// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Error handling with the `Result` type //! //! `Result` is the type used for returning and propagating //! errors. It is an enum with the variants, `Ok(T)`, representing //! success and containing a value, and `Err(E)`, representing error //! and containing an error value. //! //! ``` //! enum Result { //! Ok(T), //! Err(E) //! } //! ``` //! //! Functions return `Result` whenever errors are expected and //! recoverable. In the `std` crate `Result` is most prominently used //! for [I/O](../../std/io/index.html). //! //! A simple function returning `Result` might be //! defined and used like so: //! //! ``` //! #[deriving(Show)] //! enum Version { Version1, Version2 } //! //! fn parse_version(header: &[u8]) -> Result { //! if header.len() < 1 { //! return Err("invalid header length"); //! } //! match header[0] { //! 1 => Ok(Version1), //! 2 => Ok(Version2), //! _ => Err("invalid version") //! } //! } //! //! let version = parse_version(&[1, 2, 3, 4]); //! match version { //! Ok(v) => { //! println!("working with version: {}", v); //! } //! Err(e) => { //! println!("error parsing header: {}", e); //! } //! } //! ``` //! //! Pattern matching on `Result`s is clear and straightforward for //! simple cases, but `Result` comes with some convenience methods //! that make working it more succinct. //! //! ``` //! let good_result: Result = Ok(10); //! let bad_result: Result = Err(10); //! //! // The `is_ok` and `is_err` methods do what they say. //! assert!(good_result.is_ok() && !good_result.is_err()); //! assert!(bad_result.is_err() && !bad_result.is_ok()); //! //! // `map` consumes the `Result` and produces another. //! let good_result: Result = good_result.map(|i| i + 1); //! let bad_result: Result = bad_result.map(|i| i - 1); //! //! // Use `and_then` to continue the computation. //! let good_result: Result = good_result.and_then(|i| Ok(i == 11)); //! //! // Use `or_else` to handle the error. //! let bad_result: Result = bad_result.or_else(|i| Ok(11)); //! //! // Consume the result and return the contents with `unwrap`. //! let final_awesome_result = good_result.ok().unwrap(); //! ``` //! //! # Results must be used //! //! A common problem with using return values to indicate errors is //! that it is easy to ignore the return value, thus failing to handle //! the error. Result is annotated with the #[must_use] attribute, //! which will cause the compiler to issue a warning when a Result //! value is ignored. This makes `Result` especially useful with //! functions that may encounter errors but don't otherwise return a //! useful value. //! //! Consider the `write_line` method defined for I/O types //! by the [`Writer`](../io/trait.Writer.html) trait: //! //! ``` //! use std::io::IoError; //! //! trait Writer { //! fn write_line(&mut self, s: &str) -> Result<(), IoError>; //! } //! ``` //! //! *Note: The actual definition of `Writer` uses `IoResult`, which //! is just a synonym for `Result`.* //! //! This method doesn't produce a value, but the write may //! fail. It's crucial to handle the error case, and *not* write //! something like this: //! //! ```{.ignore} //! use std::io::{File, Open, Write}; //! //! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! // If `write_line` errors, then we'll never know, because the return //! // value is ignored. //! file.write_line("important message"); //! drop(file); //! ``` //! //! If you *do* write that in Rust, the compiler will by give you a //! warning (by default, controlled by the `unused_must_use` lint). //! //! You might instead, if you don't want to handle the error, simply //! fail, by converting to an `Option` with `ok`, then asserting //! success with `expect`. This will fail if the write fails, proving //! a marginally useful message indicating why: //! //! ```{.no_run} //! use std::io::{File, Open, Write}; //! //! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! file.write_line("important message").ok().expect("failed to write message"); //! drop(file); //! ``` //! //! You might also simply assert success: //! //! ```{.no_run} //! # use std::io::{File, Open, Write}; //! //! # let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! assert!