// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Language-level runtime services that should reasonably expected //! to be available 'everywhere'. Local heaps, GC, unwinding, //! local storage, and logging. Even a 'freestanding' Rust would likely want //! to implement this. use borrow; use cast::transmute; use cleanup; use libc::{c_void, uintptr_t}; use ptr; use prelude::*; use option::{Option, Some, None}; use rt::kill::Death; use rt::local::Local; use rt::logging::StdErrLogger; use super::local_heap::LocalHeap; use rt::sched::{Scheduler, SchedHandle}; use rt::stack::{StackSegment, StackPool}; use rt::context::Context; use unstable::finally::Finally; use task::spawn::Taskgroup; use cell::Cell; // The Task struct represents all state associated with a rust // task. There are at this point two primary "subtypes" of task, // however instead of using a subtype we just have a "task_type" field // in the struct. This contains a pointer to another struct that holds // the type-specific state. pub struct Task { heap: LocalHeap, gc: GarbageCollector, storage: LocalStorage, logger: StdErrLogger, unwinder: Unwinder, taskgroup: Option, death: Death, destroyed: bool, // FIXME(#6874/#7599) use StringRef to save on allocations name: Option<~str>, coroutine: Option, sched: Option<~Scheduler>, task_type: TaskType } pub enum TaskType { GreenTask(Option<~SchedHome>), SchedTask } /// A coroutine is nothing more than a (register context, stack) pair. pub struct Coroutine { /// The segment of stack on which the task is currently running or /// if the task is blocked, on which the task will resume /// execution. priv current_stack_segment: StackSegment, /// Always valid if the task is alive and not running. saved_context: Context } /// Some tasks have a deciated home scheduler that they must run on. pub enum SchedHome { AnySched, Sched(SchedHandle) } pub struct GarbageCollector; pub struct LocalStorage(*c_void, Option); pub struct Unwinder { unwinding: bool, } impl Task { // A helper to build a new task using the dynamically found // scheduler and task. Only works in GreenTask context. pub fn build_homed_child(f: ~fn(), home: SchedHome) -> ~Task { let f = Cell::new(f); let home = Cell::new(home); do Local::borrow:: |running_task| { let mut sched = running_task.sched.take_unwrap(); let new_task = ~running_task.new_child_homed(&mut sched.stack_pool, home.take(), f.take()); running_task.sched = Some(sched); new_task } } pub fn build_child(f: ~fn()) -> ~Task { Task::build_homed_child(f, AnySched) } pub fn build_homed_root(f: ~fn(), home: SchedHome) -> ~Task { let f = Cell::new(f); let home = Cell::new(home); do Local::borrow:: |running_task| { let mut sched = running_task.sched.take_unwrap(); let new_task = ~Task::new_root_homed(&mut sched.stack_pool, home.take(), f.take()); running_task.sched = Some(sched); new_task } } pub fn build_root(f: ~fn()) -> ~Task { Task::build_homed_root(f, AnySched) } pub fn new_sched_task() -> Task { Task { heap: LocalHeap::new(), gc: GarbageCollector, storage: LocalStorage(ptr::null(), None), logger: StdErrLogger, unwinder: Unwinder { unwinding: false }, taskgroup: None, death: Death::new(), destroyed: false, coroutine: Some(Coroutine::empty()), name: None, sched: None, task_type: SchedTask } } pub fn new_root(stack_pool: &mut StackPool, start: ~fn()) -> Task { Task::new_root_homed(stack_pool, AnySched, start) } pub fn new_child(&mut self, stack_pool: &mut StackPool, start: ~fn()) -> Task { self.new_child_homed(stack_pool, AnySched, start) } pub fn new_root_homed(stack_pool: &mut StackPool, home: SchedHome, start: ~fn()) -> Task { Task { heap: LocalHeap::new(), gc: GarbageCollector, storage: LocalStorage(ptr::null(), None), logger: StdErrLogger, unwinder: Unwinder { unwinding: false }, taskgroup: None, death: Death::new(), destroyed: false, name: None, coroutine: Some(Coroutine::new(stack_pool, start)), sched: None, task_type: GreenTask(Some(~home)) } } pub fn new_child_homed(&mut self, stack_pool: &mut StackPool, home: SchedHome, start: ~fn()) -> Task { Task { heap: LocalHeap::new(), gc: GarbageCollector, storage: LocalStorage(ptr::null(), None), logger: StdErrLogger, unwinder: Unwinder { unwinding: false }, taskgroup: None, // FIXME(#7544) make watching optional death: self.death.new_child(), destroyed: false, name: None, coroutine: Some(Coroutine::new(stack_pool, start)), sched: None, task_type: GreenTask(Some(~home)) } } pub fn give_home(&mut self, new_home: SchedHome) { match self.task_type { GreenTask(ref mut home) => { *home = Some(~new_home); } SchedTask => { rtabort!("type error: used SchedTask as GreenTask"); } } } pub fn take_unwrap_home(&mut self) -> SchedHome { match self.task_type { GreenTask(ref mut home) => { let out = home.take_unwrap(); return *out; } SchedTask => { rtabort!("type error: used SchedTask as GreenTask"); } } } pub fn run(&mut self, f: &fn()) { rtdebug!("run called on task: %u", borrow::to_uint(self)); // The only try/catch block in the world. Attempt to run the task's // client-specified code and catch any failures. do self.unwinder.try { // Run the task main function, then do some cleanup. do f.finally { // Destroy task-local storage. This may run user dtors. match self.storage { LocalStorage(ptr, Some(ref dtor)) => { (*dtor)(ptr) } _ => () } // FIXME #8302: Dear diary. I'm so tired and confused. // There's some interaction in rustc between the box // annihilator and the TLS dtor by which TLS is // accessed from annihilated box dtors *after* TLS is // destroyed. Somehow setting TLS back to null, as the // old runtime did, makes this work, but I don't currently // understand how. I would expect that, if the annihilator // reinvokes TLS while TLS is uninitialized, that // TLS would be reinitialized but never destroyed, // but somehow this works. I have no idea what's going // on but this seems to make things magically work. FML. self.storage = LocalStorage(ptr::null(), None); // Destroy remaining boxes. Also may run user dtors. unsafe { cleanup::annihilate(); } } } // FIXME(#7544): We pass the taskgroup into death so that it can be // dropped while the unkillable counter is set. This should not be // necessary except for an extraneous clone() in task/spawn.rs that // causes a killhandle to get dropped, which mustn't receive a kill // signal since we're outside of the unwinder's try() scope. // { let _ = self.taskgroup.take(); } self.death.collect_failure(!self.unwinder.unwinding, self.taskgroup.take()); self.destroyed = true; } // New utility functions for homes. pub fn is_home_no_tls(&self, sched: &~Scheduler) -> bool { match self.task_type { GreenTask(Some(~AnySched)) => { false } GreenTask(Some(~Sched(SchedHandle { sched_id: ref id, _}))) => { *id == sched.sched_id() } GreenTask(None) => { rtabort!("task without home"); } SchedTask => { // Awe yea rtabort!("type error: expected: GreenTask, found: SchedTask"); } } } pub fn homed(&self) -> bool { match self.task_type { GreenTask(Some(~AnySched)) => { false } GreenTask(Some(~Sched(SchedHandle { _ }))) => { true } GreenTask(None) => { rtabort!("task without home"); } SchedTask => { rtabort!("type error: expected: GreenTask, found: SchedTask"); } } } // Grab both the scheduler and the task from TLS and check if the // task is executing on an appropriate scheduler. pub fn on_appropriate_sched() -> bool { do Local::borrow:: |task| { let sched_id = task.sched.get_ref().sched_id(); let sched_run_anything = task.sched.get_ref().run_anything; match task.task_type { GreenTask(Some(~AnySched)) => { rtdebug!("anysched task in sched check ****"); sched_run_anything } GreenTask(Some(~Sched(SchedHandle { sched_id: ref id, _ }))) => { rtdebug!("homed task in sched check ****"); *id == sched_id } GreenTask(None) => { rtabort!("task without home"); } SchedTask => { rtabort!("type error: expected: GreenTask, found: SchedTask"); } } } } } impl Drop for Task { fn drop(&self) { rtdebug!("called drop for a task: %u", borrow::to_uint(self)); rtassert!(self.destroyed) } } // Coroutines represent nothing more than a context and a stack // segment. impl Coroutine { pub fn new(stack_pool: &mut StackPool, start: ~fn()) -> Coroutine { static MIN_STACK_SIZE: uint = 2000000; // XXX: Too much stack let start = Coroutine::build_start_wrapper(start); let mut stack = stack_pool.take_segment(MIN_STACK_SIZE); let initial_context = Context::new(start, &mut stack); Coroutine { current_stack_segment: stack, saved_context: initial_context } } pub fn empty() -> Coroutine { Coroutine { current_stack_segment: StackSegment::new(0), saved_context: Context::empty() } } fn build_start_wrapper(start: ~fn()) -> ~fn() { let start_cell = Cell::new(start); let wrapper: ~fn() = || { // First code after swap to this new context. Run our // cleanup job. unsafe { // Again - might work while safe, or it might not. do Local::borrow:: |sched| { (sched).run_cleanup_job(); } // To call the run method on a task we need a direct // reference