefore, just follow it. if value_result.is_unknown() { value_result = get_binding(self, *import_resolution, ValueNS); used_reexport = import_resolution.is_public; } if type_result.is_unknown() { type_result = get_binding(self, *import_resolution, TypeNS); used_reexport = import_resolution.is_public; } } Some(_) => { // The import is unresolved. Bail out. debug!("(resolving single import) unresolved import; \ bailing out"); return Indeterminate; } } } } // If we didn't find a result in the type namespace, search the // external modules. let mut used_public = false; match type_result { BoundResult(..) => {} _ => { match containing_module.external_module_children .find(&source.name) { None => {} // Continue. Some(module) => { let name_bindings = @mut Resolver::create_name_bindings_from_module( *module); type_result = BoundResult(containing_module, name_bindings); used_public = true; } } } } // We've successfully resolved the import. Write the results in. assert!(module_.import_resolutions.contains_key(&target.name)); let import_resolution = module_.import_resolutions.get(&target.name); match value_result { BoundResult(target_module, name_bindings) => { debug!("(resolving single import) found value target"); import_resolution.value_target = Some(Target::new(target_module, name_bindings)); import_resolution.value_id = directive.id; used_public = name_bindings.defined_in_public_namespace(ValueNS); } UnboundResult => { /* Continue. */ } UnknownResult => { fail!("value result should be known at this point"); } } match type_result { BoundResult(target_module, name_bindings) => { debug!("(resolving single import) found type target: {:?}", name_bindings.type_def.unwrap().type_def); import_resolution.type_target = Some(Target::new(target_module, name_bindings)); import_resolution.type_id = directive.id; used_public = name_bindings.defined_in_public_namespace(TypeNS); } UnboundResult => { /* Continue. */ } UnknownResult => { fail!("type result should be known at this point"); } } if import_resolution.value_target.is_none() && import_resolution.type_target.is_none() { let msg = format!("unresolved import: there is no \ `{}` in `{}`", self.session.str_of(source), self.module_to_str(containing_module)); self.resolve_error(directive.span, msg); return Failed; } let used_public = used_reexport || used_public; assert!(import_resolution.outstanding_references >= 1); import_resolution.outstanding_references -= 1; // record what this import resolves to for later uses in documentation, // this may resolve to either a value or a type, but for documentation // purposes it's good enough to just favor one over the other. match import_resolution.value_target { Some(target) => { let def = target.bindings.def_for_namespace(ValueNS).unwrap(); self.def_map.insert(directive.id, def); let did = def_id_of_def(def); self.last_private.insert(directive.id, if used_public {lp} else {DependsOn(did)}); } None => {} } match import_resolution.type_target { Some(target) => { let def = target.bindings.def_for_namespace(TypeNS).unwrap(); self.def_map.insert(directive.id, def); let did = def_id_of_def(def); self.last_private.insert(directive.id, if used_public {lp} else {DependsOn(did)}); } None => {} } debug!("(resolving single import) successfully resolved import"); return Success(()); } // Resolves a glob import. Note that this function cannot fail; it either // succeeds or bails out (as importing * from an empty module or a module // that exports nothing is valid). fn resolve_glob_import(&mut self, module_: @mut Module, containing_module: @mut Module, id: NodeId, is_public: bool, lp: LastPrivate) -> ResolveResult<()> { // This function works in a highly imperative manner; it eagerly adds // everything it can to the list of import resolutions of the module // node. debug!("(resolving glob import) resolving glob import {}", id); // We must bail out if the node has unresolved imports of any kind // (including globs). if !(*containing_module).all_imports_resolved() { debug!("(resolving glob import) target module has unresolved \ imports; bailing out"); return Indeterminate; } assert_eq!(containing_module.glob_count.get(), 0); // Add all resolved imports from the containing module. for (ident, target_import_resolution) in containing_module.import_resolutions.iter() { debug!("(resolving glob import) writing module resolution \ {:?} into `{}`", target_import_resolution.type_target.is_none(), self.module_to_str(module_)); if !target_import_resolution.is_public { debug!("(resolving glob import) nevermind, just kidding"); continue } // Here we merge two import resolutions. match module_.import_resolutions.find(ident) { None => { // Simple: just copy the old import resolution. let new_import_resolution = @mut ImportResolution::new(id, is_public); new_import_resolution.value_target = target_import_resolution.value_target; new_import_resolution.type_target = target_import_resolution.type_target; module_.import_resolutions.insert (*ident, new_import_resolution); } Some(&dest_import_resolution) => { // Merge the two import resolutions at a finer-grained // level. match target_import_resolution.value_target { None => { // Continue. } Some(value_target) => { dest_import_resolution.value_target = Some(value_target); } } match target_import_resolution.type_target { None => { // Continue. } Some(type_target) => { dest_import_resolution.type_target = Some(type_target); } } dest_import_resolution.is_public = is_public; } } } let merge_import_resolution = |name, name_bindings: @mut NameBindings| { let dest_import_resolution; match module_.import_resolutions.find(&name) { None => { // Create a new import resolution from this child. dest_import_resolution = @mut ImportResolution::new(id, is_public); module_.import_resolutions.insert (name, dest_import_resolution); } Some(&existing_import_resolution) => { dest_import_resolution = existing_import_resolution; } } debug!("(resolving glob import) writing resolution `{}` in `{}` \ to `{}`", interner_get(name), self.module_to_str(containing_module), self.module_to_str(module_)); // Merge the child item into the import resolution. if name_bindings.defined_in_public_namespace(ValueNS) { debug!("(resolving glob import) ... for value target"); dest_import_resolution.value_target = Some(Target::new(containing_module, name_bindings)); dest_import_resolution.value_id = id; } if name_bindings.defined_in_public_namespace(TypeNS) { debug!("(resolving glob import) ... for type target"); dest_import_resolution.type_target = Some(Target::new(containing_module, name_bindings)); dest_import_resolution.type_id = id; } dest_import_resolution.is_public = is_public; }; // Add all children from the containing module. self.populate_module_if_necessary(containing_module); for (&name, name_bindings) in containing_module.children.iter() { merge_import_resolution(name, *name_bindings); } // Add external module children from the containing module. for (&name, module) in containing_module.external_module_children.iter() { let name_bindings = @mut Resolver::create_name_bindings_from_module(*module); merge_import_resolution(name, name_bindings); } // Record the destination of this import match containing_module.def_id.get() { Some(did) => { self.def_map.insert(id, DefMod(did)); self.last_private.insert(id, lp); } None => {} } debug!("(resolving glob import) successfully resolved import"); return Success(()); } /// Resolves the given module path from the given root `module_`. fn resolve_module_path_from_root(&mut self, module_: @mut Module, module_path: &[Ident], index: uint, span: Span, name_search_type: NameSearchType, lp: LastPrivate) -> ResolveResult<(@mut Module, LastPrivate)> { let mut search_module = module_; let mut index = index; let module_path_len = module_path.len(); let mut closest_private = lp; // Resolve the module part of the path. This does not involve looking // upward though scope chains; we simply resolve names directly in // modules as we go. while index < module_path_len { let name = module_path[index]; match self.resolve_name_in_module(search_module, name, TypeNS, name_search_type) { Failed => { let segment_name = self.session.str_of(name); let module_name = self.module_to_str(search_module); if "???" == module_name { let span = Span { lo: span.lo, hi: span.lo + Pos::from_uint(segment_name.len()), expn_info: span.expn_info, }; self.resolve_error(span, format!("unresolved import. maybe \ a missing `extern mod \ {}`?", segment_name)); return Failed; } self.resolve_error(span, format!("unresolved import: could not find `{}` in \ `{}`.", segment_name, module_name)); return Failed; } Indeterminate => { debug!("(resolving module path for import) module \ resolution is indeterminate: {}", self.session.str_of(name)); return Indeterminate; } Success((target, used_proxy)) => { // Check to see whether there are type bindings, and, if // so, whether there is a module within. match target.bindings.type_def { Some(type_def) => { match type_def.module_def { None => { // Not a module. self.resolve_error(span, format!