// The Rust abstract syntax tree. import std::ivec; import std::option; import std::str; import codemap::span; import codemap::filename; type spanned[T] = rec(T node, span span); fn respan[T](&span sp, &T t) -> spanned[T] { ret rec(node=t, span=sp); } type ident = str; // Functions may or may not have names. type fn_ident = option::t[ident]; // FIXME: with typestate constraint, could say // idents and types are the same length, and are // non-empty type path_ = rec(bool global, ident[] idents, (@ty)[] types); type path = spanned[path_]; fn path_name(&path p) -> str { path_name_i(p.node.idents) } fn path_name_i(&ident[] idents) -> str { str::connect_ivec(idents, "::") } type crate_num = int; type node_id = int; type def_id = rec(crate_num crate, node_id node); const crate_num local_crate = 0; fn local_def(node_id id) -> def_id { ret rec(crate=local_crate, node=id); } type ty_param = ident; tag def { def_fn(def_id, purity); def_obj_field(def_id); def_mod(def_id); def_native_mod(def_id); def_const(def_id); def_arg(def_id); def_local(def_id); def_variant(def_id, /* tag */def_id); /* variant */ def_ty(def_id); def_ty_arg(uint); def_binding(def_id); def_use(def_id); def_native_ty(def_id); def_native_fn(def_id); /* A "fake" def for upvars. This never appears in the def_map, but * freevars::def_lookup will return it for a def that is an upvar. * It contains the actual def. */ def_upvar(def_id, @def); } fn variant_def_ids(&def d) -> rec(def_id tg, def_id var) { alt (d) { case (def_variant(?tag_id, ?var_id)) { ret rec(tg=tag_id, var=var_id); } } } fn def_id_of_def(def d) -> def_id { alt (d) { case (def_fn(?id,_)) { ret id; } case (def_obj_field(?id)) { ret id; } case (def_mod(?id)) { ret id; } case (def_native_mod(?id)) { ret id; } case (def_const(?id)) { ret id; } case (def_arg(?id)) { ret id; } case (def_local(?id)) { ret id; } case (def_variant(_, ?id)) { ret id; } case (def_ty(?id)) { ret id; } case (def_ty_arg(_)) { fail; } case (def_binding(?id)) { ret id; } case (def_use(?id)) { ret id; } case (def_native_ty(?id)) { ret id; } case (def_native_fn(?id)) { ret id; } case (def_upvar(?id, _)) { ret id; } } fail; } // The set of meta_items that define the compilation environment of the crate, // used to drive conditional compilation type crate_cfg = (@meta_item)[]; type crate = spanned[crate_]; type crate_ = rec((@crate_directive)[] directives, _mod module, attribute[] attrs, crate_cfg config); tag crate_directive_ { cdir_src_mod(ident, option::t[filename], attribute[]); cdir_dir_mod(ident, option::t[filename], (@crate_directive)[], attribute[]); cdir_view_item(@view_item); cdir_syntax(path); cdir_auth(path, _auth); } type crate_directive = spanned[crate_directive_]; type meta_item = spanned[meta_item_]; tag meta_item_ { meta_word(ident); meta_list(ident, (@meta_item)[]); meta_name_value(ident, lit); } type blk = spanned[blk_]; type blk_ = rec((@stmt)[] stmts, option::t[@expr] expr, node_id id); type pat = rec(node_id id, pat_ node, span span); type field_pat = rec(ident ident, @pat pat); tag pat_ { pat_wild; pat_bind(ident); pat_lit(@lit); pat_tag(path, (@pat)[]); pat_rec(field_pat[], bool); pat_box(@pat); } type pat_id_map = std::map::hashmap[str, ast::node_id]; // This is used because same-named variables in alternative patterns need to // use the node_id of their namesake in the first pattern. fn pat_id_map(&@pat pat) -> pat_id_map { auto map = std::map::new_str_hash[node_id](); fn walk(&pat_id_map map, &@pat pat) { alt (pat.node) { pat_bind(?name) { map.insert(name, pat.id); } pat_tag(_, ?sub) { for (@pat p in sub) { walk(map, p); } } pat_rec(?fields, _) { for (field_pat f in fields) { walk(map, f.pat); } } pat_box(?inner) { walk(map, inner); } _ {} } } walk(map, pat); ret map; } tag mutability { mut; imm; maybe_mut; } tag layer { layer_value; layer_state; layer_gc; } tag _auth { auth_unsafe; } tag proto { proto_iter; proto_fn; } tag binop { add; sub; mul; div; rem; and; or; bitxor; bitand; bitor; lsl; lsr; asr; eq; lt; le; ne; ge; gt; } fn binop_to_str(binop op) -> str { alt (op) { case (add) { ret "+"; } case (sub) { ret "-"; } case (mul) { ret "*"; } case (div) { ret "/"; } case (rem) { ret "%"; } case (and) { ret "&&"; } case (or) { ret "||"; } case (bitxor) { ret "^"; } case (bitand) { ret "&"; } case (bitor) { ret "|"; } case (lsl) { ret "<<"; } case (lsr) { ret ">>"; } case (asr) { ret ">>>"; } case (eq) { ret "=="; } case (lt) { ret "<"; } case (le) { ret "<="; } case (ne) { ret "!="; } case (ge) { ret ">="; } case (gt) { ret ">"; } } } pred lazy_binop(binop b) -> bool { alt (b) { case (and) { true } case (or) { true } case (_) { false } } } tag unop { box(mutability); deref; not; neg; } fn unop_to_str(unop op) -> str { alt (op) { case (box(?mt)) { if (mt == mut) { ret "@mutable "; } ret "@"; } case (deref) { ret "*"; } case (not) { ret "!"; } case (neg) { ret "-"; } } } tag mode { val; alias(bool); } type stmt = spanned[stmt_]; tag stmt_ { stmt_decl(@decl, node_id); stmt_expr(@expr, node_id); // These only exist in crate-level blocks. stmt_crate_directive(@crate_directive); } tag init_op { init_assign; init_recv; init_move; } type initializer = rec(init_op op, @expr expr); type local_ = rec(option::t[@ty] ty, bool infer, ident ident, option::t[initializer] init, node_id id); type local = spanned[local_]; type decl = spanned[decl_]; tag decl_ { decl_local((@local)[]); decl_item(@item); } type arm = rec((@pat)[] pats, blk block); type elt = rec(mutability mut, @expr expr); type field_ = rec(mutability mut, ident ident, @expr expr); type field = spanned[field_]; tag spawn_dom { dom_implicit; dom_thread; } tag check_mode { checked; unchecked; } // FIXME: temporary tag seq_kind { sk_unique; sk_rc; } type expr = rec(node_id id, expr_ node, span span); tag expr_ { expr_vec((@expr)[], mutability, seq_kind); expr_rec(field[], option::t[@expr]); expr_call(@expr, (@expr)[]); expr_self_method(ident); expr_bind(@expr, (option::t[@expr])[]); expr_spawn(spawn_dom, option::t[str], @expr, (@expr)[]); expr_binary(binop, @expr, @expr); expr_unary(unop, @expr); expr_lit(@lit); expr_cast(@expr, @ty); expr_if(@expr, blk, option::t[@expr]); expr_ternary(@expr, @expr, @expr); expr_while(@expr, blk); expr_for(@local, @expr, blk); expr_for_each(@local, @expr, blk); expr_do_while(blk, @expr); expr_alt(@expr, arm[]); expr_fn(_fn); expr_block(blk); /* * FIXME: many of these @exprs should be constrained with * is_lval once we have constrained types working. */ expr_move(@expr, @expr); expr_assign(@expr,@expr); expr_swap(@expr, @expr); expr_assign_op(binop, @expr, @expr); expr_send(@expr, @expr); expr_recv(@expr, @expr); expr_field(@expr, ident); expr_index(@expr, @expr); expr_path(path); expr_fail(option::t[@expr]); expr_break; expr_cont; expr_ret(option::t[@expr]); expr_put(option::t[@expr]); expr_be(@expr); expr_log(int, @expr); /* just an assert, no significance to typestate */ expr_assert(@expr); /* preds that typestate is aware of */ expr_check(check_mode, @expr); /* FIXME Would be nice if expr_check desugared to expr_if_check. */ expr_if_check(@expr, blk, option::t[@expr]); expr_port(option::t[@ty]); expr_chan(@expr); expr_anon_obj(anon_obj); expr_mac(mac); } type mac = spanned[mac_]; tag mac_ { mac_invoc(path, (@expr)[], option::t[str]); mac_embed_type(@ty); mac_embed_block(blk); mac_ellipsis; } type lit = spanned[lit_]; tag lit_ { lit_str(str, seq_kind); lit_char(char); lit_int(int); lit_uint(uint); lit_mach_int(ty_mach, int); lit_float(str); lit_mach_float(ty_mach, str); lit_nil; lit_bool(bool); } fn is_path(&@expr e) -> bool { ret alt (e.node) { case (expr_path(_)) { true } case (_) { false } }; } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. type mt = rec(@ty ty, mutability mut); type ty_field_ = rec(ident ident, mt mt); type ty_arg_ = rec(mode mode, @ty ty); type ty_method_ = rec(proto proto, ident ident, ty_arg[] inputs, @ty output, controlflow cf, (@constr)[] constrs); type ty_field = spanned[ty_field_]; type ty_arg = spanned[ty_arg_]; type ty_method = spanned[ty_method_]; tag ty_mach { ty_i8; ty_i16; ty_i32; ty_i64; ty_u8; ty_u16; ty_u32; ty_u64; ty_f32; ty_f64; } fn ty_mach_to_str(ty_mach tm) -> str { alt (tm) { case (ty_u8) { ret "u8"; } case (ty_u16) { ret "u16"; } case (ty_u32) { ret "u32"; } case (ty_u64) { ret "u64"; } case (ty_i8) { ret "i8"; } case (ty_i16) { ret "i16"; } case (ty_i32) { ret "i32"; } case (ty_i64) { ret "i64"; } case (ty_f32) { ret "f32"; } case (ty_f64) { ret "f64"; } } } type ty = spanned[ty_]; tag ty_ { ty_nil; ty_bot; /* return type of ! functions and type of ret/fail/break/cont. there is no syntax for this type. */ /* bot represents the value of functions that don't return a value locally to their context. in contrast, things like log that do return, but don't return a meaningful value, have result type nil. */ ty_bool; ty_int; ty_uint; ty_float; ty_machine(ty_mach); ty_char; ty_str; ty_istr; // interior string ty_box(mt); ty_vec(mt); ty_ivec(mt); // interior vector ty_ptr(mt); ty_task; ty_port(@ty); ty_chan(@ty); ty_rec(ty_field[]); ty_fn(proto, ty_arg[], @ty, controlflow, (@constr)[]); ty_obj(ty_method[]); ty_path(path, node_id); ty_type; ty_constr(@ty, (@ty_constr)[]); ty_mac(mac); } /* A constraint arg that's a function argument is referred to by its position rather than name. This is so we could have higher-order functions that have constraints (potentially -- right now there's no way to write that), and also so that the typestate pass doesn't have to map a function name onto its decl. So, the constr_arg type is parameterized: it's instantiated with uint for declarations, and ident for uses. */ tag constr_arg_general_[T] { carg_base; carg_ident(T); carg_lit(@lit); } type fn_constr_arg = constr_arg_general_[uint]; type sp_constr_arg[T] = spanned[constr_arg_general_[T]]; type ty_constr_arg = sp_constr_arg[path]; type constr_arg = spanned[fn_constr_arg]; // Constrained types' args are parameterized by paths, since // we refer to paths directly and not by indices. // The implicit root of such path, in the constraint-list for a // constrained type, is * (referring to the base record) type constr_general_[ARG, ID] = rec(path path, (@(spanned[constr_arg_general_[ARG]]))[] args, ID id); // In the front end, constraints have a node ID attached. // Typeck turns this to a def_id, using the output of resolve. type constr_general[ARG] = spanned[constr_general_[ARG, node_id]]; type constr_ = constr_general_[uint, node_id]; type constr = spanned[constr_general_[uint, node_id]]; type ty_constr_ = ast::constr_general_[ast::path, ast::node_id]; type ty_constr = spanned[ty_constr_]; /* The parser generates ast::constrs; resolve generates a mapping from each function to a list of ty::constr_defs, corresponding to these. */ type arg = rec(mode mode, @ty ty, ident ident, node_id id); type fn_decl = rec(arg[] inputs, @ty output, purity purity, controlflow cf, (@constr)[] constraints); tag purity { pure_fn; // declared with "pred" impure_fn; // declared with "fn" } tag controlflow { noreturn; // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return; // everything else } type _fn = rec(fn_decl decl, proto proto, blk body); type method_ = rec(ident ident, _fn meth, node_id id); type method = spanned[method_]; type obj_field = rec(mutability mut, @ty ty, ident ident, node_id id); type anon_obj_field = rec(mutability mut, @ty ty, @expr expr, ident