(file.write_line("important message").is_ok()); //! # drop(file); //! ``` //! //! Or propagate the error up the call stack with `try!`: //! //! ``` //! # use std::io::{File, Open, Write, IoError}; //! fn write_message() -> Result<(), IoError> { //! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! try!(file.write_line("important message")); //! drop(file); //! return Ok(()); //! } //! ``` //! //! # The `try!` macro //! //! When writing code that calls many functions that return the //! `Result` type, the error handling can be tedious. The `try!` //! macro hides some of the boilerplate of propagating errors up the //! call stack. //! //! It replaces this: //! //! ``` //! use std::io::{File, Open, Write, IoError}; //! //! struct Info { //! name: String, //! age: int, //! rating: int //! } //! //! fn write_info(info: &Info) -> Result<(), IoError> { //! let mut file = File::open_mode(&Path::new("my_best_friends.txt"), Open, Write); //! // Early return on error //! match file.write_line(format!("name: {}", info.name).as_slice()) { //! Ok(_) => (), //! Err(e) => return Err(e) //! } //! match file.write_line(format!("age: {}", info.age).as_slice()) { //! Ok(_) => (), //! Err(e) => return Err(e) //! } //! return file.write_line(format!("rating: {}", info.rating).as_slice()); //! } //! ``` //! //! With this: //! //! ``` //! use std::io::{File, Open, Write, IoError}; //! //! struct Info { //! name: String, //! age: int, //! rating: int //! } //! //! fn write_info(info: &Info) -> Result<(), IoError> { //! let mut file = File::open_mode(&Path::new("my_best_friends.txt"), Open, Write); //! // Early return on error //! try!(file.write_line(format!("name: {}", info.name).as_slice())); //! try!(file.write_line(format!("age: {}", info.age).as_slice())); //! try!(file.write_line(format!("rating: {}", info.rating).as_slice())); //! return Ok(()); //! } //! ``` //! //! *It's much nicer!* //! //! Wrapping an expression in `try!` will result in the unwrapped //! success (`Ok`) value, unless the result is `Err`, in which case //! `Err` is returned early from the enclosing function. Its simple definition //! makes it clear: //! //! ``` //! # #![feature(macro_rules)] //! macro_rules! try( //! ($e:expr) => (match $e { Ok(e) => e, Err(e) => return Err(e) }) //! ) //! # fn main() { } //! ``` //! //! `try!` is imported by the prelude, and is available everywhere. //! //! # `Result` and `Option` //! //! The `Result` and [`Option`](../option/index.html) types are //! similar and complementary: they are often employed to indicate a //! lack of a return value; and they are trivially converted between //! each other, so `Result`s are often handled by first converting to //! `Option` with the [`ok`](type.Result.html#method.ok) and //! [`err`](type.Result.html#method.ok) methods. //! //! Whereas `Option` only indicates the lack of a value, `Result` is //! specifically for error reporting, and carries with it an error //! value. Sometimes `Option` is used for indicating errors, but this //! is only for simple cases and is generally discouraged. Even when //! there is no useful error value to return, prefer `Result`. //! //! Converting to an `Option` with `ok()` to handle an error: //! //! ``` //! use std::io::Timer; //! let mut t = Timer::new().ok().expect("failed to create timer!"); //! ``` //! //! # `Result` vs. `fail!` //! //! `Result` is for recoverable errors; `fail!` is for unrecoverable //! errors. Callers should always be able to avoid failure if they //! take the proper precautions, for example, calling `is_some()` //! on an `Option` type before calling `unwrap`. //! //! The suitability of `fail!` as an error handling mechanism is //! limited by Rust's lack of any way to "catch" and resume execution //! from a thrown exception. Therefore using failure for error //! handling requires encapsulating fallible code in a task. Calling //! the `fail!` macro, or invoking `fail!` indirectly should be //! avoided as an error reporting strategy. Failure is only for //! unrecoverable errors and a failing task is typically the sign of //! a bug. //! //! A module that instead returns `Results` is alerting the caller //! that failure is possible, and providing precise control over how //! it is handled. //! //! Furthermore, failure may not be recoverable at all, depending on //! the context. The caller of `fail!