("not a \ module `{}`", self.session. str_of( name))); return Failed; } Some(module_def) => { // If we're doing the search for an // import, do not allow traits and impls // to be selected. match (name_search_type, module_def.kind.get()) { (ImportSearch, TraitModuleKind) | (ImportSearch, ImplModuleKind) => { self.resolve_error( span, "cannot import from a trait \ or type implementation"); return Failed; } (_, _) => { search_module = module_def; // Keep track of the closest // private module used when // resolving this import chain. if !used_proxy && !search_module.is_public { match search_module.def_id .get() { Some(did) => { closest_private = DependsOn(did); } None => {} } } } } } } } None => { // There are no type bindings at all. self.resolve_error(span, format!("not a module `{}`", self.session.str_of( name))); return Failed; } } } } index += 1; } return Success((search_module, closest_private)); } /// Attempts to resolve the module part of an import directive or path /// rooted at the given module. /// /// On success, returns the resolved module, and the closest *private* /// module found to the destination when resolving this path. fn resolve_module_path(&mut self, module_: @mut Module, module_path: &[Ident], use_lexical_scope: UseLexicalScopeFlag, span: Span, name_search_type: NameSearchType) -> ResolveResult<(@mut Module, LastPrivate)> { let module_path_len = module_path.len(); assert!(module_path_len > 0); debug!("(resolving module path for import) processing `{}` rooted at \ `{}`", self.idents_to_str(module_path), self.module_to_str(module_)); // Resolve the module prefix, if any. let module_prefix_result = self.resolve_module_prefix(module_, module_path); let search_module; let start_index; let last_private; match module_prefix_result { Failed => { let mpath = self.idents_to_str(module_path); match mpath.rfind(':') { Some(idx) => { self.resolve_error(span, format!("unresolved import: could not find `{}` \ in `{}`", // idx +- 1 to account for the colons // on either side mpath.slice_from(idx + 1), mpath.slice_to(idx - 1))); }, None => (), }; return Failed; } Indeterminate => { debug!("(resolving module path for import) indeterminate; \ bailing"); return Indeterminate; } Success(NoPrefixFound) => { // There was no prefix, so we're considering the first element // of the path. How we handle this depends on whether we were // instructed to use lexical scope or not. match use_lexical_scope { DontUseLexicalScope => { // This is a crate-relative path. We will start the // resolution process at index zero. search_module = self.graph_root.get_module(); start_index = 0; last_private = AllPublic; } UseLexicalScope => { // This is not a crate-relative path. We resolve the // first component of the path in the current lexical // scope and then proceed to resolve below that. let result = self.resolve_module_in_lexical_scope( module_, module_path[0]); match result { Failed => { self.resolve_error(span, "unresolved name"); return Failed; } Indeterminate => { debug!("(resolving module path for import) \ indeterminate; bailing"); return Indeterminate; } Success(containing_module) => { search_module = containing_module; start_index = 1; last_private = AllPublic; } } } } } Success(PrefixFound(containing_module, index)) => { search_module = containing_module; start_index = index; last_private = DependsOn(containing_module.def_id .get() .unwrap()); } } self.resolve_module_path_from_root(search_module, module_path, start_index, span, name_search_type, last_private) } /// Invariant: This must only be called during main resolution, not during /// import resolution. fn resolve_item_in_lexical_scope(&mut self, module_: @mut Module, name: Ident, namespace: Namespace, search_through_modules: SearchThroughModulesFlag) -> ResolveResult<(Target, bool)> { debug!("(resolving item in lexical scope) resolving `{}` in \ namespace {:?} in `{}`", self.session.str_of(name), namespace, self.module_to_str(module_)); // The current module node is handled specially. First, check for // its immediate children. self.populate_module_if_necessary(module_); match module_.children.find(&name.name) { Some(name_bindings) if name_bindings.defined_in_namespace(namespace) => { debug!("top name bindings succeeded"); return Success((Target::new(module_, *name_bindings), false)); } Some(_) | None => { /* Not found; continue. */ } } // Now check for its import directives. We don't have to have resolved // all its imports in the usual way; this is because chains of // adjacent import statements are processed as though they mutated the // current scope. match module_.import_resolutions.find(&name.name) { None => { // Not found; continue. } Some(import_resolution) => { match (*import_resolution).target_for_namespace(namespace) { None => { // Not found; continue. debug!("(resolving item in lexical scope) found \ import resolution, but not in namespace {:?}", namespace); } Some(target) => { debug!("(resolving item in lexical scope) using \ import resolution"); self.used_imports.insert(import_resolution.id(namespace)); return Success((target, false)); } } } } // Search for external modules. if namespace == TypeNS { match module_.external_module_children.find(&name.name) { None => {} Some(module) => { let name_bindings = @mut Resolver::create_name_bindings_from_module( *module); debug!("lower name bindings succeeded"); return Success((Target::new(module_, name_bindings), false)); } } } // Finally, proceed up the scope chain looking for parent modules. let mut search_module = module_; loop { // Go to the next parent. match search_module.parent_link { NoParentLink => { // No more parents. This module was unresolved. debug!("(resolving item in lexical scope) unresolved \ module"); return Failed; } ModuleParentLink(parent_module_node, _) => { match search_through_modules { DontSearchThroughModules => { match search_module.kind.get() { NormalModuleKind => { // We stop the search here. debug!("(resolving item in lexical \ scope) unresolved module: not \ searching through module \ parents"); return Failed; } ExternModuleKind | TraitModuleKind | ImplModuleKind | AnonymousModuleKind => { search_module = parent_module_node; } } } SearchThroughModules => { search_module = parent_module_node; } } } BlockParentLink(parent_module_node, _) => { search_module = parent_module_node; } } // Resolve the name in the parent module. match self.resolve_name_in_module(search_module, name, namespace, PathSearch) { Failed => { // Continue up the search chain. } Indeterminate => { // We couldn't see through the higher scope because of an // unresolved import higher up. Bail. debug!("(resolving item in lexical scope) indeterminate \ higher scope; bailing"); return Indeterminate; } Success((target, used_reexport)) => { // We found the module. debug!("(resolving item in lexical scope) found name \ in module, done"); return Success((target, used_reexport)); } } } } /// Resolves a module name in the current lexical scope. fn resolve_module_in_lexical_scope(&mut self, module_: @mut Module, name: Ident) -> ResolveResult<@mut Module> { // If this module is an anonymous module, resolve the item in the // lexical scope. Otherwise, resolve the item from the crate root. let resolve_result = self.resolve_item_in_lexical_scope( module_, name, TypeNS, DontSearchThroughModules); match resolve_result { Success((target, _)) => { let bindings = &mut *target.bindings; match bindings.type_def { Some(ref type_def) => { match (*type_def).module_def { None => { error!("!!! (resolving module in lexical \ scope) module wasn't actually a \ module!"); return Failed; } Some(module_def) => { return Success(module_def); } } } None => { error!("!!! (resolving module in lexical scope) module wasn't actually a module!"); return Failed; } } } Indeterminate => { debug!("(resolving module in lexical scope) indeterminate; \ bailing"); return Indeterminate; } Failed => { debug!("(resolving module in lexical scope) failed to \ resolve"); return Failed; } } } /// Returns the nearest normal module parent of the given module. fn get_nearest_normal_module_parent(&mut self, module_: @mut Module) -> Option<@mut Module> { let mut module_ = module_; loop { match module_.parent_link { NoParentLink => return None, ModuleParentLink(new_module, _) | BlockParentLink(new_module, _) => { match new_module.kind.get() { NormalModuleKind => return Some(new_module), ExternModuleKind | TraitModuleKind | ImplModuleKind | AnonymousModuleKind => module_ = new_module, } } } } } /// Returns the nearest normal module parent of the given module, or the /// module itself if it is a normal module. fn get_nearest_normal_module_parent_or_self(&mut self, module_: @mut Module) -> @mut Module { match module_.kind.get() { NormalModuleKind => return module_, ExternModuleKind | TraitModuleKind | ImplModuleKind | AnonymousModuleKind => { match self.get_nearest_normal_module_parent(module_) { None => module_, Some(new_module) => new_module } } } } /// Resolves a "module prefix". A module prefix is one or both of (a) `self::`; /// (b) some chain of `super::`. /// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) * fn resolve_module_prefix(&mut self, module_: @mut Module, module_path: &[Ident]) -> ResolveResult { // Start at the current module if we see `self` or `super`, or at the // top of the crate otherwise. let mut containing_module; let mut i; if "self" == token::ident_to_str(&module_path[0]) { containing_module = self.get_nearest_normal_module_parent_or_self(module_); i = 1; } else if "super" == token::ident_to_str(&module_path[0]) { containing_module = self.get_nearest_normal_module_parent_or_self(module_); i = 0; // We'll handle `super` below. } else { return Success(NoPrefixFound); } // Now loop through all the `super`s we find. while i < module_path.len() && "super" == token::ident_to_str(&module_path[i]) { debug!