ident, node_id id); type _obj = rec(obj_field[] fields, (@method)[] methods, option::t[@method] dtor); type anon_obj = rec( // New fields and methods, if they exist. option::t[anon_obj_field[]] fields, (@method)[] methods, // with_obj: the original object being extended, if it exists. option::t[@expr] with_obj); type _mod = rec((@view_item)[] view_items, (@item)[] items); tag native_abi { native_abi_rust; native_abi_cdecl; native_abi_llvm; native_abi_rust_intrinsic; native_abi_x86stdcall; } type native_mod = rec(str native_name, native_abi abi, (@view_item)[] view_items, (@native_item)[] items); type variant_arg = rec(@ty ty, node_id id); type variant_ = rec(str name, (variant_arg)[] args, node_id id); type variant = spanned[variant_]; type view_item = spanned[view_item_]; tag view_item_ { view_item_use(ident, (@meta_item)[], node_id); view_item_import(ident, ident[], node_id); view_item_import_glob(ident[], node_id); view_item_export(ident, node_id); } type obj_def_ids = rec(node_id ty, node_id ctor); // Meta-data associated with an item type attribute = spanned[attribute_]; // Distinguishes between attributes that decorate items and attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. tag attr_style { attr_outer; attr_inner; } type attribute_ = rec(attr_style style, meta_item value); type item = rec(ident ident, attribute[] attrs, node_id id, // For objs and resources, this is the type def_id item_ node, span span); tag item_ { item_const(@ty, @expr); item_fn(_fn, ty_param[]); item_mod(_mod); item_native_mod(native_mod); item_ty(@ty, ty_param[]); item_tag(variant[], ty_param[]); item_obj(_obj, ty_param[], node_id /* constructor id */); item_res(_fn /* dtor */, node_id /* dtor id */, ty_param[], node_id /* ctor id */); } type native_item = rec(ident ident, attribute[] attrs, native_item_ node, node_id id, span span); tag native_item_ { native_item_ty; native_item_fn(option::t[str], fn_decl, ty_param[]); } fn is_exported(ident i, _mod m) -> bool { auto nonlocal = true; for (@ast::item it in m.items) { if (it.ident == i) { nonlocal = false; } alt (it.node) { case (item_tag(?variants, _)) { for (variant v in variants) { if (v.node.name == i) { nonlocal = false; } } } case (_) { } } if (!nonlocal) { break; } } auto count = 0u; for (@ast::view_item vi in m.view_items) { alt (vi.node) { case (ast::view_item_export(?id, _)) { if (str::eq(i, id)) { // even if it's nonlocal (since it's explicit) ret true; } count += 1u; } case (_) {/* fall through */ } } } // If there are no declared exports then // everything not imported is exported ret count == 0u && !nonlocal; } fn is_call_expr(@expr e) -> bool { alt (e.node) { case (expr_call(_, _)) { ret true; } case (_) { ret false; } } } fn is_constraint_arg(@expr e) -> bool { alt (e.node) { case (expr_lit(_)) { ret true; } case (expr_path(_)) { ret true; } case (_) { ret false; } } } fn eq_ty(&@ty a, &@ty b) -> bool { ret std::box::ptr_eq(a, b); } fn hash_ty(&@ty t) -> uint { ret t.span.lo << 16u + t.span.hi; } fn block_from_expr(@expr e) -> blk { auto blk_ = rec(stmts=~[], expr=option::some[@expr](e), id=e.id); ret rec(node=blk_, span=e.span); } fn obj_field_from_anon_obj_field(&anon_obj_field f) -> obj_field { ret rec(mut=f.mut, ty=f.ty, ident=f.ident, id=f.id); } // This is a convenience function to transfor ternary expressions to if // expressions so that they can be treated the same fn ternary_to_if(&@expr e) -> @ast::expr { alt (e.node) { case (expr_ternary(?cond, ?then, ?els)) { auto then_blk = block_from_expr(then); auto els_blk = block_from_expr(els); auto els_expr = @rec(id=els.id, node=expr_block(els_blk), span=els.span); ret @rec(id=e.id, node=expr_if(cond, then_blk, option::some(els_expr)), span=e.span); } case (_) { fail; } } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //