// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! # Translation of Expressions //! //! The expr module handles translation of expressions. The most general //! translation routine is `trans()`, which will translate an expression //! into a datum. `trans_into()` is also available, which will translate //! an expression and write the result directly into memory, sometimes //! avoiding the need for a temporary stack slot. Finally, //! `trans_to_lvalue()` is available if you'd like to ensure that the //! result has cleanup scheduled. //! //! Internally, each of these functions dispatches to various other //! expression functions depending on the kind of expression. We divide //! up expressions into: //! //! - **Datum expressions:** Those that most naturally yield values. //! Examples would be `22`, `box x`, or `a + b` (when not overloaded). //! - **DPS expressions:** Those that most naturally write into a location //! in memory. Examples would be `foo()` or `Point { x: 3, y: 4 }`. //! - **Statement expressions:** That that do not generate a meaningful //! result. Examples would be `while { ... }` or `return 44`. //! //! Public entry points: //! //! - `trans_into(bcx, expr, dest) -> bcx`: evaluates an expression, //! storing the result into `dest`. This is the preferred form, if you //! can manage it. //! //! - `trans(bcx, expr) -> DatumBlock`: evaluates an expression, yielding //! `Datum` with the result. You can then store the datum, inspect //! the value, etc. This may introduce temporaries if the datum is a //! structural type. //! //! - `trans_to_lvalue(bcx, expr, "...") -> DatumBlock`: evaluates an //! expression and ensures that the result has a cleanup associated with it, //! creating a temporary stack slot if necessary. //! //! - `trans_var -> Datum`: looks up a local variable, upvar or static. #![allow(non_camel_case_types)] pub use self::Dest::*; use self::lazy_binop_ty::*; use llvm::{self, ValueRef, TypeKind}; use middle::const_qualif::ConstQualif; use rustc::hir::def::Def; use rustc::ty::subst::Substs; use {_match, abi, adt, asm, base, closure, consts, controlflow}; use base::*; use build::*; use callee::{Callee, ArgExprs, ArgOverloadedCall, ArgOverloadedOp}; use cleanup::{self, CleanupMethods, DropHintMethods}; use common::*; use datum::*; use debuginfo::{self, DebugLoc, ToDebugLoc}; use glue; use machine; use tvec; use type_of; use value::Value; use Disr; use rustc::ty::adjustment::{AdjustDerefRef, AdjustReifyFnPointer}; use rustc::ty::adjustment::{AdjustUnsafeFnPointer, AdjustMutToConstPointer}; use rustc::ty::adjustment::CustomCoerceUnsized; use rustc::ty::{self, Ty, TyCtxt}; use rustc::ty::MethodCall; use rustc::ty::cast::{CastKind, CastTy}; use util::common::indenter; use machine::{llsize_of, llsize_of_alloc}; use type_::Type; use rustc::hir; use syntax::{ast, codemap}; use syntax::parse::token::InternedString; use std::fmt; use std::mem; // Destinations // These are passed around by the code generating functions to track the // destination of a computation's value. #[derive(Copy, Clone, PartialEq)] pub enum Dest { SaveIn(ValueRef), Ignore, } impl fmt::Debug for Dest { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { SaveIn(v) => write!(f, "SaveIn({:?})", Value(v)), Ignore => f.write_str("Ignore") } } } /// This function is equivalent to `trans(bcx, expr).store_to_dest(dest)` but it may generate /// better optimized LLVM code. pub fn trans_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, dest: Dest) -> Block<'blk, 'tcx> { let mut bcx = bcx; expr.debug_loc().apply(bcx.fcx); if adjustment_required(bcx, expr) { // use trans, which may be less efficient but // which will perform the adjustments: let datum = unpack_datum!(bcx, trans(bcx, expr)); return datum.store_to_dest(bcx, dest, expr.id); } let qualif = *bcx.tcx().const_qualif_map.borrow().get(&expr.id).unwrap(); if !qualif.intersects(ConstQualif::NOT_CONST | ConstQualif::NEEDS_DROP) { if !qualif.intersects(ConstQualif::PREFER_IN_PLACE) { if let SaveIn(lldest) = dest { match consts::get_const_expr_as_global(bcx.ccx(), expr, qualif, bcx.fcx.param_substs, consts::TrueConst::No) { Ok(global) => { // Cast pointer to destination, because constants // have different types. let lldest = PointerCast(bcx, lldest, val_ty(global)); memcpy_ty(bcx, lldest, global, expr_ty_adjusted(bcx, expr)); return bcx; }, Err(consts::ConstEvalFailure::Runtime(_)) => { // in case const evaluation errors, translate normally // debug assertions catch the same errors // see RFC 1229 }, Err(consts::ConstEvalFailure::Compiletime(_)) => { return bcx; }, } } // If we see a const here, that's because it evaluates to a type with zero size. We // should be able to just discard it, since const expressions are guaranteed not to // have side effects. This seems to be reached through tuple struct constructors being // passed zero-size constants. if let hir::ExprPath(..) = expr.node { match bcx.tcx().expect_def(expr.id) { Def::Const(_) | Def::AssociatedConst(_) => { assert!(type_is_zero_size(bcx.ccx(), bcx.tcx().node_id_to_type(expr.id))); return bcx; } _ => {} } } // Even if we don't have a value to emit, and the expression // doesn't have any side-effects, we still have to translate the // body of any closures. // FIXME: Find a better way of handling this case. } else { // The only way we're going to see a `const` at this point is if // it prefers in-place instantiation, likely because it contains // `[x; N]` somewhere within. match expr.node { hir::ExprPath(..) => { match bcx.tcx().expect_def(expr.id) { Def::Const(did) | Def::AssociatedConst(did) => { let empty_substs = bcx.tcx().mk_substs(Substs::empty()); let const_expr = consts::get_const_expr(bcx.ccx(), did, expr, empty_substs); // Temporarily get cleanup scopes out of the way, // as they require sub-expressions to be contained // inside the current AST scope. // These should record no cleanups anyways, `const` // can't have destructors. let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(), vec![]); // Lock emitted debug locations to the location of // the constant reference expression. debuginfo::with_source_location_override(bcx.fcx, expr.debug_loc(), || { bcx = trans_into(bcx, const_expr, dest) }); let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(), scopes); assert!(scopes.is_empty()); return bcx; } _ => {} } } _ => {} } } } debug!("trans_into() expr={:?}", expr); let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(), expr.id, expr.span, false); bcx.fcx.push_ast_cleanup_scope(cleanup_debug_loc); let kind = expr_kind(bcx.tcx(), expr); bcx = match kind { ExprKind::Lvalue | ExprKind::RvalueDatum => { trans_unadjusted(bcx, expr).store_to_dest(dest, expr.id) } ExprKind::RvalueDps => { trans_rvalue_dps_unadjusted(bcx, expr, dest) } ExprKind::RvalueStmt => { trans_rvalue_stmt_unadjusted(bcx, expr) } }; bcx.fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id) } /// Translates an expression, returning a datum (and new block) encapsulating the result. When /// possible, it is preferred to use `trans_into`, as that may avoid creating a temporary on the /// stack. pub fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { debug!("trans(expr={:?})", expr); let mut bcx = bcx; let fcx = bcx.fcx; let qualif = *bcx.tcx().const_qualif_map.borrow().get(&expr.id).unwrap(); let adjusted_global = !qualif.intersects(ConstQualif::NON_STATIC_BORROWS); let global = if !qualif.intersects(ConstQualif::NOT_CONST | ConstQualif::NEEDS_DROP) { match consts::get_const_expr_as_global(bcx.ccx(), expr, qualif, bcx.fcx.param_substs, consts::TrueConst::No) { Ok(global) => { if qualif.intersects(ConstQualif::HAS_STATIC_BORROWS) { // Is borrowed as 'static, must return lvalue. // Cast pointer to global, because constants have different types. let const_ty = expr_ty_adjusted(bcx, expr); let llty = type_of::type_of(bcx.ccx(), const_ty); let global = PointerCast(bcx, global, llty.ptr_to()); let datum = Datum::new(global, const_ty, Lvalue::new("expr::trans")); return DatumBlock::new(bcx, datum.to_expr_datum()); } // Otherwise, keep around and perform adjustments, if needed. let const_ty = if adjusted_global { expr_ty_adjusted(bcx, expr) } else { expr_ty(bcx, expr) }; // This could use a better heuristic. Some(if type_is_immediate(bcx.ccx(), const_ty) { // Cast pointer to global, because constants have different types. let llty = type_of::type_of(bcx.ccx(), const_ty); let global = PointerCast(bcx, global, llty.ptr_to()); // Maybe just get the value directly, instead of loading it? immediate_rvalue(load_ty(bcx, global, const_ty), const_ty) } else { let scratch = alloc_ty(bcx, const_ty, "const"); call_lifetime_start(bcx, scratch); let lldest = if !const_ty.is_structural() { // Cast pointer to slot, because constants have different types. PointerCast(bcx, scratch, val_ty(global)) } else { // In this case, memcpy_ty calls llvm.memcpy after casting both // source and destination to i8*, so we don't need any casts. scratch }; memcpy_ty(bcx, lldest, global, const_ty); Datum::new(scratch, const_ty, Rvalue::new(ByRef)) }) }, Err(consts::ConstEvalFailure::Runtime(_)) => { // in case const evaluation errors, translate normally // debug assertions catch the same errors // see RFC 1229 None }, Err(consts::ConstEvalFailure::Compiletime(_)) => { // generate a dummy llvm value let const_ty = expr_ty(bcx, expr); let llty = type_of::type_of(bcx.ccx(), const_ty); let dummy = C_undef(llty.ptr_to()); Some(Datum::new(dummy, const_ty, Rvalue::new(ByRef))) }, } } else { None }; let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(), expr.id, expr.span, false); fcx.push_ast_cleanup_scope(cleanup_debug_loc); let datum = match global { Some(rvalue) => rvalue.to_expr_datum(), None => unpack_datum!