("(resolving module prefix) resolving `super` at {}", self.module_to_str(containing_module)); match self.get_nearest_normal_module_parent(containing_module) { None => return Failed, Some(new_module) => { containing_module = new_module; i += 1; } } } debug!("(resolving module prefix) finished resolving prefix at {}", self.module_to_str(containing_module)); return Success(PrefixFound(containing_module, i)); } /// Attempts to resolve the supplied name in the given module for the /// given namespace. If successful, returns the target corresponding to /// the name. /// /// The boolean returned on success is an indicator of whether this lookup /// passed through a public re-export proxy. fn resolve_name_in_module(&mut self, module_: @mut Module, name: Ident, namespace: Namespace, name_search_type: NameSearchType) -> ResolveResult<(Target, bool)> { debug!("(resolving name in module) resolving `{}` in `{}`", self.session.str_of(name), self.module_to_str(module_)); // First, check the direct children of the module. self.populate_module_if_necessary(module_); match module_.children.find(&name.name) { Some(name_bindings) if name_bindings.defined_in_namespace(namespace) => { debug!("(resolving name in module) found node as child"); return Success((Target::new(module_, *name_bindings), false)); } Some(_) | None => { // Continue. } } // Next, check the module's imports if necessary. // If this is a search of all imports, we should be done with glob // resolution at this point. if name_search_type == PathSearch { assert_eq!(module_.glob_count.get(), 0); } // Check the list of resolved imports. match module_.import_resolutions.find(&name.name) { Some(import_resolution) => { if import_resolution.is_public && import_resolution.outstanding_references != 0 { debug!("(resolving name in module) import \ unresolved; bailing out"); return Indeterminate; } match import_resolution.target_for_namespace(namespace) { None => { debug!("(resolving name in module) name found, \ but not in namespace {:?}", namespace); } Some(target) => { debug!("(resolving name in module) resolved to \ import"); self.used_imports.insert(import_resolution.id(namespace)); return Success((target, true)); } } } None => {} // Continue. } // Finally, search through external children. if namespace == TypeNS { match module_.external_module_children.find(&name.name) { None => {} Some(module) => { let name_bindings = @mut Resolver::create_name_bindings_from_module( *module); return Success((Target::new(module_, name_bindings), false)); } } } // We're out of luck. debug!("(resolving name in module) failed to resolve `{}`", self.session.str_of(name)); return Failed; } fn report_unresolved_imports(&mut self, module_: @mut Module) { let index = module_.resolved_import_count.get(); let imports: &mut ~[@ImportDirective] = &mut *module_.imports; let import_count = imports.len(); if index != import_count { let sn = self.session.codemap.span_to_snippet(imports[index].span).unwrap(); if sn.contains("::") { self.resolve_error(imports[index].span, "unresolved import"); } else { let err = format!("unresolved import (maybe you meant `{}::*`?)", sn.slice(0, sn.len())); self.resolve_error(imports[index].span, err); } } // Descend into children and anonymous children. self.populate_module_if_necessary(module_); for (_, &child_node) in module_.children.iter() { match child_node.get_module_if_available() { None => { // Continue. } Some(child_module) => { self.report_unresolved_imports(child_module); } } } for (_, &module_) in module_.anonymous_children.iter() { self.report_unresolved_imports(module_); } } // Export recording // // This pass simply determines what all "export" keywords refer to and // writes the results into the export map. // // FIXME #4953 This pass will be removed once exports change to per-item. // Then this operation can simply be performed as part of item (or import) // processing. fn record_exports(&mut self) { let root_module = self.graph_root.get_module(); self.record_exports_for_module_subtree(root_module); } fn record_exports_for_module_subtree(&mut self, module_: @mut Module) { // If this isn't a local crate, then bail out. We don't need to record // exports for nonlocal crates. match module_.def_id.get() { Some(def_id) if def_id.crate == LOCAL_CRATE => { // OK. Continue. debug!("(recording exports for module subtree) recording \ exports for local module `{}`", self.module_to_str(module_)); } None => { // Record exports for the root module. debug!("(recording exports for module subtree) recording \ exports for root module `{}`", self.module_to_str(module_)); } Some(_) => { // Bail out. debug!("(recording exports for module subtree) not recording \ exports for `{}`", self.module_to_str(module_)); return; } } self.record_exports_for_module(module_); self.populate_module_if_necessary(module_); for (_, &child_name_bindings) in module_.children.iter() { match child_name_bindings.get_module_if_available() { None => { // Nothing to do. } Some(child_module) => { self.record_exports_for_module_subtree(child_module); } } } for (_, &child_module) in module_.anonymous_children.iter() { self.record_exports_for_module_subtree(child_module); } } fn record_exports_for_module(&mut self, module_: @mut Module) { let mut exports2 = ~[]; self.add_exports_for_module(&mut exports2, module_); match module_.def_id.get() { Some(def_id) => { self.export_map2.insert(def_id.node, exports2); debug!("(computing exports) writing exports for {} (some)", def_id.node); } None => {} } } fn add_exports_of_namebindings(&mut self, exports2: &mut ~[Export2], name: Name, namebindings: @mut NameBindings, ns: Namespace, reexport: bool) { match namebindings.def_for_namespace(ns) { Some(d) => { debug!("(computing exports) YES: {} '{}' => {:?}", if reexport { ~"reexport" } else { ~"export"}, interner_get(name), def_id_of_def(d)); exports2.push(Export2 { reexport: reexport, name: interner_get(name), def_id: def_id_of_def(d) }); } d_opt => { debug!("(computing reexports) NO: {:?}", d_opt); } } } fn add_exports_for_module(&mut self, exports2: &mut ~[Export2], module_: @mut Module) { for (name, importresolution) in module_.import_resolutions.iter() { if !importresolution.is_public { continue } let xs = [TypeNS, ValueNS]; for &ns in xs.iter() { match importresolution.target_for_namespace(ns) { Some(target) => { debug!("(computing exports) maybe reexport '{}'", interner_get(*name)); self.add_exports_of_namebindings(exports2, *name, target.bindings, ns, true) } _ => () } } } } // AST resolution // // We maintain a list of value ribs and type ribs. // // Simultaneously, we keep track of the current position in the module // graph in the `current_module` pointer. When we go to resolve a name in // the value or type namespaces, we first look through all the ribs and // then query the module graph. When we resolve a name in the module // namespace, we can skip all the ribs (since nested modules are not // allowed within blocks in Rust) and jump straight to the current module // graph node. // // Named implementations are handled separately. When we find a method // call, we consult the module node to find all of the implementations in // scope. This information is lazily cached in the module node. We then // generate a fake "implementation scope" containing all the // implementations thus found, for compatibility with old resolve pass. fn with_scope(&mut self, name: Option, f: |&mut Resolver|) { let orig_module = self.current_module; // Move down in the graph. match name { None => { // Nothing to do. } Some(name) => { self.populate_module_if_necessary(orig_module); match orig_module.children.find(&name.name) { None => { debug!("!!! (with scope) didn't find `{}` in `{}`", self.session.str_of(name), self.module_to_str(orig_module)); } Some(name_bindings) => { match (*name_bindings).get_module_if_available() { None => { debug!