to it. The task is in TLS, so we can // simply unsafe_borrow it to get this reference. We // need to still have the task in TLS though, so we // need to unsafe_borrow. let task = Local::unsafe_borrow::(); do (*task).run { // N.B. Removing `start` from the start wrapper // closure by emptying a cell is critical for // correctness. The ~Task pointer, and in turn the // closure used to initialize the first call // frame, is destroyed in the scheduler context, // not task context. So any captured closures must // not contain user-definable dtors that expect to // be in task context. By moving `start` out of // the closure, all the user code goes our of // scope while the task is still running. let start = start_cell.take(); start(); }; } // We remove the sched from the Task in TLS right now. let sched = Local::take::(); // ... allowing us to give it away when performing a // scheduling operation. sched.terminate_current_task() }; return wrapper; } /// Destroy coroutine and try to reuse stack segment. pub fn recycle(self, stack_pool: &mut StackPool) { match self { Coroutine { current_stack_segment, _ } => { stack_pool.give_segment(current_stack_segment); } } } } // Just a sanity check to make sure we are catching a Rust-thrown exception static UNWIND_TOKEN: uintptr_t = 839147; impl Unwinder { pub fn try(&mut self, f: &fn()) { use unstable::raw::Closure; unsafe { let closure: Closure = transmute(f); let code = transmute(closure.code); let env = transmute(closure.env); let token = rust_try(try_fn, code, env); assert!(token == 0 || token == UNWIND_TOKEN); } extern fn try_fn(code: *c_void, env: *c_void) { unsafe { let closure: Closure = Closure { code: transmute(code), env: transmute(env), }; let closure: &fn() = transmute(closure); closure(); } } extern { #[rust_stack] fn rust_try(f: *u8, code: *c_void, data: *c_void) -> uintptr_t; } } pub fn begin_unwind(&mut self) -> ! { self.unwinding = true; unsafe { rust_begin_unwind(UNWIND_TOKEN); return transmute(()); } extern { fn rust_begin_unwind(token: uintptr_t); } } } #[cfg(test)] mod test { use rt::test::*; #[test] fn local_heap() { do run_in_newsched_task() { let a = @5; let b = a; assert!(*a == 5); assert!(*b == 5); } } #[test] fn tls() { use local_data; do run_in_newsched_task() { static key: local_data::Key<@~str> = &local_data::Key; local_data::set(key, @~"data"); assert!(*local_data::get(key, |k| k.map_move(|k| *k)).unwrap() == ~"data"); static key2: local_data::Key<@~str> = &local_data::Key; local_data::set(key2, @~"data"); assert!(*local_data::get(key2, |k| k.map_move(|k| *k)).unwrap() == ~"data"); } } #[test] fn unwind() { do run_in_newsched_task() { let result = spawntask_try(||()); rtdebug!("trying first assert"); assert!(result.is_ok()); let result = spawntask_try(|| fail!()); rtdebug!("trying second assert"); assert!(result.is_err()); } } #[test] fn rng() { do run_in_newsched_task() { use rand::{rng, Rng}; let mut r = rng(); let _ = r.next(); } } #[test] fn logging() { do run_in_newsched_task() { info!("here i am. logging in a newsched task"); } } #[test] fn comm_oneshot() { use comm::*; do run_in_newsched_task { let (port, chan) = oneshot(); send_one(chan, 10); assert!(recv_one(port) == 10); } } #[test] fn comm_stream() { use comm::*; do run_in_newsched_task() { let (port, chan) = stream(); chan.send(10); assert!(port.recv() == 10); } } #[test] fn comm_shared_chan() { use comm::*; do run_in_newsched_task() { let (port, chan) = stream(); let chan = SharedChan::new(chan); chan.send(10); assert!(port.recv() == 10); } } #[test] fn linked_failure() { do run_in_newsched_task() { let res = do spawntask_try { spawntask_random(|| fail!()); }; assert!(res.is_err()); } } #[test] fn heap_cycles() { use option::{Option, Some, None}; do run_in_newsched_task { struct List { next: Option<@mut List>, } let a = @mut List { next: None }; let b = @mut List { next: Some(a) }; a.next = Some(b); } } // XXX: This is a copy of test_future_result in std::task. // It can be removed once the scheduler is turned on by default. #[test] fn future_result() { do run_in_newsched_task { use option::{Some, None}; use task::*; let mut result = None; let mut builder = task(); builder.future_result(|r| result = Some(r)); do builder.spawn {} assert_eq!(result.unwrap().recv(), Success); result = None; let mut builder = task(); builder.future_result(|r| result = Some(r)); builder.unlinked(); do builder.spawn { fail!(); } assert_eq!(result.unwrap().recv(), Failure); } } }