(bcx, trans_unadjusted(bcx, expr)) }; let datum = if adjusted_global { datum // trans::consts already performed adjustments. } else { unpack_datum!(bcx, apply_adjustments(bcx, expr, datum)) }; bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id); return DatumBlock::new(bcx, datum); } pub fn get_meta(bcx: Block, fat_ptr: ValueRef) -> ValueRef { StructGEP(bcx, fat_ptr, abi::FAT_PTR_EXTRA) } pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef { StructGEP(bcx, fat_ptr, abi::FAT_PTR_ADDR) } pub fn copy_fat_ptr(bcx: Block, src_ptr: ValueRef, dst_ptr: ValueRef) { Store(bcx, Load(bcx, get_dataptr(bcx, src_ptr)), get_dataptr(bcx, dst_ptr)); Store(bcx, Load(bcx, get_meta(bcx, src_ptr)), get_meta(bcx, dst_ptr)); } fn adjustment_required<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr) -> bool { let adjustment = match bcx.tcx().tables.borrow().adjustments.get(&expr.id).cloned() { None => { return false; } Some(adj) => adj }; // Don't skip a conversion from Box to &T, etc. if bcx.tcx().is_overloaded_autoderef(expr.id, 0) { return true; } match adjustment { AdjustReifyFnPointer => true, AdjustUnsafeFnPointer | AdjustMutToConstPointer => { // purely a type-level thing false } AdjustDerefRef(ref adj) => { // We are a bit paranoid about adjustments and thus might have a re- // borrow here which merely derefs and then refs again (it might have // a different region or mutability, but we don't care here). !(adj.autoderefs == 1 && adj.autoref.is_some() && adj.unsize.is_none()) } } } /// Helper for trans that apply adjustments from `expr` to `datum`, which should be the unadjusted /// translation of `expr`. fn apply_adjustments<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, datum: Datum<'tcx, Expr>) -> DatumBlock<'blk, 'tcx, Expr> { let mut bcx = bcx; let mut datum = datum; let adjustment = match bcx.tcx().tables.borrow().adjustments.get(&expr.id).cloned() { None => { return DatumBlock::new(bcx, datum); } Some(adj) => { adj } }; debug!("unadjusted datum for expr {:?}: {:?} adjustment={:?}", expr, datum, adjustment); match adjustment { AdjustReifyFnPointer => { match datum.ty.sty { ty::TyFnDef(def_id, substs, _) => { datum = Callee::def(bcx.ccx(), def_id, substs) .reify(bcx.ccx()).to_expr_datum(); } _ => { bug!("{} cannot be reified to a fn ptr", datum.ty) } } } AdjustUnsafeFnPointer | AdjustMutToConstPointer => { // purely a type-level thing } AdjustDerefRef(ref adj) => { let skip_reborrows = if adj.autoderefs == 1 && adj.autoref.is_some() { // We are a bit paranoid about adjustments and thus might have a re- // borrow here which merely derefs and then refs again (it might have // a different region or mutability, but we don't care here). match datum.ty.sty { // Don't skip a conversion from Box to &T, etc. ty::TyRef(..) => { if bcx.tcx().is_overloaded_autoderef(expr.id, 0) { // Don't skip an overloaded deref. 0 } else { 1 } } _ => 0 } } else { 0 }; if adj.autoderefs > skip_reborrows { // Schedule cleanup. let lval = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "auto_deref", expr.id)); datum = unpack_datum!(bcx, deref_multiple(bcx, expr, lval.to_expr_datum(), adj.autoderefs - skip_reborrows)); } // (You might think there is a more elegant way to do this than a // skip_reborrows bool, but then you remember that the borrow checker exists). if skip_reborrows == 0 && adj.autoref.is_some() { datum = unpack_datum!(bcx, auto_ref(bcx, datum, expr)); } if let Some(target) = adj.unsize { // We do not arrange cleanup ourselves; if we already are an // L-value, then cleanup will have already been scheduled (and // the `datum.to_rvalue_datum` call below will emit code to zero // the drop flag when moving out of the L-value). If we are an // R-value, then we do not need to schedule cleanup. let source_datum = unpack_datum!(bcx, datum.to_rvalue_datum(bcx, "__coerce_source")); let target = bcx.monomorphize(&target); let scratch = alloc_ty(bcx, target, "__coerce_target"); call_lifetime_start(bcx, scratch); let target_datum = Datum::new(scratch, target, Rvalue::new(ByRef)); bcx = coerce_unsized(bcx, expr.span, source_datum, target_datum); datum = Datum::new(scratch, target, RvalueExpr(Rvalue::new(ByRef))); } } } debug!("after adjustments, datum={:?}", datum); DatumBlock::new(bcx, datum) } fn coerce_unsized<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, span: codemap::Span, source: Datum<'tcx, Rvalue>, target: Datum<'tcx, Rvalue>) -> Block<'blk, 'tcx> { let mut bcx = bcx; debug!("coerce_unsized({:?} -> {:?})", source, target); match (&source.ty.sty, &target.ty.sty) { (&ty::TyBox(a), &ty::TyBox(b)) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) | (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => { let (inner_source, inner_target) = (a, b); let (base, old_info) = if !type_is_sized(bcx.tcx(), inner_source) { // Normally, the source is a thin pointer and we are // adding extra info to make a fat pointer. The exception // is when we are upcasting an existing object fat pointer // to use a different vtable. In that case, we want to // load out the original data pointer so we can repackage // it. (Load(bcx, get_dataptr(bcx, source.val)), Some(Load(bcx, get_meta(bcx, source.val)))) } else { let val = if source.kind.is_by_ref() { load_ty(bcx, source.val, source.ty) } else { source.val }; (val, None) }; let info = unsized_info(bcx.ccx(), inner_source, inner_target, old_info); // Compute the base pointer. This doesn't change the pointer value, // but merely its type. let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), inner_target).ptr_to(); let base = PointerCast(bcx, base, ptr_ty); Store(bcx, base, get_dataptr(bcx, target.val)); Store(bcx, info, get_meta(bcx, target.val)); } // This can be extended to enums and tuples in the future. // (&ty::TyEnum(def_id_a, _), &ty::TyEnum(def_id_b, _)) | (&ty::TyStruct(def_id_a, _), &ty::TyStruct(def_id_b, _)) => { assert_eq!(def_id_a, def_id_b); // The target is already by-ref because it's to be written to. let source = unpack_datum!(bcx, source.to_ref_datum(bcx)); assert!(target.kind.is_by_ref()); let kind = custom_coerce_unsize_info(bcx.ccx().shared(), source.ty, target.ty); let repr_source = adt::represent_type(bcx.ccx(), source.ty); let src_fields = match &*repr_source { &adt::Repr::Univariant(ref s, _) => &s.fields, _ => span_bug!(span, "Non univariant struct? (repr_source: {:?})", repr_source), }; let repr_target = adt::represent_type(bcx.ccx(), target.ty); let target_fields = match &*repr_target { &adt::Repr::Univariant(ref s, _) => &s.fields, _ => span_bug!(span, "Non univariant struct? (repr_target: {:?})", repr_target), }; let coerce_index = match kind { CustomCoerceUnsized::Struct(i) => i }; assert!(coerce_index < src_fields.len() && src_fields.len() == target_fields.len()); let source_val = adt::MaybeSizedValue::sized(source.val); let target_val = adt::MaybeSizedValue::sized(target.val); let iter = src_fields.iter().zip(target_fields).enumerate(); for (i, (src_ty, target_ty)) in iter { let ll_source = adt::trans_field_ptr(bcx, &repr_source, source_val, Disr(0), i); let ll_target = adt::trans_field_ptr(bcx, &repr_target, target_val, Disr(0), i); // If this is the field we need to coerce, recurse on it. if i == coerce_index { coerce_unsized(bcx, span, Datum::new(ll_source, src_ty, Rvalue::new(ByRef)), Datum::new(ll_target, target_ty, Rvalue::new(ByRef))); } else { // Otherwise, simply copy the data from the source. assert!(src_ty.is_phantom_data() || src_ty == target_ty); memcpy_ty(bcx, ll_target, ll_source, src_ty); } } } _ => bug!("coerce_unsized: invalid coercion {:?} -> {:?