("!!! (with scope) didn't find module \ for `{}` in `{}`", self.session.str_of(name), self.module_to_str(orig_module)); } Some(module_) => { self.current_module = module_; } } } } } } f(self); self.current_module = orig_module; } /// Wraps the given definition in the appropriate number of `def_upvar` /// wrappers. fn upvarify(&mut self, ribs: &mut ~[@Rib], rib_index: uint, def_like: DefLike, span: Span, allow_capturing_self: AllowCapturingSelfFlag) -> Option { let mut def; let is_ty_param; match def_like { DlDef(d @ DefLocal(..)) | DlDef(d @ DefUpvar(..)) | DlDef(d @ DefArg(..)) | DlDef(d @ DefBinding(..)) => { def = d; is_ty_param = false; } DlDef(d @ DefTyParam(..)) => { def = d; is_ty_param = true; } DlDef(d @ DefSelf(..)) if allow_capturing_self == DontAllowCapturingSelf => { def = d; is_ty_param = false; } _ => { return Some(def_like); } } let mut rib_index = rib_index + 1; while rib_index < ribs.len() { match ribs[rib_index].kind { NormalRibKind => { // Nothing to do. Continue. } FunctionRibKind(function_id, body_id) => { if !is_ty_param { def = DefUpvar(def_id_of_def(def).node, @def, function_id, body_id); } } MethodRibKind(item_id, _) => { // If the def is a ty param, and came from the parent // item, it's ok match def { DefTyParam(did, _) if self.def_map.find(&did.node).map(|x| *x) == Some(DefTyParamBinder(item_id)) => { // ok } _ => { if !is_ty_param { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.resolve_error( span, "can't capture dynamic environment in a fn item; \ use the || { ... } closure form instead"); } else { // This was an attempt to use a type parameter outside // its scope. self.resolve_error(span, "attempt to use a type \ argument out of scope"); } return None; } } } OpaqueFunctionRibKind => { if !is_ty_param { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.resolve_error( span, "can't capture dynamic environment in a fn item; \ use the || { ... } closure form instead"); } else { // This was an attempt to use a type parameter outside // its scope. self.resolve_error(span, "attempt to use a type \ argument out of scope"); } return None; } ConstantItemRibKind => { if is_ty_param { // see #9186 self.resolve_error(span, "cannot use an outer type \ parameter in this context"); } else { // Still doesn't deal with upvars self.resolve_error(span, "attempt to use a non-constant \ value in a constant"); } } } rib_index += 1; } return Some(DlDef(def)); } fn search_ribs(&mut self, ribs: &mut ~[@Rib], name: Name, span: Span, allow_capturing_self: AllowCapturingSelfFlag) -> Option { // FIXME #4950: This should not use a while loop. // FIXME #4950: Try caching? let mut i = ribs.len(); while i != 0 { i -= 1; match ribs[i].bindings.find(&name) { Some(&def_like) => { return self.upvarify(ribs, i, def_like, span, allow_capturing_self); } None => { // Continue. } } } return None; } fn resolve_crate(&mut self, crate: &ast::Crate) { debug!("(resolving crate) starting"); visit::walk_crate(self, crate, ()); } fn resolve_item(&mut self, item: @item) { debug!("(resolving item) resolving {}", self.session.str_of(item.ident)); match item.node { // enum item: resolve all the variants' discrs, // then resolve the ty params item_enum(ref enum_def, ref generics) => { for variant in (*enum_def).variants.iter() { for dis_expr in variant.node.disr_expr.iter() { // resolve the discriminator expr // as a constant self.with_constant_rib(|this| { this.resolve_expr(*dis_expr); }); } } // n.b. the discr expr gets visted twice. // but maybe it's okay since the first time will signal an // error if there is one? -- tjc self.with_type_parameter_rib(HasTypeParameters(generics, item.id, 0, NormalRibKind), |this| { visit::walk_item(this, item, ()); }); } item_ty(_, ref generics) => { self.with_type_parameter_rib(HasTypeParameters(generics, item.id, 0, NormalRibKind), |this| { visit::walk_item(this, item, ()); }); } item_impl(ref generics, ref implemented_traits, self_type, ref methods) => { self.resolve_implementation(item.id, generics, implemented_traits, self_type, *methods); } item_trait(ref generics, ref traits, ref methods) => { // Create a new rib for the self type. let self_type_rib = @Rib::new(NormalRibKind); self.type_ribs.push(self_type_rib); // plain insert (no renaming) let name = self.type_self_ident.name; self_type_rib.bindings.insert(name, DlDef(DefSelfTy(item.id))); // Create a new rib for the trait-wide type parameters. self.with_type_parameter_rib(HasTypeParameters(generics, item.id, 0, NormalRibKind), |this| { this.resolve_type_parameters(&generics.ty_params); // Resolve derived traits. for trt in traits.iter() { this.resolve_trait_reference(item.id, trt, TraitDerivation); } for method in (*methods).iter() { // Create a new rib for the method-specific type // parameters. // // FIXME #4951: Do we need a node ID here? match *method { required(ref ty_m) => { this.with_type_parameter_rib (HasTypeParameters(&ty_m.generics, item.id, generics.ty_params.len(), MethodRibKind(item.id, Required)), |this| { // Resolve the method-specific type // parameters. this.resolve_type_parameters( &ty_m.generics.ty_params); for argument in ty_m.decl.inputs.iter() { this.resolve_type(argument.ty); } this.resolve_type(ty_m.decl.output); }); } provided(m) => { this.resolve_method(MethodRibKind(item.id, Provided(m.id)), m, generics.ty_params.len()) } } } }); self.type_ribs.pop(); } item_struct(ref struct_def, ref generics) => { self.resolve_struct(item.id, generics, struct_def.fields); } item_mod(ref module_) => { self.with_scope(Some(item.ident), |this| { this.resolve_module(module_, item.span, item.ident, item.id); }); } item_foreign_mod(ref foreign_module) => { self.with_scope(Some(item.ident), |this| { for foreign_item in foreign_module.items.iter() { match foreign_item.node { foreign_item_fn(_, ref generics) => { this.with_type_parameter_rib( HasTypeParameters( generics, foreign_item.id, 0, NormalRibKind), |this| visit::walk_foreign_item(this, *foreign_item, ())); } foreign_item_static(..) => { visit::walk_foreign_item(this, *foreign_item, ()); } } } }); } item_fn(fn_decl, _, _, ref generics, block) => { self.resolve_function(OpaqueFunctionRibKind, Some(fn_decl), HasTypeParameters (generics, item.id, 0, OpaqueFunctionRibKind), block, NoSelfBinding); } item_static(..) => { self.with_constant_rib(|this| { visit::walk_item(this, item, ()); }); } item_mac(..) => { fail!("item macros unimplemented") } } } fn with_type_parameter_rib(&mut self, type_parameters: TypeParameters, f: |&mut Resolver|) { match type_parameters { HasTypeParameters(generics, node_id, initial_index, rib_kind) => { let function_type_rib = @Rib::new(rib_kind); self.type_ribs.push(function_type_rib); for (index, type_parameter) in generics.ty_params.iter().enumerate() { let ident = type_parameter.ident; debug!("with_type_parameter_rib: {} {}", node_id, type_parameter.id); let def_like = DlDef(DefTyParam (local_def(type_parameter.id), index + initial_index)); // Associate this type parameter with // the item that bound it self.record_def(type_parameter.id, (DefTyParamBinder(node_id), AllPublic)); // plain insert (no renaming) function_type_rib.bindings.insert(ident.name, def_like); } } NoTypeParameters => { // Nothing to do. } } f(self); match type_parameters { HasTypeParameters(..) => { self.type_ribs.pop(); } NoTypeParameters => { // Nothing to do. } } } fn with_label_rib(&mut self, f: |&mut Resolver|) { self.label_ribs.push(@Rib::new(NormalRibKind)); f(self); self.label_ribs.pop(); } fn with_constant_rib(&mut self, f: |&mut Resolver|) { self.value_ribs.push(@Rib::new(ConstantItemRibKind)); self.type_ribs.push(@Rib::new(ConstantItemRibKind)); f(self); self.type_ribs.pop(); self.value_ribs.pop(); } fn resolve_function(&mut self, rib_kind: RibKind, optional_declaration: Option>, type_parameters: TypeParameters, block: P, self_binding: SelfBinding) { // Create a value rib for the function. let function_value_rib = @Rib::new(rib_kind); self.value_ribs.push(function_value_rib); // Create a label rib for the function. let function_label_rib = @Rib::new(rib_kind); self.label_ribs.push(function_label_rib); // If this function has type parameters, add them now. self.with_type_parameter_rib(type_parameters, |this| { // Resolve the type parameters. match type_parameters { NoTypeParameters => { // Continue. } HasTypeParameters(ref generics, _, _, _) => { this.resolve_type_parameters(&generics.ty_params); } } // Add self to the rib, if necessary. match self_binding { NoSelfBinding => { // Nothing to do. } HasSelfBinding(self_node_id, explicit_self) => { let mutable = match explicit_self.node { sty_uniq(m) | sty_value(m) if m == MutMutable => true, _ => false }; let def_like = DlDef(DefSelf(self_node_id, mutable)); *function_value_rib.self_binding = Some(def_like); } } // Add each argument to the rib. match optional_declaration { None => { // Nothing to do. } Some(declaration) => { for argument in declaration.inputs.iter() { let binding_mode = ArgumentIrrefutableMode; this.resolve_pattern(argument.pat, binding_mode, None); this.resolve_type(argument.ty); debug!("(resolving function) recorded argument"); } this.resolve_type(declaration.output); } } // Resolve the function body. this.resolve_block(block); debug!("(resolving function) leaving function"); }); self.label_ribs.pop(); self.value_ribs.pop(); } fn resolve_type_parameters(&mut self, type_parameters: &OptVec) { for type_parameter in type_parameters.iter() { for bound in type_parameter.bounds.iter() { self.resolve_type_parameter_bound(type_parameter.id, bound); } } } fn resolve_type_parameter_bound(&mut self, id: NodeId, type_parameter_bound: &TyParamBound) { match *type_parameter_bound { TraitTyParamBound(ref tref) => { self.resolve_trait_reference(id, tref, TraitBoundingTypeParameter) } RegionTyParamBound => {} } } fn resolve_trait_reference(&mut self, id: NodeId, trait_reference: &trait_ref, reference_type: TraitReferenceType) { match self.resolve_path(id, &trait_reference.path, TypeNS, true) { None => { let path_str = self.path_idents_to_str(&trait_reference.path); let usage_str = match reference_type { TraitBoundingTypeParameter => "bound type parameter with", TraitImplementation => "implement", TraitDerivation => "derive" }; let msg = format!("attempt to {} a nonexistent trait `{}`", usage_str, path_str); self.resolve_error(trait_reference.path.span, msg); } Some(def) => { debug!("(resolving trait) found trait def: {:?}", def); self.record_def(trait_reference.ref_id, def); } } } fn resolve_struct(&mut self, id: NodeId, generics: &Generics, fields: &[struct_field]) { let mut ident_map: HashMap = HashMap::new(); for field in fields.iter() { match field.node.kind { named_field(ident, _) => { match ident_map.find(&ident) { Some(&prev_field) => { let ident_str = self.session.str_of(ident); self.resolve_error(field.span, format!("field `{}` is already declared", ident_str)); self.session.span_note(prev_field.span, "Previously declared here"); }, None => { ident_map.insert(ident, field); } } } _ => () } } // If applicable, create a rib for the type parameters. self.with_type_parameter_rib(HasTypeParameters(generics, id, 0, OpaqueFunctionRibKind), |this| { // Resolve the type parameters. this.resolve_type_parameters(&generics.ty_params); // Resolve fields. for field in fields.iter() { this.resolve_type(field.node.ty); } }); } // Does this really need to take a RibKind or is it always going // to be NormalRibKind? fn resolve_method(&mut self, rib_kind: RibKind, method: @method, outer_type_parameter_count: uint) { let method_generics = &method.generics; let type_parameters = HasTypeParameters(method_generics, method.id, outer_type_parameter_count, rib_kind); // we only have self ty if it is a non static method let self_binding = match method.explicit_self.node { sty_static => { NoSelfBinding } _ => { HasSelfBinding(method.self_id, method.explicit_self) } }; self.resolve_function(rib_kind, Some(method.decl), type_parameters, method.body, self_binding); } fn resolve_implementation(&mut self, id: NodeId, generics: &Generics, opt_trait_reference: &Option, self_type: &Ty, methods: &[@method]) { // If applicable, create a rib for the type parameters. let outer_type_parameter_count = generics.ty_params.len(); self.with_type_parameter_rib(HasTypeParameters(generics, id, 0, NormalRibKind), |this| { // Resolve the type parameters. this.resolve_type_parameters(&generics.ty_params); // Resolve the trait reference, if necessary. let original_trait_refs; match opt_trait_reference { &Some(ref trait_reference) => { this.resolve_trait_reference(id, trait_reference, TraitImplementation); // Record the current set of trait references. let mut new_trait_refs = ~[]; { let r = this.def_map.find(&trait_reference.ref_id); for &def in r.iter() { new_trait_refs.push(def_id_of_def(*def)); } } original_trait_refs = Some(util::replace( &mut this.current_trait_refs, Some(new_trait_refs))); } &None => { original_trait_refs = None; } } // Resolve the self type. this.resolve_type(self_type); for method in methods.iter() { // We also need a new scope for the method-specific // type parameters. this.resolve_method(MethodRibKind( id, Provided(method.id)), *method, outer_type_parameter_count); /* let borrowed_type_parameters = &method.tps; self.resolve_function(MethodRibKind( id, Provided(method.id)), Some(method.decl), HasTypeParameters (borrowed_type_parameters, method.id, outer_type_parameter_count, NormalRibKind), method.body, HasSelfBinding(method.self_id), visitor); */ } // Restore the original trait references. match original_trait_refs { Some(r) => { this.current_trait_refs = r; } None => () } }); } fn resolve_module(&mut self, module_: &_mod, _span: Span, _name: Ident, id: NodeId) { // Write the implementations in scope into the module metadata. debug!("(resolving module) resolving module ID {}", id); visit::walk_mod(self, module_, ()); } fn resolve_local(&mut self, local: @Local) { // Resolve the type. self.resolve_type(local.ty); // Resolve the initializer, if necessary. match local.init { None => { // Nothing to do. } Some(initializer) => { self.resolve_expr(initializer); } } // Resolve the pattern. self.resolve_pattern(local.pat, LocalIrrefutableMode, None); } // build a map from pattern identifiers to binding-info's. // this is done hygienically. This could arise for a macro // that expands into an or-pattern where one 'x' was from the // user and one 'x' came from the macro. fn binding_mode_map(&mut self, pat: @Pat) -> BindingMap { let mut result = HashMap::new(); pat_bindings(self.def_map, pat, |binding_mode, _id, sp, path| { let name = mtwt_resolve(path_to_ident(path)); result.insert(name, binding_info {span: sp, binding_mode: binding_mode}); }); return result; } // check that all of the arms in an or-pattern have exactly the // same set of bindings, with the same binding modes for each. fn check_consistent_bindings(&mut self, arm: &Arm) { if arm.pats.len() == 0 { return; } let map_0 = self.binding_mode_map(arm.pats[0]); for (i, p) in arm.pats.iter().enumerate() { let map_i = self.binding_mode_map(*p); for (&key, &binding_0) in map_0.iter() { match map_i.find(&key) { None => { self.resolve_error( p.span, format!("variable `{}` from pattern \\#1 is \ not bound in pattern \\#{}", interner_get(key), i + 1)); } Some(binding_i) => { if binding_0.binding_mode != binding_i.binding_mode { self.resolve_error( binding_i.span, format!("variable `{}` is bound with different \ mode in pattern \\#{} than in pattern \\#1", interner_get(key), i + 1)); } } } } for (&key, &binding) in map_i.iter() { if !map_0.contains_key(&key) { self.resolve_error( binding.span, format!("variable `{}` from pattern \\#{} is \ not bound in pattern \\#1", interner_get(key), i + 1)); } } } } fn resolve_arm(&mut self, arm: &Arm) { self.value_ribs.push(@Rib::new(NormalRibKind)); let bindings_list = @mut HashMap::new(); for pattern in arm.pats.iter() { self.resolve_pattern(*pattern, RefutableMode, Some(bindings_list)); } // This has to happen *after* we determine which // pat_idents are variants self.check_consistent_bindings(arm); visit::walk_expr_opt(self, arm.guard, ()); self.resolve_block(arm.body); self.value_ribs.pop(); } fn resolve_block(&mut self, block: P) { debug!("(resolving block) entering block"); self.value_ribs.push(@Rib::new(NormalRibKind)); // Move down in the graph, if there's an anonymous module rooted here. let orig_module = self.current_module; match self.current_module.anonymous_children.find(&block.id) { None => { /* Nothing to do. */ } Some(&anonymous_module) => { debug!("(resolving block) found anonymous module, moving \ down"); self.current_module = anonymous_module; } } // Descend into the block. visit::walk_block(self, block, ()); // Move back up. self.current_module = orig_module; self.value_ribs.pop(); debug!("(resolving block) leaving block"); } fn resolve_type(&mut self, ty: &Ty) { match ty.node { // Like path expressions, the interpretation of path types depends // on whether the path has multiple elements in it or not. ty_path(ref path, ref bounds, path_id) => { // This is a path in the type namespace. Walk through scopes // scopes looking for it. let mut result_def = None; // First, check to see whether the name is a primitive type. if path.segments.len() == 1 { let id = path.segments.last().identifier; match self.primitive_type_table .primitive_types .find(&id.name) { Some(&primitive_type) => { result_def = Some((DefPrimTy(primitive_type), AllPublic)); if path.segments .iter() .any(|s| !s.lifetimes.is_empty()) { self.session.span_err(path.span, "lifetime parameters \ are not allowed on \ this type") } else if path.segments .iter() .any(|s| s.types.len() > 0) { self.session.span_err(path.span, "type parameters are \ not allowed on this \ type") } } None => { // Continue. } } } match result_def { None => { match self.resolve_path(ty.id, path, TypeNS, true) { Some(def) => { debug!("(resolving type) resolved `{}` to \ type {:?}", self.session.str_of(path.segments .last() .identifier), def); result_def = Some(def); } None => { result_def = None; } } } Some(_) => {} // Continue. } match result_def { Some(def) => { // Write the result into the def map. debug!("(resolving type) writing resolution for `{}` \ (id {})", self.path_idents_to_str(path), path_id); self.record_def(path_id, def); } None => { let msg = format!("use of undeclared type name `{}`", self.path_idents_to_str(path)); self.resolve_error(ty.span, msg); } } bounds.as_ref().map(|bound_vec| { for bound in bound_vec.iter() { self.resolve_type_parameter_bound(ty.id, bound); } }); } ty_closure(c) => { c.bounds.as_ref().map(|bounds| { for bound in bounds.iter() { self.resolve_type_parameter_bound(ty.id, bound); } }); visit::walk_ty(self, ty, ()); } _ => { // Just resolve embedded types. visit::walk_ty(self, ty, ()); } } } fn resolve_pattern(&mut self, pattern: @Pat, mode: PatternBindingMode, // Maps idents to the node ID for the (outermost) // pattern that binds them bindings_list: Option<@mut HashMap>) { let pat_id = pattern.id; walk_pat(pattern, |pattern| { match pattern.node { PatIdent(binding_mode, ref path, _) if !path.global && path.segments.len() == 1 => { // The meaning of pat_ident with no type parameters // depends on whether an enum variant or unit-like struct // with that name is in scope. The probing lookup has to // be careful not to emit spurious errors. Only matching // patterns (match) can match nullary variants or // unit-like structs. For binding patterns (let), matching // such a value is simply disallowed (since it's rarely // what you want). let ident = path.segments[0].identifier; let renamed = mtwt_resolve(ident); match self.resolve_bare_identifier_pattern(ident) { FoundStructOrEnumVariant(def, lp) if mode == RefutableMode => { debug!("(resolving pattern) resolving `{}` to \ struct or enum variant", interner_get(renamed)); self.enforce_default_binding_mode( pattern, binding_mode, "an enum variant"); self.record_def(pattern.id, (def, lp)); } FoundStructOrEnumVariant(..) => { self.resolve_error(pattern.span, format!("declaration of `{}` \ shadows an enum \ variant or unit-like \ struct in scope", interner_get(renamed))); } FoundConst(def, lp) if mode == RefutableMode => { debug!("(resolving pattern) resolving `{}` to \ constant", interner_get(renamed)); self.enforce_default_binding_mode( pattern, binding_mode, "a constant"); self.record_def(pattern.id, (def, lp)); } FoundConst(..) => { self.resolve_error(pattern.span, "only irrefutable patterns \ allowed here"); } BareIdentifierPatternUnresolved => { debug!("(resolving pattern) binding `{}`", interner_get(renamed)); let def = match mode { RefutableMode => { // For pattern arms, we must use // `def_binding` definitions. DefBinding(pattern.id, binding_mode) } LocalIrrefutableMode => { // But for locals, we use `def_local`. DefLocal(pattern.id, binding_mode) } ArgumentIrrefutableMode => { // And for function arguments, `def_arg`. DefArg(pattern.id, binding_mode) } }; // Record the definition so that later passes // will be able to distinguish variants from // locals in patterns. self.record_def(pattern.id, (def, AllPublic)); // Add the binding to the local ribs, if it // doesn't already exist in the bindings list. (We // must not add it if it's in the bindings list // because that breaks the assumptions later // passes make about or-patterns.) match bindings_list { Some(bindings_list) if !bindings_list.contains_key(&renamed) => { let this = &mut *self; let last_rib = this.value_ribs[ this.value_ribs.len() - 1]; last_rib.bindings.insert(renamed, DlDef(def)); bindings_list.insert(renamed, pat_id); } Some(b) => { if b.find(&renamed) == Some(&pat_id) { // Then this is a duplicate variable // in the same disjunct, which is an // error self.resolve_error(pattern.span, format!("Identifier `{}` is bound more \ than once in the same pattern", path_to_str(path, self.session .intr()))); } // Not bound in the same pattern: do nothing } None => { let this = &mut *self; let last_rib = this.value_ribs[ this.value_ribs.len() - 1]; last_rib.bindings.insert(renamed, DlDef(def)); } } } } // Check the types in the path pattern. for &ty in path.segments .iter() .flat_map(|seg| seg.types.iter()) { self.resolve_type(ty); } } PatIdent(binding_mode, ref path, _) => { // This must be an enum variant, struct, or constant. match self.resolve_path(pat_id, path, ValueNS, false) { Some(def @ (DefVariant(..), _)) | Some(def @ (DefStruct(..), _)) => { self.record_def(pattern.id, def); } Some(def @ (DefStatic(..), _)) => { self.enforce_default_binding_mode( pattern, binding_mode, "a constant"); self.record_def(pattern.id, def); } Some(_) => { self.resolve_error( path.span, format!("`{}` is not an enum variant or constant", self.session.str_of( path.segments.last().identifier))) } None => { self.resolve_error(path.span, "unresolved enum variant"); } } // Check the types in the path pattern. for &ty in path.segments .iter() .flat_map(|s| s.types.iter()) { self.resolve_type(ty); } } PatEnum(ref path, _) => { // This must be an enum variant, struct or const. match self.resolve_path(pat_id, path, ValueNS, false) { Some(def @ (DefFn(..), _)) | Some(def @ (DefVariant(..), _)) | Some(def @ (DefStruct(..), _)) | Some(def @ (DefStatic(..), _)) => { self.record_def(pattern.id, def); } Some(_) => { self.resolve_error( path.span, format!("`{}` is not an enum variant, struct or const", self.session .str_of(path.segments .last() .identifier))); } None => { self.resolve_error(path.span, format!("unresolved enum variant, \ struct or const `{}`", self.session .str_of(path.segments .last() .identifier))); } } // Check the types in the path pattern. for &ty in path.segments .iter() .flat_map(|s| s.types.iter()) { self.resolve_type(ty); } } PatLit(expr) => { self.resolve_expr(expr); } PatRange(first_expr, last_expr) => { self.resolve_expr(first_expr); self.resolve_expr(last_expr); } PatStruct(ref path, _, _) => { match self.resolve_path(pat_id, path, TypeNS, false) { Some((DefTy(class_id), lp)) if self.structs.contains(&class_id) => { let class_def = DefStruct(class_id); self.record_def(pattern.id, (class_def, lp)); } Some(definition @ (DefStruct(class_id), _)) => { assert!(self.structs.contains(&class_id)); self.record_def(pattern.id, definition); } Some(definition @ (DefVariant(_, variant_id, _), _)) if self.structs.contains(&variant_id) => { self.record_def(pattern.id, definition); } result => { debug!("(resolving pattern) didn't find struct \ def: {:?}", result); let msg = format!("`{}` does not name a structure", self.path_idents_to_str(path)); self.resolve_error(path.span, msg); } } } _ => { // Nothing to do. } } true }); } fn resolve_bare_identifier_pattern(&mut self, name: Ident) -> BareIdentifierPatternResolution { match self.resolve_item_in_lexical_scope(self.current_module, name, ValueNS, SearchThroughModules) { Success((target, _)) => { debug!("(resolve bare identifier pattern) succeeded in \ finding {} at {:?}", self.session.str_of(name), target.bindings.value_def); match target.bindings.value_def { None => { fail!("resolved name in the value namespace to a \ set of name bindings with no def?!"); } Some(def) => { // For the two success cases, this lookup can be // considered as not having a private component because // the lookup happened only within the current module. match def.def { def @ DefVariant(..) | def @ DefStruct(..) => { return FoundStructOrEnumVariant(def, AllPublic); } def @ DefStatic(_, false) => { return FoundConst(def, AllPublic); } _ => { return BareIdentifierPatternUnresolved; } } } } } Indeterminate => { fail!("unexpected indeterminate result"); } Failed => { debug!("(resolve bare identifier pattern) failed to find {}", self.session.str_of(name)); return BareIdentifierPatternUnresolved; } } } /// If `check_ribs` is true, checks the local definitions first; i.e. /// doesn't skip straight to the containing module. fn resolve_path(&mut self, id: NodeId, path: &Path, namespace: Namespace, check_ribs: bool) -> Option<(Def, LastPrivate)> { // First, resolve the types. for &ty in path.segments.iter().flat_map(|s| s.types.iter()) { self.resolve_type(ty); } if path.global { return self.resolve_crate_relative_path(path, namespace); } let unqualified_def = self.resolve_identifier(path.segments .last() .identifier, namespace, check_ribs, path.span); if path.segments.len() > 1 { let def = self.resolve_module_relative_path(path, namespace); match (def, unqualified_def) { (Some((d, _)), Some((ud, _))) if d == ud => { self.session.add_lint(unnecessary_qualification, id, path.span, ~"unnecessary qualification"); } _ => () } return def; } return unqualified_def; } // resolve a single identifier (used as a varref) fn resolve_identifier(&mut self, identifier: Ident, namespace: Namespace, check_ribs: bool, span: Span) -> Option<(Def, LastPrivate)> { if check_ribs { match self.resolve_identifier_in_local_ribs(identifier, namespace, span) { Some(def) => { return Some((def, AllPublic)); } None => { // Continue. } } } return self.resolve_item_by_identifier_in_lexical_scope(identifier, namespace); } // FIXME #4952: Merge me with resolve_name_in_module? fn resolve_definition_of_name_in_module(&mut self, containing_module: @mut Module, name: Ident, namespace: Namespace) -> NameDefinition { // First, search children. self.populate_module_if_necessary(containing_module); match containing_module.children.find(&name.name) { Some(child_name_bindings) => { match child_name_bindings.def_for_namespace(namespace) { Some(def) => { // Found it. Stop the search here. let p = child_name_bindings.defined_in_public_namespace( namespace); let lp = if p {AllPublic} else { DependsOn(def_id_of_def(def)) }; return ChildNameDefinition(def, lp); } None => {} } } None => {} } // Next, search import resolutions. match containing_module.import_resolutions.find(&name.name) { Some(import_resolution) if import_resolution.is_public => { match (*import_resolution).target_for_namespace(namespace) { Some(target) => { match target.bindings.def_for_namespace(namespace) { Some(def) => { // Found it. let id = import_resolution.id(namespace); self.used_imports.insert(id); return ImportNameDefinition(def, AllPublic); } None => { // This can happen with external impls, due to // the imperfect way we read the metadata. } } } None => {} } } Some(..) | None => {} // Continue. } // Finally, search through external children. if namespace == TypeNS { match containing_module.external_module_children.find(&name.name) { None => {} Some(module) => { match module.def_id.get() { None => {} // Continue. Some(def_id) => { let lp = if module.is_public {AllPublic} else { DependsOn(def_id) }; return ChildNameDefinition(DefMod(def_id), lp); } } } } } return NoNameDefinition; } // resolve a "module-relative" path, e.g. a::b::c fn resolve_module_relative_path(&mut self, path: &Path, namespace: Namespace) -> Option<(Def, LastPrivate)> { let module_path_idents = path.segments.init().map(|ps| ps.identifier); let containing_module; let last_private; match self.resolve_module_path(self.current_module, module_path_idents, UseLexicalScope, path.span, PathSearch) { Failed => { let msg = format!("use of undeclared module `{}`", self.idents_to_str(module_path_idents)); self.resolve_error(path.span, msg); return None; } Indeterminate => { fail!("indeterminate unexpected"); } Success((resulting_module, resulting_last_private)) => { containing_module = resulting_module; last_private = resulting_last_private; } } let ident = path.segments.last().identifier; let def = match self.resolve_definition_of_name_in_module(containing_module, ident, namespace) { NoNameDefinition => { // We failed to resolve the name. Report an error. return None; } ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => { (def, last_private.or(lp)) } }; match containing_module.kind.get() { TraitModuleKind | ImplModuleKind => { match self.method_map.find(&ident.name) { Some(s) => { match containing_module.def_id.get() { Some(def_id) if s.contains(&def_id) => { debug!("containing module was a trait or impl \ and name was a method -> not resolved"); return None; }, _ => (), } }, None => (), } }, _ => (), }; return Some(def); } /// Invariant: This must be called only during main resolution, not during /// import resolution. fn resolve_crate_relative_path(&mut self, path: &Path, namespace: Namespace) -> Option<(Def, LastPrivate)> { let module_path_idents = path.segments.init().map(|ps| ps.identifier); let root_module = self.graph_root.get_module(); let containing_module; let last_private; match self.resolve_module_path_from_root(root_module, module_path_idents, 0, path.span, PathSearch, AllPublic) { Failed => { let msg = format!("use of undeclared module `::{}`", self.idents_to_str(module_path_idents)); self.resolve_error(path.span, msg); return None; } Indeterminate => { fail!("indeterminate unexpected"); } Success((resulting_module, resulting_last_private)) => { containing_module = resulting_module; last_private = resulting_last_private; } } let name = path.segments.last().identifier; match self.resolve_definition_of_name_in_module(containing_module, name, namespace) { NoNameDefinition => { // We failed to resolve the name. Report an error. return None; } ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => { return Some((def, last_private.or(lp))); } } } fn resolve_identifier_in_local_ribs(&mut self, ident: Ident, namespace: Namespace, span: Span) -> Option { // Check the local set of ribs. let search_result; match namespace { ValueNS => { let renamed = mtwt_resolve(ident); search_result = self.search_ribs(self.value_ribs, renamed, span, DontAllowCapturingSelf); } TypeNS => { let name = ident.name; search_result = self.search_ribs(self.type_ribs, name, span, AllowCapturingSelf); } } match search_result { Some(DlDef(def)) => { debug!("(resolving path in local ribs) resolved `{}` to \ local: {:?}", self.session.str_of(ident), def); return Some(def); } Some(DlField) | Some(DlImpl(_)) | None => { return None; } } } fn resolve_self_value_in_local_ribs(&mut self, span: Span) -> Option { // FIXME #4950: This should not use a while loop. let mut i = self.value_ribs.len(); while i != 0 { i -= 1; match *self.value_ribs[i].self_binding { Some(def_like) => { match self.upvarify(self.value_ribs, i, def_like, span, DontAllowCapturingSelf) { Some(DlDef(def)) => return Some(def), _ => { if self.session.has_errors() { // May happen inside a nested fn item, cf #6642. return None; } else { self.session.span_bug(span, "self wasn't mapped to a def?!") } } } } None => {} } } None } fn resolve_item_by_identifier_in_lexical_scope(&mut self, ident: Ident, namespace: Namespace) -> Option<(Def, LastPrivate)> { // Check the items. match self.resolve_item_in_lexical_scope(self.current_module, ident, namespace, DontSearchThroughModules) { Success((target, _)) => { match (*target.bindings).def_for_namespace(namespace) { None => { // This can happen if we were looking for a type and // found a module instead. Modules don't have defs. debug!("(resolving item path by identifier in lexical \ scope) failed to resolve {} after success...", self.session.str_of(ident)); return None; } Some(def) => { debug!("(resolving item path in lexical scope) \ resolved `{}` to item", self.session.str_of(ident)); // This lookup is "all public" because it only searched // for one identifier in the current module (couldn't // have passed through reexports or anything like that. return Some((def, AllPublic)); } } } Indeterminate => { fail!("unexpected indeterminate result"); } Failed => { debug!("(resolving item path by identifier in lexical scope) \ failed to resolve {}", self.session.str_of(ident)); return None; } } } fn with_no_errors(&mut self, f: |&mut Resolver| -> T) -> T { self.emit_errors = false; let rs = f(self); self.emit_errors = true; rs } fn resolve_error(&mut self, span: Span, s: &str) { if self.emit_errors { self.session.span_err(span, s); } } fn find_best_match_for_name(&mut self, name: &str, max_distance: uint) -> Option<@str> { let this = &mut *self; let mut maybes: ~[@str] = ~[]; let mut values: ~[uint] = ~[]; let mut j = this.value_ribs.len(); while j != 0 { j -= 1; for (&k, _) in this.value_ribs[j].bindings.iter() { maybes.push(interner_get(k)); values.push(uint::max_value); } } let mut smallest = 0; for (i, &other) in maybes.iter().enumerate() { values[i] = name.lev_distance(other); if values[i] <= values[smallest] { smallest = i; } } if values.len() > 0 && values[smallest] != uint::max_value && values[smallest] < name.len() + 2 && values[smallest] <= max_distance && name != maybes[smallest] { Some(maybes.swap_remove(smallest)) } else { None } } fn resolve_expr(&mut self, expr: @Expr) { // First, record candidate traits for this expression if it could // result in the invocation of a method call. self.record_candidate_traits_for_expr_if_necessary(expr); // Next, resolve the node. match expr.node { // The interpretation of paths depends on whether the path has // multiple elements in it or not. ExprPath(ref path) => { // This is a local path in the value namespace. Walk through // scopes looking for it. match self.resolve_path(expr.id, path, ValueNS, true) { Some(def) => { // Write the result into the def map. debug!("(resolving expr) resolved `{}`", self.path_idents_to_str(path)); // First-class methods are not supported yet; error // out here. match def { (DefMethod(..), _) => { self.resolve_error(expr.span, "first-class methods \ are not supported"); self.session.span_note(expr.span, "call the method \ using the `.` \ syntax"); } _ => {} } self.record_def(expr.id, def); } None => { let wrong_name = self.path_idents_to_str(path); // Be helpful if the name refers to a struct // (The pattern matching def_tys where the id is in self.structs // matches on regular structs while excluding tuple- and enum-like // structs, which wouldn't result in this error.) match self.with_no_errors(|this| this.resolve_path(expr.id, path, TypeNS, false)) { Some((DefTy(struct_id), _)) if self.structs.contains(&struct_id) => { self.resolve_error(expr.span, format!("`{}` is a structure name, but \ this expression \ uses it like a function name", wrong_name)); self.session.span_note(expr.span, format!("Did you mean to write: \ `{} \\{ /* fields */ \\}`?", wrong_name)); } _ => // limit search to 5 to reduce the number // of stupid suggestions match self.find_best_match_for_name(wrong_name, 5) { Some(m) => { self.resolve_error(expr.span, format!("unresolved name `{}`. \ Did you mean `{}`?", wrong_name, m)); } None => { self.resolve_error(expr.span, format!("unresolved name `{}`.", wrong_name)); } } } } } visit::walk_expr(self, expr, ()); } ExprFnBlock(fn_decl, block) | ExprProc(fn_decl, block) => { self.resolve_function(FunctionRibKind(expr.id, block.id), Some(fn_decl), NoTypeParameters, block, NoSelfBinding); } ExprStruct(ref path, _, _) => { // Resolve the path to the structure it goes to. match self.resolve_path(expr.id, path, TypeNS, false) { Some((DefTy(class_id), lp)) | Some((DefStruct(class_id), lp)) if self.structs.contains(&class_id) => { let class_def = DefStruct(class_id); self.record_def(expr.id, (class_def, lp)); } Some(definition @ (DefVariant(_, class_id, _), _)) if self.structs.contains(&class_id) => { self.record_def(expr.id, definition); } result => { debug!("(resolving expression) didn't find struct \ def: {:?}", result); let msg = format!("`{}` does not name a structure", self.path_idents_to_str(path)); self.resolve_error(path.span, msg); } } visit::walk_expr(self, expr, ()); } ExprLoop(_, Some(label)) => { self.with_label_rib(|this| { let def_like = DlDef(DefLabel(expr.id)); let rib = this.label_ribs[this.label_ribs.len() - 1]; // plain insert (no renaming) rib.bindings.insert(label.name, def_like); visit::walk_expr(this, expr, ()); }) } ExprForLoop(..) => fail!("non-desugared expr_for_loop"), ExprBreak(Some(label)) | ExprAgain(Some(label)) => { match self.search_ribs(self.label_ribs, label, expr.span, DontAllowCapturingSelf) { None => self.resolve_error(expr.span, format!