//! Reduced graph building. //! //! Here we build the "reduced graph": the graph of the module tree without //! any imports resolved. use crate::macros::{LegacyBinding, LegacyScope}; use crate::resolve_imports::ImportDirective; use crate::resolve_imports::ImportDirectiveSubclass::{self, GlobImport, SingleImport}; use crate::{Module, ModuleData, ModuleKind, NameBinding, NameBindingKind, Segment, ToNameBinding}; use crate::{ModuleOrUniformRoot, ParentScope, PerNS, Resolver, ResolverArenas, ExternPreludeEntry}; use crate::Namespace::{self, TypeNS, ValueNS, MacroNS}; use crate::{ResolutionError, Determinacy, PathResult, CrateLint}; use rustc::bug; use rustc::hir::def::{self, *}; use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId}; use rustc::ty; use rustc::middle::cstore::CrateStore; use rustc_metadata::cstore::LoadedMacro; use std::cell::Cell; use std::ptr; use rustc_data_structures::sync::Lrc; use errors::Applicability; use syntax::ast::{Name, Ident}; use syntax::attr; use syntax::ast::{self, Block, ForeignItem, ForeignItemKind, Item, ItemKind, NodeId}; use syntax::ast::{MetaItemKind, StmtKind, TraitItem, TraitItemKind, Variant}; use syntax::ext::base::{MacroKind, SyntaxExtension}; use syntax::ext::hygiene::ExpnId; use syntax::feature_gate::is_builtin_attr; use syntax::parse::token::{self, Token}; use syntax::{span_err, struct_span_err}; use syntax::symbol::{kw, sym}; use syntax::visit::{self, Visitor}; use syntax_pos::{Span, DUMMY_SP}; use log::debug; type Res = def::Res; impl<'a> ToNameBinding<'a> for (Module<'a>, ty::Visibility, Span, ExpnId) { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Module(self.0), ambiguity: None, vis: self.1, span: self.2, expansion: self.3, }) } } impl<'a> ToNameBinding<'a> for (Res, ty::Visibility, Span, ExpnId) { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Res(self.0, false), ambiguity: None, vis: self.1, span: self.2, expansion: self.3, }) } } pub(crate) struct IsMacroExport; impl<'a> ToNameBinding<'a> for (Res, ty::Visibility, Span, ExpnId, IsMacroExport) { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Res(self.0, true), ambiguity: None, vis: self.1, span: self.2, expansion: self.3, }) } } impl<'a> Resolver<'a> { /// Defines `name` in namespace `ns` of module `parent` to be `def` if it is not yet defined; /// otherwise, reports an error. pub fn define(&mut self, parent: Module<'a>, ident: Ident, ns: Namespace, def: T) where T: ToNameBinding<'a>, { let binding = def.to_name_binding(self.arenas); if let Err(old_binding) = self.try_define(parent, ident, ns, binding) { self.report_conflict(parent, ident, ns, old_binding, &binding); } } pub fn get_module(&mut self, def_id: DefId) -> Module<'a> { if def_id.krate == LOCAL_CRATE { return self.module_map[&def_id] } let macros_only = self.cstore.dep_kind_untracked(def_id.krate).macros_only(); if let Some(&module) = self.extern_module_map.get(&(def_id, macros_only)) { return module; } let (name, parent) = if def_id.index == CRATE_DEF_INDEX { (self.cstore.crate_name_untracked(def_id.krate).as_interned_str(), None) } else { let def_key = self.cstore.def_key(def_id); (def_key.disambiguated_data.data.get_opt_name().unwrap(), Some(self.get_module(DefId { index: def_key.parent.unwrap(), ..def_id }))) }; let kind = ModuleKind::Def(DefKind::Mod, def_id, name.as_symbol()); let module = self.arenas.alloc_module(ModuleData::new( parent, kind, def_id, ExpnId::root(), DUMMY_SP )); self.extern_module_map.insert((def_id, macros_only), module); module } pub fn macro_def_scope(&mut self, expn_id: ExpnId) -> Module<'a> { let def_id = match self.macro_defs.get(&expn_id) { Some(def_id) => *def_id, None => return self.graph_root, }; if let Some(id) = self.definitions.as_local_node_id(def_id) { self.local_macro_def_scopes[&id] } else { let module_def_id = ty::DefIdTree::parent(&*self, def_id).unwrap(); self.get_module(module_def_id) } } crate fn get_macro(&mut self, res: Res) -> Option> { match res { Res::Def(DefKind::Macro(..), def_id) => self.get_macro_by_def_id(def_id), Res::NonMacroAttr(attr_kind) => Some(self.non_macro_attr(attr_kind == NonMacroAttrKind::Tool)), _ => None, } } crate fn get_macro_by_def_id(&mut self, def_id: DefId) -> Option> { if let Some(ext) = self.macro_map.get(&def_id) { return Some(ext.clone()); } let macro_def = match self.cstore.load_macro_untracked(def_id, &self.session) { LoadedMacro::MacroDef(macro_def) => macro_def, LoadedMacro::ProcMacro(ext) => return Some(ext), }; let ext = self.compile_macro(¯o_def, self.cstore.crate_edition_untracked(def_id.krate)); self.macro_map.insert(def_id, ext.clone()); Some(ext) } /// Ensures that the reduced graph rooted at the given external module /// is built, building it if it is not. pub fn populate_module_if_necessary(&mut self, module: Module<'a>) { if module.populated.get() { return } let def_id = module.def_id().unwrap(); for child in self.cstore.item_children_untracked(def_id, self.session) { let child = child.map_id(|_| panic!("unexpected id")); BuildReducedGraphVisitor { parent_scope: ParentScope::default(module), r: self } .build_reduced_graph_for_external_crate_res(child); } module.populated.set(true) } } pub struct BuildReducedGraphVisitor<'a, 'b> { pub r: &'b mut Resolver<'a>, pub parent_scope: ParentScope<'a>, } impl<'a, 'b> BuildReducedGraphVisitor<'a, 'b> { fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility { let parent_scope = &self.parent_scope; match vis.node { ast::VisibilityKind::Public => ty::Visibility::Public, ast::VisibilityKind::Crate(..) => { ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)) } ast::VisibilityKind::Inherited => { ty::Visibility::Restricted(parent_scope.module.normal_ancestor_id) } ast::VisibilityKind::Restricted { ref path, id, .. } => { // For visibilities we are not ready to provide correct implementation of "uniform // paths" right now, so on 2018 edition we only allow module-relative paths for now. // On 2015 edition visibilities are resolved as crate-relative by default, // so we are prepending a root segment if necessary. let ident = path.segments.get(0).expect("empty path in visibility").ident; let crate_root = if ident.is_path_segment_keyword() { None } else if ident.span.rust_2018() { let msg = "relative paths are not supported in visibilities on 2018 edition"; self.r.session.struct_span_err(ident.span, msg) .span_suggestion( path.span, "try", format!("crate::{}", path), Applicability::MaybeIncorrect, ) .emit(); return ty::Visibility::Public; } else { let ctxt = ident.span.ctxt(); Some(Segment::from_ident(Ident::new( kw::PathRoot, path.span.shrink_to_lo().with_ctxt(ctxt) ))) }; let segments = crate_root.into_iter() .chain(path.segments.iter().map(|seg| seg.into())).collect::>(); let expected_found_error = |this: &Self, res: Res| { let path_str = Segment::names_to_string(&segments); struct_span_err!(this.r.session, path.span, E0577, "expected module, found {} `{}`", res.descr(), path_str) .span_label(path.span, "not a module").emit(); }; match self.r.resolve_path( &segments, Some(TypeNS), parent_scope, true, path.span, CrateLint::SimplePath(id), ) { PathResult::Module(ModuleOrUniformRoot::Module(module)) => { let res = module.res().expect("visibility resolved to unnamed block"); self.r.record_partial_res(id, PartialRes::new(res)); if module.is_normal() { if res == Res::Err { ty::Visibility::Public } else { let vis = ty::Visibility::Restricted(res.def_id()); if self.r.is_accessible_from(vis, parent_scope.module) { vis } else { let msg = "visibilities can only be restricted to ancestor modules"; self.r.session.span_err(path.span, msg); ty::Visibility::Public } } } else { expected_found_error(self, res); ty::Visibility::Public } } PathResult::Module(..) => { self.r.session.span_err(path.span, "visibility must resolve to a module"); ty::Visibility::Public } PathResult::NonModule(partial_res) => { expected_found_error(self, partial_res.base_res()); ty::Visibility::Public } PathResult::Failed { span, label, suggestion, .. } => { self.r.report_error( span, ResolutionError::FailedToResolve { label, suggestion } ); ty::Visibility::Public } PathResult::Indeterminate => { span_err!(self.r.session, path.span, E0578, "cannot determine resolution for the visibility"); ty::Visibility::Public } } } } } fn insert_field_names(&mut self, def_id: DefId, field_names: Vec) { if !field_names.is_empty() { self.r.field_names.insert(def_id, field_names); } } fn block_needs_anonymous_module(&mut self, block: &Block) -> bool { // If any statements are items, we need to create an anonymous module block.stmts.iter().any(|statement| match statement.node { StmtKind::Item(_) | StmtKind::Mac(_) => true, _ => false, }) } // Add an import directive to the current module. fn add_import_directive( &mut self, module_path: Vec, subclass: ImportDirectiveSubclass<'a>, span: Span, id: NodeId, item: &ast::Item, root_span: Span, root_id: NodeId, vis: ty::Visibility, ) { let current_module = self.parent_scope.module; let directive = self.r.arenas.alloc_import_directive(ImportDirective { parent_scope: self.parent_scope, module_path, imported_module: Cell::new(None), subclass, span, id, use_span: item.span, use_span_with_attributes: item.span_with_attributes(), has_attributes: !item.attrs.is_empty(), root_span, root_id, vis: Cell::new(vis), used: Cell::new(false), }); debug!("add_import_directive({:?})", directive); self.r.indeterminate_imports.push(directive); match directive.subclass { SingleImport { target, type_ns_only, .. } => { self.r.per_ns(|this, ns| if !type_ns_only || ns == TypeNS { let mut resolution = this.resolution(current_module, target, ns).borrow_mut(); resolution.add_single_import(directive); }); } // We don't add prelude imports to the globs since they only affect lexical scopes, // which are not relevant to import resolution. GlobImport { is_prelude: true, .. } => {} GlobImport { .. } => current_module.globs.borrow_mut().push(directive), _ => unreachable!(), } } fn build_reduced_graph_for_use_tree( &mut self, // This particular use tree use_tree: &ast::UseTree, id: NodeId, parent_prefix: &[Segment], nested: bool, // The whole `use` item item: &Item, vis: ty::Visibility, root_span: Span, ) { debug!("build_reduced_graph_for_use_tree(parent_prefix={:?}, use_tree={:?}, nested={})", parent_prefix, use_tree, nested); let mut prefix_iter = parent_prefix.iter().cloned() .chain(use_tree.prefix.segments.iter().map(|seg| seg.into())).peekable(); // On 2015 edition imports are resolved as crate-relative by default, // so prefixes are prepended with crate root segment if necessary. // The root is prepended lazily, when the first non-empty prefix or terminating glob // appears, so imports in braced groups can have roots prepended independently. let is_glob = if let ast::UseTreeKind::Glob = use_tree.kind { true } else { false }; let crate_root = match prefix_iter.peek() { Some(seg) if !seg.ident.is_path_segment_keyword() && seg.ident.span.rust_2015() => { Some(seg.ident.span.ctxt()) } None if is_glob && use_tree.span.rust_2015() => { Some(use_tree.span.ctxt()) } _ => None, }.map(|ctxt| Segment::from_ident(Ident::new( kw::PathRoot, use_tree.prefix.span.shrink_to_lo().with_ctxt(ctxt) ))); let prefix = crate_root.into_iter().chain(prefix_iter).collect::>(); debug!("build_reduced_graph_for_use_tree: prefix={:?}", prefix); let empty_for_self = |prefix: &[Segment]| { prefix.is_empty() || prefix.len() == 1 && prefix[0].ident.name == kw::PathRoot }; match use_tree.kind { ast::UseTreeKind::Simple(rename, ..) => { let mut ident = use_tree.ident().gensym_if_underscore(); let mut module_path = prefix; let mut source = module_path.pop().unwrap(); let mut type_ns_only = false; if nested { // Correctly handle `self` if source.ident.name == kw::SelfLower { type_ns_only = true; if empty_for_self(&module_path) { self.r.report_error( use_tree.span, ResolutionError:: SelfImportOnlyInImportListWithNonEmptyPrefix ); return; } // Replace `use foo::self;` with `use foo;` source = module_path.pop().unwrap(); if rename.is_none() { ident = source.ident; } } } else { // Disallow `self` if source.ident.name == kw::SelfLower { self.r.report_error( use_tree.span, ResolutionError::SelfImportsOnlyAllowedWithin ); } // Disallow `use $crate;` if source.ident.name == kw::DollarCrate && module_path.is_empty() { let crate_root = self.r.resolve_crate_root(source.ident); let crate_name = match crate_root.kind { ModuleKind::Def(.., name) => name, ModuleKind::Block(..) => unreachable!