}", source.ty, target.ty) } bcx } /// Translates an expression in "lvalue" mode -- meaning that it returns a reference to the memory /// that the expr represents. /// /// If this expression is an rvalue, this implies introducing a temporary. In other words, /// something like `x().f` is translated into roughly the equivalent of /// /// { tmp = x(); tmp.f } pub fn trans_to_lvalue<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, name: &str) -> DatumBlock<'blk, 'tcx, Lvalue> { let mut bcx = bcx; let datum = unpack_datum!(bcx, trans(bcx, expr)); return datum.to_lvalue_datum(bcx, name, expr.id); } /// A version of `trans` that ignores adjustments. You almost certainly do not want to call this /// directly. fn trans_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let mut bcx = bcx; debug!("trans_unadjusted(expr={:?})", expr); let _indenter = indenter(); expr.debug_loc().apply(bcx.fcx); return match expr_kind(bcx.tcx(), expr) { ExprKind::Lvalue | ExprKind::RvalueDatum => { let datum = unpack_datum!(bcx, { trans_datum_unadjusted(bcx, expr) }); DatumBlock {bcx: bcx, datum: datum} } ExprKind::RvalueStmt => { bcx = trans_rvalue_stmt_unadjusted(bcx, expr); nil(bcx, expr_ty(bcx, expr)) } ExprKind::RvalueDps => { let ty = expr_ty(bcx, expr); if type_is_zero_size(bcx.ccx(), ty) { bcx = trans_rvalue_dps_unadjusted(bcx, expr, Ignore); nil(bcx, ty) } else { let scratch = rvalue_scratch_datum(bcx, ty, ""); bcx = trans_rvalue_dps_unadjusted( bcx, expr, SaveIn(scratch.val)); // Note: this is not obviously a good idea. It causes // immediate values to be loaded immediately after a // return from a call or other similar expression, // which in turn leads to alloca's having shorter // lifetimes and hence larger stack frames. However, // in turn it can lead to more register pressure. // Still, in practice it seems to increase // performance, since we have fewer problems with // morestack churn. let scratch = unpack_datum!( bcx, scratch.to_appropriate_datum(bcx)); DatumBlock::new(bcx, scratch.to_expr_datum()) } } }; fn nil<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>) -> DatumBlock<'blk, 'tcx, Expr> { let llval = C_undef(type_of::type_of(bcx.ccx(), ty)); let datum = immediate_rvalue(llval, ty); DatumBlock::new(bcx, datum.to_expr_datum()) } } fn trans_datum_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let mut bcx = bcx; let fcx = bcx.fcx; let _icx = push_ctxt("trans_datum_unadjusted"); match expr.node { hir::ExprType(ref e, _) => { trans(bcx, &e) } hir::ExprPath(..) => { let var = trans_var(bcx, bcx.tcx().expect_def(expr.id)); DatumBlock::new(bcx, var.to_expr_datum()) } hir::ExprField(ref base, name) => { trans_rec_field(bcx, &base, name.node) } hir::ExprTupField(ref base, idx) => { trans_rec_tup_field(bcx, &base, idx.node) } hir::ExprIndex(ref base, ref idx) => { trans_index(bcx, expr, &base, &idx, MethodCall::expr(expr.id)) } hir::ExprBox(ref contents) => { // Special case for `Box` let box_ty = expr_ty(bcx, expr); let contents_ty = expr_ty(bcx, &contents); match box_ty.sty { ty::TyBox(..) => { trans_uniq_expr(bcx, expr, box_ty, &contents, contents_ty) } _ => span_bug!(expr.span, "expected unique box") } } hir::ExprLit(ref lit) => trans_immediate_lit(bcx, expr, &lit), hir::ExprBinary(op, ref lhs, ref rhs) => { trans_binary(bcx, expr, op, &lhs, &rhs) } hir::ExprUnary(op, ref x) => { trans_unary(bcx, expr, op, &x) } hir::ExprAddrOf(_, ref x) => { match x.node { hir::ExprRepeat(..) | hir::ExprVec(..) => { // Special case for slices. let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(), x.id, x.span, false); fcx.push_ast_cleanup_scope(cleanup_debug_loc); let datum = unpack_datum!( bcx, tvec::trans_slice_vec(bcx, expr, &x)); bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, x.id); DatumBlock::new(bcx, datum) } _ => { trans_addr_of(bcx, expr, &x) } } } hir::ExprCast(ref val, _) => { // Datum output mode means this is a scalar cast: trans_imm_cast(bcx, &val, expr.id) } _ => { span_bug!( expr.span, "trans_rvalue_datum_unadjusted reached \ fall-through case: {:?}", expr.node); } } } fn trans_field<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>, base: &hir::Expr, get_idx: F) -> DatumBlock<'blk, 'tcx, Expr> where F: FnOnce(TyCtxt<'blk, 'tcx, 'tcx>, &VariantInfo<'tcx>) -> usize, { let mut bcx = bcx; let _icx = push_ctxt("trans_rec_field"); let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "field")); let bare_ty = base_datum.ty; let repr = adt::represent_type(bcx.ccx(), bare_ty); let vinfo = VariantInfo::from_ty(bcx.tcx(), bare_ty, None); let ix = get_idx(bcx.tcx(), &vinfo); let d = base_datum.get_element( bcx, vinfo.fields[ix].1, |srcval| { adt::trans_field_ptr(bcx, &repr, srcval, vinfo.discr, ix) }); if type_is_sized(bcx.tcx(), d.ty) { DatumBlock { datum: d.to_expr_datum(), bcx: bcx } } else { let scratch = rvalue_scratch_datum(bcx, d.ty, ""); Store(bcx, d.val, get_dataptr(bcx, scratch.val)); let info = Load(bcx, get_meta(bcx, base_datum.val)); Store(bcx, info, get_meta(bcx, scratch.val)); // Always generate an lvalue datum, because this pointer doesn't own // the data and cleanup is scheduled elsewhere. DatumBlock::new(bcx, Datum::new(scratch.val, scratch.ty, LvalueExpr(d.kind))) } } /// Translates `base.field`. fn trans_rec_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, base: &hir::Expr, field: ast::Name) -> DatumBlock<'blk, 'tcx, Expr> { trans_field(bcx, base, |_, vinfo| vinfo.field_index(field)) } /// Translates `base.`. fn trans_rec_tup_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, base: &hir::Expr, idx: usize) -> DatumBlock<'blk, 'tcx, Expr> { trans_field(bcx, base, |_, _| idx) } fn trans_index<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, index_expr: &hir::Expr, base: &hir::Expr, idx: &hir::Expr, method_call: MethodCall) -> DatumBlock<'blk, 'tcx, Expr> { //! Translates `base[idx]`. let _icx = push_ctxt("trans_index"); let ccx = bcx.ccx(); let mut bcx = bcx; let index_expr_debug_loc = index_expr.debug_loc(); // Check for overloaded index. let method = ccx.tcx().tables.borrow().method_map.get(&method_call).cloned(); let elt_datum = match method { Some(method) => { let method_ty = monomorphize_type(bcx, method.ty); let base_datum = unpack_datum!(bcx, trans(bcx, base)); // Translate index expression. let ix_datum = unpack_datum!(bcx, trans(bcx, idx)); let ref_ty = // invoked methods have LB regions instantiated: bcx.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap().unwrap(); let elt_ty = match ref_ty.builtin_deref(true, ty::NoPreference) { None => { span_bug!(index_expr.span, "index method didn't return a \ dereferenceable type?!") } Some(elt_tm) => elt_tm.ty, }; // Overloaded. Invoke the index() method, which basically // yields a `&T` pointer. We can then proceed down the // normal path (below) to dereference that `&T`. let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_index_elt"); bcx = Callee::method(bcx, method) .call(bcx, index_expr_debug_loc, ArgOverloadedOp(base_datum, Some(ix_datum)), Some(SaveIn(scratch.val))).bcx; let datum = scratch.to_expr_datum(); let lval = Lvalue::new("expr::trans_index overload"); if type_is_sized(bcx.tcx(), elt_ty) { Datum::new(datum.to_llscalarish(bcx), elt_ty, LvalueExpr(lval)) } else { Datum::new(datum.val, elt_ty, LvalueExpr(lval)) } } None => { let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "index")); // Translate index expression and cast to a suitable LLVM integer. // Rust is less strict than LLVM in this regard. let ix_datum = unpack_datum!(bcx, trans(bcx, idx)); let ix_val = ix_datum.to_llscalarish(bcx); let ix_size = machine::llbitsize_of_real(bcx.ccx(), val_ty(ix_val)); let int_size = machine::llbitsize_of_real(bcx.ccx(), ccx.int_type()); let ix_val = { if ix_size < int_size { if expr_ty(bcx, idx).is_signed() { SExt(bcx, ix_val, ccx.int_type()) } else { ZExt(bcx, ix_val, ccx.int_type()) } } else if ix_size > int_size { Trunc(bcx, ix_val, ccx.int_type()) } else { ix_val } }; let unit_ty = base_datum.ty.sequence_element_type(bcx.tcx()); let (base, len) = base_datum.get_vec_base_and_len(bcx); debug!("trans_index: base {:?}", Value(base)); debug!("trans_index: len {:?}", Value(len)); let bounds_check = ICmp(bcx, llvm::IntUGE, ix_val, len, index_expr_debug_loc); let expect = ccx.get_intrinsic(&("llvm.expect.i1")); let expected = Call(bcx, expect, &[bounds_check, C_bool(ccx, false)], index_expr_debug_loc); bcx = with_cond(bcx, expected, |bcx| { controlflow::trans_fail_bounds_check(bcx, expr_info(index_expr), ix_val, len) }); let elt = InBoundsGEP(bcx, base, &[ix_val]); let elt = PointerCast(bcx, elt, type_of::type_of(ccx, unit_ty).ptr_to()); let lval = Lvalue::new("expr::trans_index fallback"); Datum::new(elt, unit_ty, LvalueExpr(lval)) } }; DatumBlock::new(bcx, elt_datum) } /// Translates a reference to a variable. pub fn trans_var<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, def: Def) -> Datum<'tcx, Lvalue> { match def { Def::Static(did, _) => consts::get_static(bcx.ccx(), did), Def::Upvar(_, nid, _, _) => { // Can't move upvars, so this is never a ZeroMemLastUse. let local_ty = node_id_type(bcx, nid); let lval = Lvalue::new_with_hint("expr::trans_var (upvar)", bcx, nid, HintKind::ZeroAndMaintain); match bcx.fcx.llupvars.borrow().get(&nid) { Some(&val) => Datum::new(val, local_ty, lval), None => { bug!