("use of undeclared label \ `{}`", interner_get(label))), Some(DlDef(def @ DefLabel(_))) => { // XXX: is AllPublic correct? self.record_def(expr.id, (def, AllPublic)) } Some(_) => { self.session.span_bug(expr.span, "label wasn't mapped to a \ label def!") } } } ExprSelf => { match self.resolve_self_value_in_local_ribs(expr.span) { None => { self.resolve_error(expr.span, "`self` is not allowed in \ this context") } Some(def) => self.record_def(expr.id, (def, AllPublic)), } } _ => { visit::walk_expr(self, expr, ()); } } } fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: @Expr) { match expr.node { ExprField(_, ident, _) => { // FIXME(#6890): Even though you can't treat a method like a // field, we need to add any trait methods we find that match // the field name so that we can do some nice error reporting // later on in typeck. let traits = self.search_for_traits_containing_method(ident); self.trait_map.insert(expr.id, @mut traits); } ExprMethodCall(_, _, ident, _, _, _) => { debug!("(recording candidate traits for expr) recording \ traits for {}", expr.id); let traits = self.search_for_traits_containing_method(ident); self.trait_map.insert(expr.id, @mut traits); } ExprBinary(_, BiAdd, _, _) | ExprAssignOp(_, BiAdd, _, _) => { let i = self.lang_items.add_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiSub, _, _) | ExprAssignOp(_, BiSub, _, _) => { let i = self.lang_items.sub_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiMul, _, _) | ExprAssignOp(_, BiMul, _, _) => { let i = self.lang_items.mul_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiDiv, _, _) | ExprAssignOp(_, BiDiv, _, _) => { let i = self.lang_items.div_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiRem, _, _) | ExprAssignOp(_, BiRem, _, _) => { let i = self.lang_items.rem_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiBitXor, _, _) | ExprAssignOp(_, BiBitXor, _, _) => { let i = self.lang_items.bitxor_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiBitAnd, _, _) | ExprAssignOp(_, BiBitAnd, _, _) => { let i = self.lang_items.bitand_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiBitOr, _, _) | ExprAssignOp(_, BiBitOr, _, _) => { let i = self.lang_items.bitor_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiShl, _, _) | ExprAssignOp(_, BiShl, _, _) => { let i = self.lang_items.shl_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiShr, _, _) | ExprAssignOp(_, BiShr, _, _) => { let i = self.lang_items.shr_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiLt, _, _) | ExprBinary(_, BiLe, _, _) | ExprBinary(_, BiGe, _, _) | ExprBinary(_, BiGt, _, _) => { let i = self.lang_items.ord_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprBinary(_, BiEq, _, _) | ExprBinary(_, BiNe, _, _) => { let i = self.lang_items.eq_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprUnary(_, UnNeg, _) => { let i = self.lang_items.neg_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprUnary(_, UnNot, _) => { let i = self.lang_items.not_trait(); self.add_fixed_trait_for_expr(expr.id, i); } ExprIndex(..) => { let i = self.lang_items.index_trait(); self.add_fixed_trait_for_expr(expr.id, i); } _ => { // Nothing to do. } } } fn search_for_traits_containing_method(&mut self, name: Ident) -> ~[DefId] { debug!("(searching for traits containing method) looking for '{}'", self.session.str_of(name)); let mut found_traits = ~[]; let mut search_module = self.current_module; match self.method_map.find(&name.name) { Some(candidate_traits) => loop { // Look for the current trait. match self.current_trait_refs { Some(ref trait_def_ids) => { for trait_def_id in trait_def_ids.iter() { if candidate_traits.contains(trait_def_id) { self.add_trait_info(&mut found_traits, *trait_def_id, name); } } } None => { // Nothing to do. } } // Look for trait children. self.populate_module_if_necessary(search_module); for (_, &child_name_bindings) in search_module.children.iter() { match child_name_bindings.def_for_namespace(TypeNS) { Some(def) => { match def { DefTrait(trait_def_id) => { if candidate_traits.contains(&trait_def_id) { self.add_trait_info( &mut found_traits, trait_def_id, name); } } _ => { // Continue. } } } None => { // Continue. } } } // Look for imports. for (_, &import_resolution) in search_module.import_resolutions.iter() { match import_resolution.target_for_namespace(TypeNS) { None => { // Continue. } Some(target) => { match target.bindings.def_for_namespace(TypeNS) { Some(def) => { match def { DefTrait(trait_def_id) => { if candidate_traits.contains(&trait_def_id) { self.add_trait_info( &mut found_traits, trait_def_id, name); self.used_imports.insert( import_resolution.type_id); } } _ => { // Continue. } } } None => { // Continue. } } } } } // Move to the next parent. match search_module.parent_link { NoParentLink => { // Done. break; } ModuleParentLink(parent_module, _) | BlockParentLink(parent_module, _) => { search_module = parent_module; } } }, _ => () } return found_traits; } fn add_trait_info(&self, found_traits: &mut ~[DefId], trait_def_id: DefId, name: Ident) { debug!("(adding trait info) found trait {}:{} for method '{}'", trait_def_id.crate, trait_def_id.node, self.session.str_of(name)); found_traits.push(trait_def_id); } fn add_fixed_trait_for_expr(&mut self, expr_id: NodeId, trait_id: Option) { match trait_id { Some(trait_id) => { self.trait_map.insert(expr_id, @mut ~[trait_id]); } None => {} } } fn record_def(&mut self, node_id: NodeId, (def, lp): (Def, LastPrivate)) { debug!("(recording def) recording {:?} for {:?}, last private {:?}", def, node_id, lp); self.last_private.insert(node_id, lp); self.def_map.insert_or_update_with(node_id, def, |_, old_value| { // Resolve appears to "resolve" the same ID multiple // times, so here is a sanity check it at least comes to // the same conclusion! - nmatsakis if def != *old_value { self.session.bug(format!("node_id {:?} resolved first to {:?} \ and then {:?}", node_id, *old_value, def)); } }); } fn enforce_default_binding_mode(&mut self, pat: &Pat, pat_binding_mode: BindingMode, descr: &str) { match pat_binding_mode { BindByValue(_) => {} BindByRef(..) => { self.resolve_error( pat.span, format!("cannot use `ref` binding mode with {}", descr)); } } } // // Unused import checking // // Although this is a lint pass, it lives in here because it depends on // resolve data structures. // fn check_for_unused_imports(&self, crate: &ast::Crate) { let mut visitor = UnusedImportCheckVisitor{ resolver: self }; visit::walk_crate(&mut visitor, crate, ()); } fn check_for_item_unused_imports(&self, vi: &view_item) { // Ignore is_public import statements because there's no way to be sure // whether they're used or not. Also ignore imports with a dummy span // because this means that they were generated in some fashion by the // compiler and we don't need to consider them. if vi.vis == public { return } if vi.span == dummy_sp() { return } match vi.node { view_item_extern_mod(..) => {} // ignore view_item_use(ref path) => { for p in path.iter() { match p.node { view_path_simple(_, _, id) | view_path_glob(_, id) => { if !self.used_imports.contains(&id) { self.session.add_lint(unused_imports, id, p.span, ~"unused import"); } } view_path_list(_, ref list, _) => { for i in list.iter() { if !self.used_imports.contains(&i.node.id) { self.session.add_lint(unused_imports, i.node.id, i.span, ~"unused import"); } } } } } } } } // // Diagnostics // // Diagnostics are not particularly efficient, because they're rarely // hit. // /// A somewhat inefficient routine to obtain the name of a module. fn module_to_str(&mut self, module_: @mut Module) -> ~str { let mut idents = ~[]; let mut current_module = module_; loop { match current_module.parent_link { NoParentLink => { break; } ModuleParentLink(module_, name) => { idents.push(name); current_module = module_; } BlockParentLink(module_, _) => { idents.push(special_idents::opaque); current_module = module_; } } } if idents.len() == 0 { return ~"???"; } return self.idents_to_str(idents.move_rev_iter().collect::<~[ast::Ident]>()); } #[allow(dead_code)] // useful for debugging fn dump_module(&mut self, module_: @mut Module) { debug!("Dump of module `{}`:", self.module_to_str(module_)); debug!("Children:"); self.populate_module_if_necessary(module_); for (&name, _) in module_.children.iter() { debug!("* {}", interner_get(name)); } debug!("Import resolutions:"); for (name, import_resolution) in module_.import_resolutions.iter() { let value_repr; match import_resolution.target_for_namespace(ValueNS) { None => { value_repr = ~""; } Some(_) => { value_repr = ~" value:?"; // FIXME #4954 } } let type_repr; match import_resolution.target_for_namespace(TypeNS) { None => { type_repr = ~""; } Some(_) => { type_repr = ~" type:?"; // FIXME #4954 } } debug!("* {}:{}{}", interner_get(*name), value_repr, type_repr); } } } pub struct CrateMap { def_map: DefMap, exp_map2: ExportMap2, trait_map: TraitMap, external_exports: ExternalExports, last_private_map: LastPrivateMap, } /// Entry point to crate resolution. pub fn resolve_crate(session: Session, lang_items: LanguageItems, crate: &Crate) -> CrateMap { let mut resolver = Resolver(session, lang_items, crate.span); resolver.resolve(crate); let Resolver { def_map, export_map2, trait_map, last_private, external_exports, .. } = resolver; CrateMap { def_map: def_map, exp_map2: export_map2, trait_map: trait_map, external_exports: external_exports, last_private_map: last_private, } }