` should assume that execution //! will not resume after failure, that failure is catastrophic. #![stable] use clone::Clone; use cmp::PartialEq; use std::fmt::Show; use slice; use slice::AsSlice; use iter::{Iterator, DoubleEndedIterator, FromIterator, ExactSize}; use option::{None, Option, Some}; /// `Result` is a type that represents either success (`Ok`) or failure (`Err`). /// /// See the [`std::result`](index.html) module documentation for details. #[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Show)] #[must_use] #[stable] pub enum Result { /// Contains the success value Ok(T), /// Contains the error value Err(E) } ///////////////////////////////////////////////////////////////////////////// // Type implementation ///////////////////////////////////////////////////////////////////////////// impl Result { ///////////////////////////////////////////////////////////////////////// // Querying the contained values ///////////////////////////////////////////////////////////////////////// /// Returns true if the result is `Ok` /// /// # Example /// /// ``` /// let x: Result = Ok(-3); /// assert_eq!(x.is_ok(), true); /// /// let x: Result = Err("Some error message"); /// assert_eq!(x.is_ok(), false); /// ``` #[inline] #[stable] pub fn is_ok(&self) -> bool { match *self { Ok(_) => true, Err(_) => false } } /// Returns true if the result is `Err` /// /// # Example /// /// ``` /// let x: Result = Ok(-3); /// assert_eq!(x.is_err(), false); /// /// let x: Result = Err("Some error message"); /// assert_eq!(x.is_err(), true); /// ``` #[inline] #[stable] pub fn is_err(&self) -> bool { !self.is_ok() } ///////////////////////////////////////////////////////////////////////// // Adapter for each variant ///////////////////////////////////////////////////////////////////////// /// Convert from `Result` to `Option` /// /// Converts `self` into an `Option`, consuming `self`, /// and discarding the error, if any. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.ok(), Some(2)); /// /// let x: Result = Err("Nothing here"); /// assert_eq!(x.ok(), None); /// ``` #[inline] #[stable] pub fn ok(self) -> Option { match self { Ok(x) => Some(x), Err(_) => None, } } /// Convert from `Result` to `Option` /// /// Converts `self` into an `Option`, consuming `self`, /// and discarding the value, if any. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.err(), None); /// /// let x: Result = Err("Nothing here"); /// assert_eq!(x.err(), Some("Nothing here")); /// ``` #[inline] #[stable] pub fn err(self) -> Option { match self { Ok(_) => None, Err(x) => Some(x), } } ///////////////////////////////////////////////////////////////////////// // Adapter for working with references ///////////////////////////////////////////////////////////////////////// /// Convert from `Result` to `Result<&T, &E>` /// /// Produces a new `Result`, containing a reference /// into the original, leaving the original in place. /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.as_ref(), Ok(&2)); /// /// let x: Result = Err("Error"); /// assert_eq!(x.as_ref(), Err(&"Error")); /// ``` #[inline] #[stable] pub fn as_ref<'r>(&'r self) -> Result<&'r T, &'r E> { match *self { Ok(ref x) => Ok(x), Err(ref x) => Err(x), } } /// Convert from `Result` to `Result<&mut T, &mut E>` /// /// ``` /// fn mutate(r: &mut Result) { /// match r.as_mut() { /// Ok(&ref mut v) => *v = 42, /// Err(&ref mut e) => *e = 0, /// } /// } /// /// let mut x: Result = Ok(2); /// mutate(&mut x); /// assert_eq!(x.unwrap(), 42); /// /// let mut x: Result = Err(13); /// mutate(&mut x); /// assert_eq!(x.unwrap_err(), 0); /// ``` #[inline] #[unstable = "waiting for mut conventions"] pub fn as_mut<'r>(&'r mut self) -> Result<&'r mut T, &'r mut E> { match *self { Ok(ref mut x) => Ok(x), Err(ref mut x) => Err(x), } } /// Convert from `Result` to `&mut [T]` (without copying) /// /// ``` /// let mut x: Result<&str, uint> = Ok("Gold"); /// { /// let v = x.as_mut_slice(); /// assert!(v == ["Gold"]); /// v[0] = "Silver"; /// assert!(v == ["Silver"]); /// } /// assert_eq!