("trans_var: no llval for upvar {} found", nid); } } } Def::Local(_, nid) => { let datum = match bcx.fcx.lllocals.borrow().get(&nid) { Some(&v) => v, None => { bug!("trans_var: no datum for local/arg {} found", nid); } }; debug!("take_local(nid={}, v={:?}, ty={})", nid, Value(datum.val), datum.ty); datum } _ => bug!("{:?} should not reach expr::trans_var", def) } } fn trans_rvalue_stmt_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr) -> Block<'blk, 'tcx> { let mut bcx = bcx; let _icx = push_ctxt("trans_rvalue_stmt"); if bcx.unreachable.get() { return bcx; } expr.debug_loc().apply(bcx.fcx); match expr.node { hir::ExprBreak(label_opt) => { controlflow::trans_break(bcx, expr, label_opt.map(|l| l.node)) } hir::ExprType(ref e, _) => { trans_into(bcx, &e, Ignore) } hir::ExprAgain(label_opt) => { controlflow::trans_cont(bcx, expr, label_opt.map(|l| l.node)) } hir::ExprRet(ref ex) => { // Check to see if the return expression itself is reachable. // This can occur when the inner expression contains a return let reachable = if let Some(ref cfg) = bcx.fcx.cfg { cfg.node_is_reachable(expr.id) } else { true }; if reachable { controlflow::trans_ret(bcx, expr, ex.as_ref().map(|e| &**e)) } else { // If it's not reachable, just translate the inner expression // directly. This avoids having to manage a return slot when // it won't actually be used anyway. if let &Some(ref x) = ex { bcx = trans_into(bcx, &x, Ignore); } // Mark the end of the block as unreachable. Once we get to // a return expression, there's no more we should be doing // after this. Unreachable(bcx); bcx } } hir::ExprWhile(ref cond, ref body, _) => { controlflow::trans_while(bcx, expr, &cond, &body) } hir::ExprLoop(ref body, _) => { controlflow::trans_loop(bcx, expr, &body) } hir::ExprAssign(ref dst, ref src) => { let src_datum = unpack_datum!(bcx, trans(bcx, &src)); let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &dst, "assign")); if bcx.fcx.type_needs_drop(dst_datum.ty) { // If there are destructors involved, make sure we // are copying from an rvalue, since that cannot possible // alias an lvalue. We are concerned about code like: // // a = a // // but also // // a = a.b // // where e.g. a : Option and a.b : // Option. In that case, freeing `a` before the // assignment may also free `a.b`! // // We could avoid this intermediary with some analysis // to determine whether `dst` may possibly own `src`. expr.debug_loc().apply(bcx.fcx); let src_datum = unpack_datum!( bcx, src_datum.to_rvalue_datum(bcx, "ExprAssign")); let opt_hint_datum = dst_datum.kind.drop_flag_info.hint_datum(bcx); let opt_hint_val = opt_hint_datum.map(|d|d.to_value()); // 1. Drop the data at the destination, passing the // drop-hint in case the lvalue has already been // dropped or moved. bcx = glue::drop_ty_core(bcx, dst_datum.val, dst_datum.ty, expr.debug_loc(), false, opt_hint_val); // 2. We are overwriting the destination; ensure that // its drop-hint (if any) says "initialized." if let Some(hint_val) = opt_hint_val { let hint_llval = hint_val.value(); let drop_needed = C_u8(bcx.fcx.ccx, adt::DTOR_NEEDED_HINT); Store(bcx, drop_needed, hint_llval); } src_datum.store_to(bcx, dst_datum.val) } else { src_datum.store_to(bcx, dst_datum.val) } } hir::ExprAssignOp(op, ref dst, ref src) => { let method = bcx.tcx().tables .borrow() .method_map .get(&MethodCall::expr(expr.id)).cloned(); if let Some(method) = method { let dst = unpack_datum!(bcx, trans(bcx, &dst)); let src_datum = unpack_datum!(bcx, trans(bcx, &src)); Callee::method(bcx, method) .call(bcx, expr.debug_loc(), ArgOverloadedOp(dst, Some(src_datum)), None).bcx } else { trans_assign_op(bcx, expr, op, &dst, &src) } } hir::ExprInlineAsm(ref a, ref outputs, ref inputs) => { let outputs = outputs.iter().map(|output| { let out_datum = unpack_datum!(bcx, trans(bcx, output)); unpack_datum!(bcx, out_datum.to_lvalue_datum(bcx, "out", expr.id)) }).collect(); let inputs = inputs.iter().map(|input| { let input = unpack_datum!(bcx, trans(bcx, input)); let input = unpack_datum!(bcx, input.to_rvalue_datum(bcx, "in")); input.to_llscalarish(bcx) }).collect(); asm::trans_inline_asm(bcx, a, outputs, inputs); bcx } _ => { span_bug!( expr.span, "trans_rvalue_stmt_unadjusted reached \ fall-through case: {:?}", expr.node); } } } fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, dest: Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_rvalue_dps_unadjusted"); let mut bcx = bcx; expr.debug_loc().apply(bcx.fcx); // Entry into the method table if this is an overloaded call/op. let method_call = MethodCall::expr(expr.id); match expr.node { hir::ExprType(ref e, _) => { trans_into(bcx, &e, dest) } hir::ExprPath(..) => { trans_def_dps_unadjusted(bcx, expr, bcx.tcx().expect_def(expr.id), dest) } hir::ExprIf(ref cond, ref thn, ref els) => { controlflow::trans_if(bcx, expr.id, &cond, &thn, els.as_ref().map(|e| &**e), dest) } hir::ExprMatch(ref discr, ref arms, _) => { _match::trans_match(bcx, expr, &discr, &arms[..], dest) } hir::ExprBlock(ref blk) => { controlflow::trans_block(bcx, &blk, dest) } hir::ExprStruct(_, ref fields, ref base) => { trans_struct(bcx, &fields[..], base.as_ref().map(|e| &**e), expr.span, expr.id, node_id_type(bcx, expr.id), dest) } hir::ExprTup(ref args) => { let numbered_fields: Vec<(usize, &hir::Expr)> = args.iter().enumerate().map(|(i, arg)| (i, &**arg)).collect(); trans_adt(bcx, expr_ty(bcx, expr), Disr(0), &numbered_fields[..], None, dest, expr.debug_loc()) } hir::ExprLit(ref lit) => { match lit.node { ast::LitKind::Str(ref s, _) => { tvec::trans_lit_str(bcx, expr, (*s).clone(), dest) } _ => { span_bug!(expr.span, "trans_rvalue_dps_unadjusted shouldn't be \ translating this type of literal") } } } hir::ExprVec(..) | hir::ExprRepeat(..) => { tvec::trans_fixed_vstore(bcx, expr, dest) } hir::ExprClosure(_, ref decl, ref body, _) => { let dest = match dest { SaveIn(lldest) => closure::Dest::SaveIn(bcx, lldest), Ignore => closure::Dest::Ignore(bcx.ccx()) }; // NB. To get the id of the closure, we don't use // `local_def_id(id)`, but rather we extract the closure // def-id from the expr's type. This is because this may // be an inlined expression from another crate, and we // want to get the ORIGINAL closure def-id, since that is // the key we need to find the closure-kind and // closure-type etc. let (def_id, substs) = match expr_ty(bcx, expr).sty { ty::TyClosure(def_id, substs) => (def_id, substs), ref t => span_bug!( expr.span, "closure expr without closure type: {:?}", t), }; closure::trans_closure_expr(dest, decl, body, expr.id, def_id, substs).unwrap_or(bcx) } hir::ExprCall(ref f, ref args) => { let method = bcx.tcx().tables.borrow().method_map.get(&method_call).cloned(); let (callee, args) = if let Some(method) = method { let mut all_args = vec![&**f]; all_args.extend(args.iter().map(|e| &**e)); (Callee::method(bcx, method), ArgOverloadedCall(all_args)) } else { let f = unpack_datum!(bcx, trans(bcx, f)); (match f.ty.sty { ty::TyFnDef(def_id, substs, _) => { Callee::def(bcx.ccx(), def_id, substs) } ty::TyFnPtr(_) => { let f = unpack_datum!(bcx, f.to_rvalue_datum(bcx, "callee")); Callee::ptr(f) } _ => { span_bug!(expr.span, "type of callee is not a fn: {}", f.ty); } }, ArgExprs(&args)) }; callee.call(bcx, expr.debug_loc(), args, Some(dest)).bcx } hir::ExprMethodCall(_, _, ref args) => { Callee::method_call(bcx, method_call) .call(bcx, expr.debug_loc(), ArgExprs(&args), Some(dest)).bcx } hir::ExprBinary(op, ref lhs, ref rhs_expr) => { // if not overloaded, would be RvalueDatumExpr let lhs = unpack_datum!(bcx, trans(bcx, &lhs)); let mut rhs = unpack_datum!(bcx, trans(bcx, &rhs_expr)); if !op.node.is_by_value() { rhs = unpack_datum!(bcx, auto_ref(bcx, rhs, rhs_expr)); } Callee::method_call(bcx, method_call) .call(bcx, expr.debug_loc(), ArgOverloadedOp(lhs, Some(rhs)), Some(dest)).bcx } hir::ExprUnary(_, ref subexpr) => { // if not overloaded, would be RvalueDatumExpr let arg = unpack_datum!(bcx, trans(bcx, &subexpr)); Callee::method_call(bcx, method_call) .call(bcx, expr.debug_loc(), ArgOverloadedOp(arg, None), Some(dest)).bcx } hir::ExprCast(..) => { // Trait casts used to come this way, now they should be coercions. span_bug!(expr.span, "DPS expr_cast (residual trait cast?)") } hir::ExprAssignOp(op, _, _) => { span_bug!( expr.span, "augmented assignment `{}=` should always be a rvalue_stmt", op.node.as_str()) } _ => { span_bug!( expr.span, "trans_rvalue_dps_unadjusted reached fall-through \ case: {:?}", expr.node); } } } fn trans_def_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ref_expr: &hir::Expr, def: Def, dest: Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_def_dps_unadjusted"); let lldest = match dest { SaveIn(lldest) => lldest, Ignore => { return bcx; } }; let ty = expr_ty(bcx, ref_expr); if let ty::TyFnDef(..) = ty.sty { // Zero-sized function or ctor. return bcx; } match def { Def::Variant(tid, vid) => { let variant = bcx.tcx().lookup_adt_def(tid).variant_with_id(vid); // Nullary variant. let ty = expr_ty(bcx, ref_expr); let repr = adt::represent_type(bcx.ccx(), ty); adt::trans_set_discr(bcx, &repr, lldest, Disr::from(variant.disr_val)); bcx } Def::Struct(..) => { match ty.sty { ty::TyStruct(def, _) if def.has_dtor() => { let repr = adt::represent_type(bcx.ccx(), ty); adt::trans_set_discr(bcx, &repr, lldest, Disr(0)); } _ => {} } bcx } _ => { span_bug!(ref_expr.span, "Non-DPS def {:?} referened by {}", def, bcx.node_id_to_string(ref_expr.id)); } } } fn trans_struct<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, fields: &[hir::Field], base: Option<&hir::Expr>, expr_span: codemap::Span, expr_id: ast::NodeId, ty: Ty<'tcx>, dest: Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_rec"); let tcx = bcx.tcx(); let vinfo = VariantInfo::of_node(tcx, ty, expr_id); let mut need_base = vec![true; vinfo.fields.len()]; let numbered_fields = fields.iter().map(|field| { let pos = vinfo.field_index(field.name.node); need_base[pos] = false; (pos, &*field.expr) }).collect::>(); let optbase = match base { Some(base_expr) => { let mut leftovers = Vec::new(); for (i, b) in need_base.iter().enumerate() { if *b { leftovers.push((i, vinfo.fields[i].1)); } } Some(StructBaseInfo {expr: base_expr, fields: leftovers }) } None => { if need_base.iter().any(|b| *b) { span_bug!(expr_span, "missing fields and no base expr") } None } }; trans_adt(bcx, ty, vinfo.discr, &numbered_fields, optbase, dest, DebugLoc::At(expr_id, expr_span)) } /// Information that `trans_adt` needs in order to fill in the fields /// of a struct copied from a base struct (e.g., from an expression /// like `Foo { a: b, ..base }`. /// /// Note that `fields` may be empty; the base expression must always be /// evaluated for side-effects. pub struct StructBaseInfo<'a, 'tcx> { /// The base expression; will be evaluated after all explicit fields. expr: &'a hir::Expr, /// The indices of fields to copy paired with their types. fields: Vec<(usize, Ty<'tcx>)> } /// Constructs an ADT instance: /// /// - `fields` should be a list of field indices paired with the /// expression to store into that field. The initializers will be /// evaluated in the order specified by `fields`. /// /// - `optbase` contains information on the base struct (if any) from /// which remaining fields are copied; see comments on `StructBaseInfo`. pub fn trans_adt<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>, discr: Disr, fields: &[(usize, &hir::Expr)], optbase: Option>, dest: Dest, debug_location: DebugLoc) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_adt"); let fcx = bcx.fcx; let repr = adt::represent_type(bcx.ccx(), ty); debug_location.apply(bcx.fcx); // If we don't care about the result, just make a // temporary stack slot let addr = match dest { SaveIn(pos) => pos, Ignore => { let llresult = alloc_ty(bcx, ty, "temp"); call_lifetime_start(bcx, llresult); llresult } }; debug!("trans_adt"); // This scope holds intermediates that must be cleaned should // panic occur before the ADT as a whole is ready. let custom_cleanup_scope = fcx.push_custom_cleanup_scope(); if ty.is_simd() { // Issue 23112: The original logic appeared vulnerable to same // order-of-eval bug. But, SIMD values are tuple-structs; // i.e. functional record update (FRU) syntax is unavailable. // // To be safe, double-check that we did not get here via FRU. assert!(optbase.is_none()); // This is the constructor of a SIMD type, such types are // always primitive machine types and so do not have a // destructor or require any clean-up. let llty = type_of::type_of(bcx.ccx(), ty); // keep a vector as a register, and running through the field // `insertelement`ing them directly into that register // (i.e. avoid GEPi and `store`s to an alloca) . let mut vec_val = C_undef(llty); for &(i, ref e) in fields { let block_datum = trans(bcx, &e); bcx = block_datum.bcx; let position = C_uint(bcx.ccx(), i); let value = block_datum.datum.to_llscalarish(bcx); vec_val = InsertElement(bcx, vec_val, value, position); } Store(bcx, vec_val, addr); } else if let Some(base) = optbase { // Issue 23112: If there is a base, then order-of-eval // requires field expressions eval'ed before base expression. // First, trans field expressions to temporary scratch values. let scratch_vals: Vec<_> = fields.iter().map(|&(i, ref e)| { let datum = unpack_datum!(bcx, trans(bcx, &e)); (i, datum) }).collect(); debug_location.apply(bcx.fcx); // Second, trans the base to the dest. assert_eq!(discr, Disr(0)); let addr = adt::MaybeSizedValue::sized(addr); match expr_kind(bcx.tcx(), &base.expr) { ExprKind::RvalueDps | ExprKind::RvalueDatum if !bcx.fcx.type_needs_drop(ty) => { bcx = trans_into(bcx, &base.expr, SaveIn(addr.value)); }, ExprKind::RvalueStmt => { bug!("unexpected expr kind for struct base expr") } _ => { let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &base.expr, "base")); for &(i, t) in &base.fields { let datum = base_datum.get_element( bcx, t, |srcval| adt::trans_field_ptr(bcx, &repr, srcval, discr, i)); assert!(type_is_sized(bcx.tcx(), datum.ty)); let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i); bcx = datum.store_to(bcx, dest); } } } // Finally, move scratch field values into actual field locations for (i, datum) in scratch_vals { let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i); bcx = datum.store_to(bcx, dest); } } else { // No base means we can write all fields directly in place. let addr = adt::MaybeSizedValue::sized(addr); for &(i, ref e) in fields { let dest = adt::trans_field_ptr(bcx, &repr, addr, discr, i); let e_ty = expr_ty_adjusted(bcx, &e); bcx = trans_into(bcx, &e, SaveIn(dest)); let scope = cleanup::CustomScope(custom_cleanup_scope); fcx.schedule_lifetime_end(scope, dest); // FIXME: nonzeroing move should generalize to fields fcx.schedule_drop_mem(scope, dest, e_ty, None); } } adt::trans_set_discr(bcx, &repr, addr, discr); fcx.pop_custom_cleanup_scope(custom_cleanup_scope); // If we don't care about the result drop the temporary we made match dest { SaveIn(_) => bcx, Ignore => { bcx = glue::drop_ty(bcx, addr, ty, debug_location); base::call_lifetime_end(bcx, addr); bcx } } } fn trans_immediate_lit<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, lit: &ast::Lit) -> DatumBlock<'blk, 'tcx, Expr> { // must not be a string constant, that is a RvalueDpsExpr let _icx = push_ctxt("trans_immediate_lit"); let ty = expr_ty(bcx, expr); let v = consts::const_lit(bcx.ccx(), expr, lit); immediate_rvalue_bcx(bcx, v, ty).to_expr_datumblock() } fn trans_unary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, op: hir::UnOp, sub_expr: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let ccx = bcx.ccx(); let mut bcx = bcx; let _icx = push_ctxt("trans_unary_datum"); let method_call = MethodCall::expr(expr.id); // The only overloaded operator that is translated to a datum // is an overloaded deref, since it is always yields a `&T`. // Otherwise, we should be in the RvalueDpsExpr path. assert!(op == hir::UnDeref || !ccx.tcx().is_method_call(expr.id)); let un_ty = expr_ty(bcx, expr); let debug_loc = expr.debug_loc(); match op { hir::UnNot => { let datum = unpack_datum!(bcx, trans(bcx, sub_expr)); let llresult = Not(bcx, datum.to_llscalarish(bcx), debug_loc); immediate_rvalue_bcx(bcx, llresult, un_ty).to_expr_datumblock() } hir::UnNeg => { let datum = unpack_datum!(bcx, trans(bcx, sub_expr)); let val = datum.to_llscalarish(bcx); let (bcx, llneg) = { if un_ty.is_fp() { let result = FNeg(bcx, val, debug_loc); (bcx, result) } else { let is_signed = un_ty.is_signed(); let result = Neg(bcx, val, debug_loc); let bcx = if bcx.ccx().check_overflow() && is_signed { let (llty, min) = base::llty_and_min_for_signed_ty(bcx, un_ty); let is_min = ICmp(bcx, llvm::IntEQ, val, C_integral(llty, min, true), debug_loc); with_cond(bcx, is_min, |bcx| { let msg = InternedString::new( "attempted to negate with overflow"); controlflow::trans_fail(bcx, expr_info(expr), msg) }) } else { bcx }; (bcx, result) } }; immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock() } hir::UnDeref => { let datum = unpack_datum!(bcx, trans(bcx, sub_expr)); deref_once(bcx, expr, datum, method_call) } } } fn trans_uniq_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, box_expr: &hir::Expr, box_ty: Ty<'tcx>, contents: &hir::Expr, contents_ty: Ty<'tcx>) -> DatumBlock<'blk, 'tcx, Expr> { let _icx = push_ctxt("trans_uniq_expr"); let fcx = bcx.fcx; assert!(type_is_sized(bcx.tcx(), contents_ty)); let llty = type_of::type_of(bcx.ccx(), contents_ty); let size = llsize_of(bcx.ccx(), llty); let align = C_uint(bcx.ccx(), type_of::align_of(bcx.ccx(), contents_ty)); let llty_ptr = llty.ptr_to(); let Result { bcx, val } = malloc_raw_dyn(bcx, llty_ptr, box_ty, size, align, box_expr.debug_loc()); // Unique boxes do not allocate for zero-size types. The standard library // may assume that `free` is never called on the pointer returned for // `Box`. let bcx = if llsize_of_alloc(bcx.ccx(), llty) == 0 { trans_into(bcx, contents, SaveIn(val)) } else { let custom_cleanup_scope = fcx.push_custom_cleanup_scope(); fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope), val, cleanup::HeapExchange, contents_ty); let bcx = trans_into(bcx, contents, SaveIn(val)); fcx.pop_custom_cleanup_scope(custom_cleanup_scope); bcx }; immediate_rvalue_bcx(bcx, val, box_ty).to_expr_datumblock() } fn trans_addr_of<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, subexpr: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let _icx = push_ctxt("trans_addr_of"); let mut bcx = bcx; let sub_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, subexpr, "addr_of")); let ty = expr_ty(bcx, expr); if !type_is_sized(bcx.tcx(), sub_datum.ty) { // Always generate an lvalue datum, because this pointer doesn't own // the data and cleanup is scheduled elsewhere. DatumBlock::new(bcx, Datum::new(sub_datum.val, ty, LvalueExpr(sub_datum.kind))) } else { // Sized value, ref to a thin pointer immediate_rvalue_bcx(bcx, sub_datum.val, ty).to_expr_datumblock() } } fn trans_scalar_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, binop_expr: &hir::Expr, binop_ty: Ty<'tcx>, op: hir::BinOp, lhs: Datum<'tcx, Rvalue>, rhs: Datum<'tcx, Rvalue>) -> DatumBlock<'blk, 'tcx, Expr> { let _icx = push_ctxt("trans_scalar_binop"); let lhs_t = lhs.ty; assert!(!lhs_t.is_simd()); let is_float = lhs_t.is_fp(); let is_signed = lhs_t.is_signed(); let info = expr_info(binop_expr); let binop_debug_loc = binop_expr.debug_loc(); let mut bcx = bcx; let lhs = lhs.to_llscalarish(bcx); let rhs = rhs.to_llscalarish(bcx); let val = match op.node { hir::BiAdd => { if is_float { FAdd(bcx, lhs, rhs, binop_debug_loc) } else { let (newbcx, res) = with_overflow_check( bcx, OverflowOp::Add, info, lhs_t, lhs, rhs, binop_debug_loc); bcx = newbcx; res } } hir::BiSub => { if is_float { FSub(bcx, lhs, rhs, binop_debug_loc) } else { let (newbcx, res) = with_overflow_check( bcx, OverflowOp::Sub, info, lhs_t, lhs, rhs, binop_debug_loc); bcx = newbcx; res } } hir::BiMul => { if is_float { FMul(bcx, lhs, rhs, binop_debug_loc) } else { let (newbcx, res) = with_overflow_check( bcx, OverflowOp::Mul, info, lhs_t, lhs, rhs, binop_debug_loc); bcx = newbcx; res } } hir::BiDiv => { if is_float { FDiv(bcx, lhs, rhs, binop_debug_loc) } else { // Only zero-check integers; fp /0 is NaN bcx = base::fail_if_zero_or_overflows(bcx, expr_info(binop_expr), op, lhs, rhs, lhs_t); if is_signed { SDiv(bcx, lhs, rhs, binop_debug_loc) } else { UDiv(bcx, lhs, rhs, binop_debug_loc) } } } hir::BiRem => { if is_float { FRem(bcx, lhs, rhs, binop_debug_loc) } else { // Only zero-check integers; fp %0 is NaN bcx = base::fail_if_zero_or_overflows(bcx, expr_info(binop_expr), op, lhs, rhs, lhs_t); if is_signed { SRem(bcx, lhs, rhs, binop_debug_loc) } else { URem(bcx, lhs, rhs, binop_debug_loc) } } } hir::BiBitOr => Or(bcx, lhs, rhs, binop_debug_loc), hir::BiBitAnd => And(bcx, lhs, rhs, binop_debug_loc), hir::BiBitXor => Xor(bcx, lhs, rhs, binop_debug_loc), hir::BiShl => { let (newbcx, res) = with_overflow_check( bcx, OverflowOp::Shl, info, lhs_t, lhs, rhs, binop_debug_loc); bcx = newbcx; res } hir::BiShr => { let (newbcx, res) = with_overflow_check( bcx, OverflowOp::Shr, info, lhs_t, lhs, rhs, binop_debug_loc); bcx = newbcx; res } hir::BiEq | hir::BiNe | hir::BiLt | hir::BiGe | hir::BiLe | hir::BiGt => { base::compare_scalar_types(bcx, lhs, rhs, lhs_t, op.node, binop_debug_loc) } _ => { span_bug!(binop_expr.span, "unexpected binop"); } }; immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock() } // refinement types would obviate the need for this enum lazy_binop_ty { lazy_and, lazy_or, } fn trans_lazy_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, binop_expr: &hir::Expr, op: lazy_binop_ty, a: &hir::Expr, b: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let _icx = push_ctxt("trans_lazy_binop"); let binop_ty = expr_ty(bcx, binop_expr); let fcx = bcx.fcx; let DatumBlock {bcx: past_lhs, datum: lhs} = trans(bcx, a); let lhs = lhs.to_llscalarish(past_lhs); if past_lhs.unreachable.get() { return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock(); } let join = fcx.new_id_block("join", binop_expr.id); let before_rhs = fcx.new_id_block("before_rhs", b.id); match op { lazy_and => CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb, DebugLoc::None), lazy_or => CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb, DebugLoc::None) } let DatumBlock {bcx: past_rhs, datum: rhs} = trans(before_rhs, b); let rhs = rhs.to_llscalarish(past_rhs); if past_rhs.unreachable.get() { return immediate_rvalue_bcx(join, lhs, binop_ty).to_expr_datumblock(); } Br(past_rhs, join.llbb, DebugLoc::None); let phi = Phi(join, Type::i1(bcx.ccx()), &[lhs, rhs], &[past_lhs.llbb, past_rhs.llbb]); return immediate_rvalue_bcx(join, phi, binop_ty).to_expr_datumblock(); } fn trans_binary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, op: hir::BinOp, lhs: &hir::Expr, rhs: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let _icx = push_ctxt("trans_binary"); let ccx = bcx.ccx(); // if overloaded, would be RvalueDpsExpr assert!(!ccx.tcx().is_method_call(expr.id)); match op.node { hir::BiAnd => { trans_lazy_binop(bcx, expr, lazy_and, lhs, rhs) } hir::BiOr => { trans_lazy_binop(bcx, expr, lazy_or, lhs, rhs) } _ => { let mut bcx = bcx; let binop_ty = expr_ty(bcx, expr); let lhs = unpack_datum!(bcx, trans(bcx, lhs)); let lhs = unpack_datum!(bcx, lhs.to_rvalue_datum(bcx, "binop_lhs")); debug!("trans_binary (expr {}): lhs={:?}", expr.id, lhs); let rhs = unpack_datum!(bcx, trans(bcx, rhs)); let rhs = unpack_datum!(bcx, rhs.to_rvalue_datum(bcx, "binop_rhs")); debug!("trans_binary (expr {}): rhs={:?}", expr.id, rhs); if type_is_fat_ptr(ccx.tcx(), lhs.ty) { assert!(type_is_fat_ptr(ccx.tcx(), rhs.ty), "built-in binary operators on fat pointers are homogeneous"); assert_eq!(binop_ty, bcx.tcx().types.bool); let val = base::compare_scalar_types( bcx, lhs.val, rhs.val, lhs.ty, op.node, expr.debug_loc()); immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock() } else { assert!(!type_is_fat_ptr(ccx.tcx(), rhs.ty), "built-in binary operators on fat pointers are homogeneous"); trans_scalar_binop(bcx, expr, binop_ty, op, lhs, rhs) } } } } pub fn cast_is_noop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, expr: &hir::Expr, t_in: Ty<'tcx>, t_out: Ty<'tcx>) -> bool { if let Some(&CastKind::CoercionCast) = tcx.cast_kinds.borrow().get(&expr.id) { return true; } match (t_in.builtin_deref(true, ty::NoPreference), t_out.builtin_deref(true, ty::NoPreference)) { (Some(ty::TypeAndMut{ ty: t_in, .. }), Some(ty::TypeAndMut{ ty: t_out, .. })) => { t_in == t_out } _ => { // This condition isn't redundant with the check for CoercionCast: // different types can be substituted into the same type, and // == equality can be overconservative if there are regions. t_in == t_out } } } fn trans_imm_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, id: ast::NodeId) -> DatumBlock<'blk, 'tcx, Expr> { use rustc::ty::cast::CastTy::*; use rustc::ty::cast::IntTy::*; fn int_cast(bcx: Block, lldsttype: Type, llsrctype: Type, llsrc: ValueRef, signed: bool) -> ValueRef { let _icx = push_ctxt("int_cast"); let srcsz = llsrctype.int_width(); let dstsz = lldsttype.int_width(); return if dstsz == srcsz { BitCast(bcx, llsrc, lldsttype) } else if srcsz > dstsz { TruncOrBitCast(bcx, llsrc, lldsttype) } else if signed { SExtOrBitCast(bcx, llsrc, lldsttype) } else { ZExtOrBitCast(bcx, llsrc, lldsttype) } } fn float_cast(bcx: Block, lldsttype: Type, llsrctype: Type, llsrc: ValueRef) -> ValueRef { let _icx = push_ctxt("float_cast"); let srcsz = llsrctype.float_width(); let dstsz = lldsttype.float_width(); return if dstsz > srcsz { FPExt(bcx, llsrc, lldsttype) } else if srcsz > dstsz { FPTrunc(bcx, llsrc, lldsttype) } else { llsrc }; } let _icx = push_ctxt("trans_cast"); let mut bcx = bcx; let ccx = bcx.ccx(); let t_in = expr_ty_adjusted(bcx, expr); let t_out = node_id_type(bcx, id); debug!("trans_cast({:?} as {:?})", t_in, t_out); let mut ll_t_in = type_of::immediate_type_of(ccx, t_in); let ll_t_out = type_of::immediate_type_of(ccx, t_out); // Convert the value to be cast into a ValueRef, either by-ref or // by-value as appropriate given its type: let mut datum = unpack_datum!(bcx, trans(bcx, expr)); let datum_ty = monomorphize_type(bcx, datum.ty); if cast_is_noop(bcx.tcx(), expr, datum_ty, t_out) { datum.ty = t_out; return DatumBlock::new(bcx, datum); } if type_is_fat_ptr(bcx.tcx(), t_in) { assert!(datum.kind.is_by_ref()); if type_is_fat_ptr(bcx.tcx(), t_out) { return DatumBlock::new(bcx, Datum::new( PointerCast(bcx, datum.val, ll_t_out.ptr_to()), t_out, Rvalue::new(ByRef) )).to_expr_datumblock(); } else { // Return the address return immediate_rvalue_bcx(bcx, PointerCast(bcx, Load(bcx, get_dataptr(bcx, datum.val)), ll_t_out), t_out).to_expr_datumblock(); } } let r_t_in = CastTy::from_ty(t_in).expect("bad input type for cast"); let r_t_out = CastTy::from_ty(t_out).expect("bad output type for cast"); let (llexpr, signed) = if let Int(CEnum) = r_t_in { let repr = adt::represent_type(ccx, t_in); let datum = unpack_datum!( bcx, datum.to_lvalue_datum(bcx, "trans_imm_cast", expr.id)); let llexpr_ptr = datum.to_llref(); let discr = adt::trans_get_discr(bcx, &repr, llexpr_ptr, Some(Type::i64(ccx)), true); ll_t_in = val_ty(discr); (discr, adt::is_discr_signed(&repr)) } else { (datum.to_llscalarish(bcx), t_in.is_signed()) }; let newval = match (r_t_in, r_t_out) { (Ptr(_), Ptr(_)) | (FnPtr, Ptr(_)) | (RPtr(_), Ptr(_)) => { PointerCast(bcx, llexpr, ll_t_out) } (Ptr(_), Int(_)) | (FnPtr, Int(_)) => PtrToInt(bcx, llexpr, ll_t_out), (Int(_), Ptr(_)) => IntToPtr(bcx, llexpr, ll_t_out), (Int(_), Int(_)) => int_cast(bcx, ll_t_out, ll_t_in, llexpr, signed), (Float, Float) => float_cast(bcx, ll_t_out, ll_t_in, llexpr), (Int(_), Float) if signed => SIToFP(bcx, llexpr, ll_t_out), (Int(_), Float) => UIToFP(bcx, llexpr, ll_t_out), (Float, Int(I)) => FPToSI(bcx, llexpr, ll_t_out), (Float, Int(_)) => FPToUI(bcx, llexpr, ll_t_out), _ => span_bug!(expr.span, "translating unsupported cast: \ {:?} -> {:?}", t_in, t_out) }; return immediate_rvalue_bcx(bcx, newval, t_out).to_expr_datumblock(); } fn trans_assign_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, op: hir::BinOp, dst: &hir::Expr, src: &hir::Expr) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_assign_op"); let mut bcx = bcx; debug!("trans_assign_op(expr={:?})", expr); // User-defined operator methods cannot be used with `+=` etc right now assert!(!bcx.tcx().is_method_call(expr.id)); // Evaluate LHS (destination), which should be an lvalue let dst = unpack_datum!(bcx, trans_to_lvalue(bcx, dst, "assign_op")); assert!(!bcx.fcx.type_needs_drop(dst.ty)); let lhs = load_ty(bcx, dst.val, dst.ty); let lhs = immediate_rvalue(lhs, dst.ty); // Evaluate RHS - FIXME(#28160) this sucks let rhs = unpack_datum!(bcx, trans(bcx, &src)); let rhs = unpack_datum!(bcx, rhs.to_rvalue_datum(bcx, "assign_op_rhs")); // Perform computation and store the result let result_datum = unpack_datum!( bcx, trans_scalar_binop(bcx, expr, dst.ty, op, lhs, rhs)); return result_datum.store_to(bcx, dst.val); } fn auto_ref<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, datum: Datum<'tcx, Expr>, expr: &hir::Expr) -> DatumBlock<'blk, 'tcx, Expr> { let mut bcx = bcx; // Ensure cleanup of `datum` if not already scheduled and obtain // a "by ref" pointer. let lv_datum = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "autoref", expr.id)); // Compute final type. Note that we are loose with the region and // mutability, since those things don't matter in trans. let referent_ty = lv_datum.ty; let ptr_ty = bcx.tcx().mk_imm_ref(bcx.tcx().mk_region(ty::ReErased), referent_ty); // Construct the resulting datum. The right datum to return here would be an Lvalue datum, // because there is cleanup scheduled and the datum doesn't own the data, but for thin pointers // we microoptimize it to be an Rvalue datum to avoid the extra alloca and level of // indirection and for thin pointers, this has no ill effects. let kind = if type_is_sized(bcx.tcx(), referent_ty) { RvalueExpr(Rvalue::new(ByValue)) } else { LvalueExpr(lv_datum.kind) }; // Get the pointer. let llref = lv_datum.to_llref(); DatumBlock::new(bcx, Datum::new(llref, ptr_ty, kind)) } fn deref_multiple<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, datum: Datum<'tcx, Expr>, times: usize) -> DatumBlock<'blk, 'tcx, Expr> { let mut bcx = bcx; let mut datum = datum; for i in 0..times { let method_call = MethodCall::autoderef(expr.id, i as u32); datum = unpack_datum!(bcx, deref_once(bcx, expr, datum, method_call)); } DatumBlock { bcx: bcx, datum: datum } } fn deref_once<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &hir::Expr, datum: Datum<'tcx, Expr>, method_call: MethodCall) -> DatumBlock<'blk, 'tcx, Expr> { let ccx = bcx.ccx(); debug!("deref_once(expr={:?}, datum={:?}, method_call={:?})", expr, datum, method_call); let mut bcx = bcx; // Check for overloaded deref. let method = ccx.tcx().tables.borrow().method_map.get(&method_call).cloned(); let datum = match method { Some(method) => { let method_ty = monomorphize_type(bcx, method.ty); // Overloaded. Invoke the deref() method, which basically // converts from the `Smaht` pointer that we have into // a `&T` pointer. We can then proceed down the normal // path (below) to dereference that `&T`. let datum = if method_call.autoderef == 0 { datum } else { // Always perform an AutoPtr when applying an overloaded auto-deref unpack_datum!(bcx, auto_ref(bcx, datum, expr)) }; let ref_ty = // invoked methods have their LB regions instantiated ccx.tcx().no_late_bound_regions(&method_ty.fn_ret()).unwrap().unwrap(); let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_deref"); bcx = Callee::method(bcx, method) .call(bcx, expr.debug_loc(), ArgOverloadedOp(datum, None), Some(SaveIn(scratch.val))).bcx; scratch.to_expr_datum() } None => { // Not overloaded. We already have a pointer we know how to deref. datum } }; let r = match datum.ty.sty { ty::TyBox(content_ty) => { // Make sure we have an lvalue datum here to get the // proper cleanups scheduled let datum = unpack_datum!( bcx, datum.to_lvalue_datum(bcx, "deref", expr.id)); if type_is_sized(bcx.tcx(), content_ty) { let ptr = load_ty(bcx, datum.val, datum.ty); DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr(datum.kind))) } else { // A fat pointer and a DST lvalue have the same representation // just different types. Since there is no temporary for `*e` // here (because it is unsized), we cannot emulate the sized // object code path for running drop glue and free. Instead, // we schedule cleanup for `e`, turning it into an lvalue. let lval = Lvalue::new("expr::deref_once ty_uniq"); let datum = Datum::new(datum.val, content_ty, LvalueExpr(lval)); DatumBlock::new(bcx, datum) } } ty::TyRawPtr(ty::TypeAndMut { ty: content_ty, .. }) | ty::TyRef(_, ty::TypeAndMut { ty: content_ty, .. }) => { let lval = Lvalue::new("expr::deref_once ptr"); if type_is_sized(bcx.tcx(), content_ty) { let ptr = datum.to_llscalarish(bcx); // Always generate an lvalue datum, even if datum.mode is // an rvalue. This is because datum.mode is only an // rvalue for non-owning pointers like &T or *T, in which // case cleanup *is* scheduled elsewhere, by the true // owner (or, in the case of *T, by the user). DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr(lval))) } else { // A fat pointer and a DST lvalue have the same representation // just different types. DatumBlock::new(bcx, Datum::new(datum.val, content_ty, LvalueExpr(lval))) } } _ => { span_bug!( expr.span, "deref invoked on expr of invalid type {:?}", datum.ty); } }; debug!("deref_once(expr={}, method_call={:?}, result={:?})", expr.id, method_call, r.datum); return r; } #[derive(Debug)] enum OverflowOp { Add, Sub, Mul, Shl, Shr, } impl OverflowOp { fn codegen_strategy(&self) -> OverflowCodegen { use self::OverflowCodegen::{ViaIntrinsic, ViaInputCheck}; match *self { OverflowOp::Add => ViaIntrinsic(OverflowOpViaIntrinsic::Add), OverflowOp::Sub => ViaIntrinsic(OverflowOpViaIntrinsic::Sub), OverflowOp::Mul => ViaIntrinsic(OverflowOpViaIntrinsic::Mul), OverflowOp::Shl => ViaInputCheck(OverflowOpViaInputCheck::Shl), OverflowOp::Shr => ViaInputCheck(OverflowOpViaInputCheck::Shr), } } } enum OverflowCodegen { ViaIntrinsic(OverflowOpViaIntrinsic), ViaInputCheck(OverflowOpViaInputCheck), } enum OverflowOpViaInputCheck { Shl, Shr, } #[derive(Debug)] enum OverflowOpViaIntrinsic { Add, Sub, Mul, } impl OverflowOpViaIntrinsic { fn to_intrinsic<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>, lhs_ty: Ty) -> ValueRef { let name = self.to_intrinsic_name(bcx.tcx(), lhs_ty); bcx.ccx().get_intrinsic(&name) } fn to_intrinsic_name(&self, tcx: TyCtxt, ty: Ty) -> &'static str { use syntax::ast::IntTy::*; use syntax::ast::UintTy::*; use rustc::ty::{TyInt, TyUint}; let new_sty = match ty.sty { TyInt(Is) => match &tcx.sess.target.target.target_pointer_width[..] { "16" => TyInt(I16), "32" => TyInt(I32), "64" => TyInt(I64), _ => bug!