(x, Ok("Silver")); /// /// let mut x: Result<&str, uint> = Err(45); /// assert!(x.as_mut_slice() == []); /// ``` #[inline] #[unstable = "waiting for mut conventions"] pub fn as_mut_slice<'r>(&'r mut self) -> &'r mut [T] { match *self { Ok(ref mut x) => slice::mut_ref_slice(x), Err(_) => { // work around lack of implicit coercion from fixed-size array to slice let emp: &mut [_] = &mut []; emp } } } ///////////////////////////////////////////////////////////////////////// // Transforming contained values ///////////////////////////////////////////////////////////////////////// /// Maps a `Result` to `Result` by applying a function to an /// contained `Ok` value, leaving an `Err` value untouched. /// /// This function can be used to compose the results of two functions. /// /// # Example /// /// Sum the lines of a buffer by mapping strings to numbers, /// ignoring I/O and parse errors: /// /// ``` /// use std::io::{BufReader, IoResult}; /// /// let buffer = "1\n2\n3\n4\n"; /// let mut reader = BufReader::new(buffer.as_bytes()); /// /// let mut sum = 0; /// /// while !reader.eof() { /// let line: IoResult = reader.read_line(); /// // Convert the string line to a number using `map` and `from_str` /// let val: IoResult = line.map(|line| { /// from_str::(line.as_slice().trim_right()).unwrap_or(0) /// }); /// // Add the value if there were no errors, otherwise add 0 /// sum += val.ok().unwrap_or(0); /// } /// /// assert!(sum == 10); /// ``` #[inline] #[unstable = "waiting for unboxed closures"] pub fn map(self, op: |T| -> U) -> Result { match self { Ok(t) => Ok(op(t)), Err(e) => Err(e) } } /// Maps a `Result` to `Result` by applying a function to an /// contained `Err` value, leaving an `Ok` value untouched. /// /// This function can be used to pass through a successful result while handling /// an error. /// /// # Example /// /// ``` /// fn stringify(x: uint) -> String { format!("error code: {}", x) } /// /// let x: Result = Ok(2u); /// assert_eq!(x.map_err(stringify), Ok(2u)); /// /// let x: Result = Err(13); /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string())); /// ``` #[inline] #[unstable = "waiting for unboxed closures"] pub fn map_err(self, op: |E| -> F) -> Result { match self { Ok(t) => Ok(t), Err(e) => Err(op(e)) } } ///////////////////////////////////////////////////////////////////////// // Iterator constructors ///////////////////////////////////////////////////////////////////////// /// Returns an iterator over the possibly contained value. /// /// # Example /// /// ``` /// let x: Result = Ok(7); /// assert_eq!(x.iter().next(), Some(&7)); /// /// let x: Result = Err("nothing!"); /// assert_eq!(x.iter().next(), None); /// ``` #[inline] #[unstable = "waiting for iterator conventions"] pub fn iter<'r>(&'r self) -> Item<&'r T> { Item{opt: self.as_ref().ok()} } /// Deprecated: use `iter_mut`. #[deprecated = "use iter_mut"] pub fn mut_iter<'r>(&'r mut self) -> Item<&'r mut T> { self.iter_mut() } /// Returns a mutable iterator over the possibly contained value. /// /// # Example /// /// ``` /// let mut x: Result = Ok(7); /// match x.iter_mut().next() { /// Some(&ref mut x) => *x = 40, /// None => {}, /// } /// assert_eq!(x, Ok(40)); /// /// let mut x: Result = Err("nothing!"); /// assert_eq!(x.iter_mut().next(), None); /// ``` #[inline] #[unstable = "waiting for iterator conventions"] pub fn iter_mut<'r>(&'r mut self) -> Item<&'r mut T> { Item{opt: self.as_mut().ok()} } /// Deprecated: `use into_iter`. #[deprecated = "use into_iter"] pub fn move_iter(self) -> Item { self.into_iter() } /// Returns a consuming iterator over the possibly contained value. /// /// # Example /// /// ``` /// let x: Result = Ok(5); /// let v: Vec = x.into_iter().collect(); /// assert_eq!(v, vec![5u]); /// /// let x: Result = Err("nothing!"); /// let v: Vec = x.into_iter().collect(); /// assert_eq!(v, vec![]); /// ``` #[inline] #[unstable = "waiting for iterator conventions"] pub fn into_iter(self) -> Item { Item{opt: self.ok()} } //////////////////////////////////////////////////////////////////////// // Boolean operations on the values, eager and lazy ///////////////////////////////////////////////////////////////////////// /// Returns `res` if the result is `Ok`, otherwise returns the `Err` value of `self`. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// let y: Result<&str, &str> = Err("late error"); /// assert_eq!(x.and(y), Err("late error")); /// /// let x: Result = Err("early error"); /// let y: Result<&str, &str> = Ok("foo"); /// assert_eq!(x.and(y), Err("early error")); /// /// let x: Result = Err("not a 2"); /// let y: Result<&str, &str> = Err("late error"); /// assert_eq!(x.and(y), Err("not a 2")); /// /// let x: Result = Ok(2); /// let y: Result<&str, &str> = Ok("different result type"); /// assert_eq!(x.and(y), Ok("different result type")); /// ``` #[inline] #[stable] pub fn and(self, res: Result) -> Result { match self { Ok(_) => res, Err(e) => Err(e), } } /// Calls `op` if the result is `Ok`, otherwise returns the `Err` value of `self`. /// /// This function can be used for control flow based on result values. /// /// # Example /// /// ``` /// fn sq(x: uint) -> Result { Ok(x * x) } /// fn err(x: uint) -> Result { Err(x) } /// /// assert_eq!(Ok(2).and_then(sq).and_then(sq), Ok(16)); /// assert_eq!(Ok(2).and_then(sq).and_then(err), Err(4)); /// assert_eq!(Ok(2).and_then(err).and_then(sq), Err(2)); /// assert_eq!(Err(3).and_then(sq).and_then(sq), Err(3)); /// ``` #[inline] #[unstable = "waiting for unboxed closures"] pub fn and_then(self, op: |T| -> Result) -> Result { match self { Ok(t) => op(t), Err(e) => Err(e), } } /// Returns `res` if the result is `Err`, otherwise returns the `Ok` value of `self`. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// let y: Result = Err("late error"); /// assert_eq!(x.or(y), Ok(2)); /// /// let x: Result = Err("early error"); /// let y: Result = Ok(2); /// assert_eq!(x.or(y), Ok(2)); /// /// let x: Result = Err("not a 2"); /// let y: Result = Err("late error"); /// assert_eq!(x.or(y), Err("late error")); /// /// let x: Result = Ok(2); /// let y: Result = Ok(100); /// assert_eq!(x.or(y), Ok(2)); /// ``` #[inline] #[stable] pub fn or(self, res: Result) -> Result { match self { Ok(_) => self, Err(_) => res, } } /// Calls `op` if the result is `Err`, otherwise returns the `Ok` value of `self`. /// /// This function can be used for control flow based on result values. /// /// # Example /// /// ``` /// fn sq(x: uint) -> Result { Ok(x * x) } /// fn err(x: uint) -> Result { Err(x) } /// /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2)); /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2)); /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9)); /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3)); /// ``` #[inline] #[unstable = "waiting for unboxed closures"] pub fn or_else(self, op: |E| -> Result) -> Result { match self { Ok(t) => Ok(t), Err(e) => op(e), } } /// Unwraps a result, yielding the content of an `Ok`. /// Else it returns `optb`. /// /// # Example /// /// ``` /// let optb = 2u; /// let x: Result = Ok(9u); /// assert_eq!(x.unwrap_or(optb), 9u); /// /// let x: Result = Err("error"); /// assert_eq!(x.unwrap_or(optb), optb); /// ``` #[inline] #[unstable = "waiting for conventions"] pub fn unwrap_or(self, optb: T) -> T { match self { Ok(t) => t, Err(_) => optb } } /// Unwraps a result, yielding the content of an `Ok`. /// If the value is an `Err` then it calls `op` with its value. /// /// # Example /// /// ``` /// fn count(x: &str) -> uint { x.len() } /// /// assert_eq!(Ok(2u).unwrap_or_else(count), 2u); /// assert_eq!(Err("foo").unwrap_or_else(count), 3u); /// ``` #[inline] #[unstable = "waiting for conventions"] pub fn unwrap_or_else(self, op: |E| -> T) -> T { match self { Ok(t) => t, Err(e) => op(e) } } /// Deprecated name for `unwrap_or_else()`. #[deprecated = "replaced by .unwrap_or_else()"] #[inline] pub fn unwrap_or_handle(self, op: |E| -> T) -> T { self.unwrap_or_else(op) } } impl Result { /// Unwraps a result, yielding the content of an `Ok`. /// /// # Failure /// /// Fails if the value is an `Err`, with a custom failure message provided /// by the `Err`'s value. /// /// # Example /// /// ``` /// let x: Result = Ok(2u); /// assert_eq!(x.unwrap(), 2u); /// ``` /// /// ```{.should_fail} /// let x: Result = Err("emergency failure"); /// x.unwrap(); // fails with `emergency failure` /// ``` #[inline] #[unstable = "waiting for conventions"] pub fn unwrap(self) -> T { match self { Ok(t) => t, Err(e) => fail!("called `Result::unwrap()` on an `Err` value: {}", e) } } } impl Result { /// Unwraps a result, yielding the content of an `Err`. /// /// # Failure /// /// Fails if the value is an `Ok`, with a custom failure message provided /// by the `Ok`'s value. /// /// # Example /// /// ```{.should_fail} /// let x: Result = Ok(2u); /// x.unwrap_err(); // fails with `2` /// ``` /// /// ``` /// let x: Result = Err("emergency failure"); /// assert_eq!(x.unwrap_err(), "emergency failure"); /// ``` #[inline] #[unstable = "waiting for conventions"] pub fn unwrap_err(self) -> E { match self { Ok(t) => fail!("called `Result::unwrap_err()` on an `Ok` value: {}", t), Err(e) => e } } } ///////////////////////////////////////////////////////////////////////////// // Trait implementations ///////////////////////////////////////////////////////////////////////////// impl AsSlice for Result { /// Convert from `Result` to `&[T]` (without copying) #[inline] #[stable] fn as_slice<'a>(&'a self) -> &'a [T] { match *self { Ok(ref x) => slice::ref_slice(x), Err(_) => { // work around lack of implicit coercion from fixed-size array to slice let emp: &[_] = &[]; emp } } } } ///////////////////////////////////////////////////////////////////////////// // The Result Iterator ///////////////////////////////////////////////////////////////////////////// /// A `Result` iterator that yields either one or zero elements /// /// The `Item` iterator is returned by the `iter`, `iter_mut` and `into_iter` /// methods on `Result`. #[deriving(Clone)] #[unstable = "waiting for iterator conventions"] pub struct Item { opt: Option } impl Iterator for Item { #[inline] fn next(&mut self) -> Option { self.opt.take() } #[inline] fn size_hint(&self) -> (uint, Option) { match self.opt { Some(_) => (1, Some(1)), None => (0, Some(0)), } } } impl DoubleEndedIterator for Item { #[inline] fn next_back(&mut self) -> Option { self.opt.take() } } impl ExactSize for Item {} ///////////////////////////////////////////////////////////////////////////// // Free functions ///////////////////////////////////////////////////////////////////////////// /// Deprecated: use `Iterator::collect`. #[inline] #[deprecated = "use Iterator::collect instead"] pub fn collect>, V: FromIterator>(mut iter: Iter) -> Result { iter.collect() } impl> FromIterator> for Result { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, a /// container with the values of each `Result` is returned. /// /// Here is an example which increments every integer in a vector, /// checking for overflow: /// /// ```rust /// use std::uint; /// /// let v = vec!(1u, 2u); /// let res: Result, &'static str> = v.iter().map(|x: &uint| /// if *x == uint::MAX { Err("Overflow!") } /// else { Ok(x + 1) } /// ).collect(); /// assert!(res == Ok(vec!(2u, 3u))); /// ``` #[inline] fn from_iter>>(iter: I) -> Result { // FIXME(#11084): This could be replaced with Iterator::scan when this // performance bug is closed. struct Adapter { iter: Iter, err: Option, } impl>> Iterator for Adapter { #[inline] fn next(&mut self) -> Option { match self.iter.next() { Some(Ok(value)) => Some(value), Some(Err(err)) => { self.err = Some(err); None } None => None, } } } let mut adapter = Adapter { iter: iter, err: None }; let v: V = FromIterator::from_iter(adapter.by_ref()); match adapter.err { Some(err) => Err(err), None => Ok(v), } } } /// Perform a fold operation over the result values from an iterator. /// /// If an `Err` is encountered, it is immediately returned. /// Otherwise, the folded value is returned. #[inline] #[experimental] pub fn fold>>( mut iterator: Iter, mut init: V, f: |V, T| -> V) -> Result { for t in iterator { match t { Ok(v) => init = f(init, v), Err(u) => return Err(u) } } Ok(init) } /// Deprecated. /// /// Perform a trivial fold operation over the result values /// from an iterator. /// /// If an `Err` is encountered, it is immediately returned. /// Otherwise, a simple `Ok(())` is returned. #[inline] #[deprecated = "use fold instead"] pub fn fold_>>(iterator: Iter) -> Result<(),E> { fold(iterator, (), |_, _| ()) }