("unsupported target word size") }, TyUint(Us) => match &tcx.sess.target.target.target_pointer_width[..] { "16" => TyUint(U16), "32" => TyUint(U32), "64" => TyUint(U64), _ => bug!("unsupported target word size") }, ref t @ TyUint(_) | ref t @ TyInt(_) => t.clone(), _ => bug!("tried to get overflow intrinsic for {:?} applied to non-int type", *self) }; match *self { OverflowOpViaIntrinsic::Add => match new_sty { TyInt(I8) => "llvm.sadd.with.overflow.i8", TyInt(I16) => "llvm.sadd.with.overflow.i16", TyInt(I32) => "llvm.sadd.with.overflow.i32", TyInt(I64) => "llvm.sadd.with.overflow.i64", TyUint(U8) => "llvm.uadd.with.overflow.i8", TyUint(U16) => "llvm.uadd.with.overflow.i16", TyUint(U32) => "llvm.uadd.with.overflow.i32", TyUint(U64) => "llvm.uadd.with.overflow.i64", _ => bug!(), }, OverflowOpViaIntrinsic::Sub => match new_sty { TyInt(I8) => "llvm.ssub.with.overflow.i8", TyInt(I16) => "llvm.ssub.with.overflow.i16", TyInt(I32) => "llvm.ssub.with.overflow.i32", TyInt(I64) => "llvm.ssub.with.overflow.i64", TyUint(U8) => "llvm.usub.with.overflow.i8", TyUint(U16) => "llvm.usub.with.overflow.i16", TyUint(U32) => "llvm.usub.with.overflow.i32", TyUint(U64) => "llvm.usub.with.overflow.i64", _ => bug!(), }, OverflowOpViaIntrinsic::Mul => match new_sty { TyInt(I8) => "llvm.smul.with.overflow.i8", TyInt(I16) => "llvm.smul.with.overflow.i16", TyInt(I32) => "llvm.smul.with.overflow.i32", TyInt(I64) => "llvm.smul.with.overflow.i64", TyUint(U8) => "llvm.umul.with.overflow.i8", TyUint(U16) => "llvm.umul.with.overflow.i16", TyUint(U32) => "llvm.umul.with.overflow.i32", TyUint(U64) => "llvm.umul.with.overflow.i64", _ => bug!(), }, } } fn build_intrinsic_call<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>, info: NodeIdAndSpan, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef, binop_debug_loc: DebugLoc) -> (Block<'blk, 'tcx>, ValueRef) { use rustc_const_math::{ConstMathErr, Op}; let llfn = self.to_intrinsic(bcx, lhs_t); let val = Call(bcx, llfn, &[lhs, rhs], binop_debug_loc); let result = ExtractValue(bcx, val, 0); // iN operation result let overflow = ExtractValue(bcx, val, 1); // i1 "did it overflow?" let cond = ICmp(bcx, llvm::IntEQ, overflow, C_integral(Type::i1(bcx.ccx()), 1, false), binop_debug_loc); let expect = bcx.ccx().get_intrinsic(&"llvm.expect.i1"); let expected = Call(bcx, expect, &[cond, C_bool(bcx.ccx(), false)], binop_debug_loc); let op = match *self { OverflowOpViaIntrinsic::Add => Op::Add, OverflowOpViaIntrinsic::Sub => Op::Sub, OverflowOpViaIntrinsic::Mul => Op::Mul }; let bcx = base::with_cond(bcx, expected, |bcx| controlflow::trans_fail(bcx, info, InternedString::new(ConstMathErr::Overflow(op).description()))); (bcx, result) } } impl OverflowOpViaInputCheck { fn build_with_input_check<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>, info: NodeIdAndSpan, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef, binop_debug_loc: DebugLoc) -> (Block<'blk, 'tcx>, ValueRef) { use rustc_const_math::{ConstMathErr, Op}; let lhs_llty = val_ty(lhs); let rhs_llty = val_ty(rhs); // Panic if any bits are set outside of bits that we always // mask in. // // Note that the mask's value is derived from the LHS type // (since that is where the 32/64 distinction is relevant) but // the mask's type must match the RHS type (since they will // both be fed into an and-binop) let invert_mask = shift_mask_val(bcx, lhs_llty, rhs_llty, true); let outer_bits = And(bcx, rhs, invert_mask, binop_debug_loc); let cond = build_nonzero_check(bcx, outer_bits, binop_debug_loc); let (result, op) = match *self { OverflowOpViaInputCheck::Shl => (build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc), Op::Shl), OverflowOpViaInputCheck::Shr => (build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc), Op::Shr) }; let bcx = base::with_cond(bcx, cond, |bcx| controlflow::trans_fail(bcx, info, InternedString::new(ConstMathErr::Overflow(op).description()))); (bcx, result) } } // Check if an integer or vector contains a nonzero element. fn build_nonzero_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, value: ValueRef, binop_debug_loc: DebugLoc) -> ValueRef { let llty = val_ty(value); let kind = llty.kind(); match kind { TypeKind::Integer => ICmp(bcx, llvm::IntNE, value, C_null(llty), binop_debug_loc), TypeKind::Vector => { // Check if any elements of the vector are nonzero by treating // it as a wide integer and checking if the integer is nonzero. let width = llty.vector_length() as u64 * llty.element_type().int_width(); let int_value = BitCast(bcx, value, Type::ix(bcx.ccx(), width)); build_nonzero_check(bcx, int_value, binop_debug_loc) }, _ => bug!("build_nonzero_check: expected Integer or Vector, found {:?}", kind), } } fn with_overflow_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, oop: OverflowOp, info: NodeIdAndSpan, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef, binop_debug_loc: DebugLoc) -> (Block<'blk, 'tcx>, ValueRef) { if bcx.unreachable.get() { return (bcx, _Undef(lhs)); } if bcx.ccx().check_overflow() { match oop.codegen_strategy() { OverflowCodegen::ViaIntrinsic(oop) => oop.build_intrinsic_call(bcx, info, lhs_t, lhs, rhs, binop_debug_loc), OverflowCodegen::ViaInputCheck(oop) => oop.build_with_input_check(bcx, info, lhs_t, lhs, rhs, binop_debug_loc), } } else { let res = match oop { OverflowOp::Add => Add(bcx, lhs, rhs, binop_debug_loc), OverflowOp::Sub => Sub(bcx, lhs, rhs, binop_debug_loc), OverflowOp::Mul => Mul(bcx, lhs, rhs, binop_debug_loc), OverflowOp::Shl => build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc), OverflowOp::Shr => build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc), }; (bcx, res) } } /// We categorize expressions into three kinds. The distinction between /// lvalue/rvalue is fundamental to the language. The distinction between the /// two kinds of rvalues is an artifact of trans which reflects how we will /// generate code for that kind of expression. See trans/expr.rs for more /// information. #[derive(Copy, Clone)] enum ExprKind { Lvalue, RvalueDps, RvalueDatum, RvalueStmt } fn expr_kind<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, expr: &hir::Expr) -> ExprKind { if tcx.is_method_call(expr.id) { // Overloaded operations are generally calls, and hence they are // generated via DPS, but there are a few exceptions: return match expr.node { // `a += b` has a unit result. hir::ExprAssignOp(..) => ExprKind::RvalueStmt, // the deref method invoked for `*a` always yields an `&T` hir::ExprUnary(hir::UnDeref, _) => ExprKind::Lvalue, // the index method invoked for `a[i]` always yields an `&T` hir::ExprIndex(..) => ExprKind::Lvalue, // in the general case, result could be any type, use DPS _ => ExprKind::RvalueDps }; } match expr.node { hir::ExprPath(..) => { match tcx.expect_def(expr.id) { // Put functions and ctors with the ADTs, as they // are zero-sized, so DPS is the cheapest option. Def::Struct(..) | Def::Variant(..) | Def::Fn(..) | Def::Method(..) => { ExprKind::RvalueDps } // Note: there is actually a good case to be made that // DefArg's, particularly those of immediate type, ought to // considered rvalues. Def::Static(..) | Def::Upvar(..) | Def::Local(..) => ExprKind::Lvalue, Def::Const(..) | Def::AssociatedConst(..) => ExprKind::RvalueDatum, def => { span_bug!( expr.span, "uncategorized def for expr {}: {:?}", expr.id, def); } } } hir::ExprType(ref expr, _) => { expr_kind(tcx, expr) } hir::ExprUnary(hir::UnDeref, _) | hir::ExprField(..) | hir::ExprTupField(..) | hir::ExprIndex(..) => { ExprKind::Lvalue } hir::ExprCall(..) | hir::ExprMethodCall(..) | hir::ExprStruct(..) | hir::ExprTup(..) | hir::ExprIf(..) | hir::ExprMatch(..) | hir::ExprClosure(..) | hir::ExprBlock(..) | hir::ExprRepeat(..) | hir::ExprVec(..) => { ExprKind::RvalueDps } hir::ExprLit(ref lit) if lit.node.is_str() => { ExprKind::RvalueDps } hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprRet(..) | hir::ExprWhile(..) | hir::ExprLoop(..) | hir::ExprAssign(..) | hir::ExprInlineAsm(..) | hir::ExprAssignOp(..) => { ExprKind::RvalueStmt } hir::ExprLit(_) | // Note: LitStr is carved out above hir::ExprUnary(..) | hir::ExprBox(_) | hir::ExprAddrOf(..) | hir::ExprBinary(..) | hir::ExprCast(..) => { ExprKind::RvalueDatum } } }