(), }; // HACK(eddyb) unclear how good this is, but keeping `$crate` // in `source` breaks `src/test/compile-fail/import-crate-var.rs`, // while the current crate doesn't have a valid `crate_name`. if crate_name != kw::Invalid { // `crate_name` should not be interpreted as relative. module_path.push(Segment { ident: Ident { name: kw::PathRoot, span: source.ident.span, }, id: Some(self.r.session.next_node_id()), }); source.ident.name = crate_name; } if rename.is_none() { ident.name = crate_name; } self.r.session.struct_span_warn(item.span, "`$crate` may not be imported") .note("`use $crate;` was erroneously allowed and \ will become a hard error in a future release") .emit(); } } if ident.name == kw::Crate { self.r.session.span_err(ident.span, "crate root imports need to be explicitly named: \ `use crate as name;`"); } let subclass = SingleImport { source: source.ident, target: ident, source_bindings: PerNS { type_ns: Cell::new(Err(Determinacy::Undetermined)), value_ns: Cell::new(Err(Determinacy::Undetermined)), macro_ns: Cell::new(Err(Determinacy::Undetermined)), }, target_bindings: PerNS { type_ns: Cell::new(None), value_ns: Cell::new(None), macro_ns: Cell::new(None), }, type_ns_only, nested, }; self.add_import_directive( module_path, subclass, use_tree.span, id, item, root_span, item.id, vis, ); } ast::UseTreeKind::Glob => { let subclass = GlobImport { is_prelude: attr::contains_name(&item.attrs, sym::prelude_import), max_vis: Cell::new(ty::Visibility::Invisible), }; self.add_import_directive( prefix, subclass, use_tree.span, id, item, root_span, item.id, vis, ); } ast::UseTreeKind::Nested(ref items) => { // Ensure there is at most one `self` in the list let self_spans = items.iter().filter_map(|&(ref use_tree, _)| { if let ast::UseTreeKind::Simple(..) = use_tree.kind { if use_tree.ident().name == kw::SelfLower { return Some(use_tree.span); } } None }).collect::>(); if self_spans.len() > 1 { let mut e = self.r.into_struct_error( self_spans[0], ResolutionError::SelfImportCanOnlyAppearOnceInTheList); for other_span in self_spans.iter().skip(1) { e.span_label(*other_span, "another `self` import appears here"); } e.emit(); } for &(ref tree, id) in items { self.build_reduced_graph_for_use_tree( // This particular use tree tree, id, &prefix, true, // The whole `use` item item, vis, root_span, ); } // Empty groups `a::b::{}` are turned into synthetic `self` imports // `a::b::c::{self as _}`, so that their prefixes are correctly // resolved and checked for privacy/stability/etc. if items.is_empty() && !empty_for_self(&prefix) { let new_span = prefix[prefix.len() - 1].ident.span; let tree = ast::UseTree { prefix: ast::Path::from_ident( Ident::new(kw::SelfLower, new_span) ), kind: ast::UseTreeKind::Simple( Some(Ident::new(kw::Underscore, new_span)), ast::DUMMY_NODE_ID, ast::DUMMY_NODE_ID, ), span: use_tree.span, }; self.build_reduced_graph_for_use_tree( // This particular use tree &tree, id, &prefix, true, // The whole `use` item item, ty::Visibility::Invisible, root_span, ); } } } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(&mut self, item: &Item) { let parent_scope = &self.parent_scope; let parent = parent_scope.module; let expansion = parent_scope.expansion; let ident = item.ident.gensym_if_underscore(); let sp = item.span; let vis = self.resolve_visibility(&item.vis); match item.node { ItemKind::Use(ref use_tree) => { self.build_reduced_graph_for_use_tree( // This particular use tree use_tree, item.id, &[], false, // The whole `use` item item, vis, use_tree.span, ); } ItemKind::ExternCrate(orig_name) => { let module = if orig_name.is_none() && ident.name == kw::SelfLower { self.r.session .struct_span_err(item.span, "`extern crate self;` requires renaming") .span_suggestion( item.span, "try", "extern crate self as name;".into(), Applicability::HasPlaceholders, ) .emit(); return; } else if orig_name == Some(kw::SelfLower) { self.r.graph_root } else { let crate_id = self.r.crate_loader.process_extern_crate( item, &self.r.definitions ); self.r.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX }) }; self.r.populate_module_if_necessary(module); let used = self.process_legacy_macro_imports(item, module); let binding = (module, ty::Visibility::Public, sp, expansion).to_name_binding(self.r.arenas); let directive = self.r.arenas.alloc_import_directive(ImportDirective { root_id: item.id, id: item.id, parent_scope: self.parent_scope, imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))), subclass: ImportDirectiveSubclass::ExternCrate { source: orig_name, target: ident, }, has_attributes: !item.attrs.is_empty(), use_span_with_attributes: item.span_with_attributes(), use_span: item.span, root_span: item.span, span: item.span, module_path: Vec::new(), vis: Cell::new(vis), used: Cell::new(used), }); self.r.potentially_unused_imports.push(directive); let imported_binding = self.r.import(binding, directive); if ptr::eq(parent, self.r.graph_root) { if let Some(entry) = self.r.extern_prelude.get(&ident.modern()) { if expansion != ExpnId::root() && orig_name.is_some() && entry.extern_crate_item.is_none() { let msg = "macro-expanded `extern crate` items cannot \ shadow names passed with `--extern`"; self.r.session.span_err(item.span, msg); } } let entry = self.r.extern_prelude.entry(ident.modern()) .or_insert(ExternPreludeEntry { extern_crate_item: None, introduced_by_item: true, }); entry.extern_crate_item = Some(imported_binding); if orig_name.is_some() { entry.introduced_by_item = true; } } self.r.define(parent, ident, TypeNS, imported_binding); } ItemKind::GlobalAsm(..) => {} ItemKind::Mod(..) if ident.name == kw::Invalid => {} // Crate root ItemKind::Mod(..) => { let def_id = self.r.definitions.local_def_id(item.id); let module_kind = ModuleKind::Def(DefKind::Mod, def_id, ident.name); let module = self.r.arenas.alloc_module(ModuleData { no_implicit_prelude: parent.no_implicit_prelude || { attr::contains_name(&item.attrs, sym::no_implicit_prelude) }, ..ModuleData::new(Some(parent), module_kind, def_id, expansion, item.span) }); self.r.define(parent, ident, TypeNS, (module, vis, sp, expansion)); self.r.module_map.insert(def_id, module); // Descend into the module. self.parent_scope.module = module; } // Handled in `rustc_metadata::{native_libs,link_args}` ItemKind::ForeignMod(..) => {} // These items live in the value namespace. ItemKind::Static(..) => { let res = Res::Def(DefKind::Static, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, ValueNS, (res, vis, sp, expansion)); } ItemKind::Const(..) => { let res = Res::Def(DefKind::Const, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, ValueNS, (res, vis, sp, expansion)); } ItemKind::Fn(..) => { let res = Res::Def(DefKind::Fn, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, ValueNS, (res, vis, sp, expansion)); // Functions introducing procedural macros reserve a slot // in the macro namespace as well (see #52225). self.define_macro(item); } // These items live in the type namespace. ItemKind::TyAlias(..) => { let res = Res::Def(DefKind::TyAlias, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion)); } ItemKind::OpaqueTy(_, _) => { let res = Res::Def(DefKind::OpaqueTy, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion)); } ItemKind::Enum(ref enum_definition, _) => { let module_kind = ModuleKind::Def( DefKind::Enum, self.r.definitions.local_def_id(item.id), ident.name, ); let module = self.r.new_module(parent, module_kind, parent.normal_ancestor_id, expansion, item.span); self.r.define(parent, ident, TypeNS, (module, vis, sp, expansion)); for variant in &(*enum_definition).variants { self.build_reduced_graph_for_variant(variant, module, vis); } } ItemKind::TraitAlias(..) => { let res = Res::Def(DefKind::TraitAlias, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion)); } // These items live in both the type and value namespaces. ItemKind::Struct(ref struct_def, _) => { // Define a name in the type namespace. let def_id = self.r.definitions.local_def_id(item.id); let res = Res::Def(DefKind::Struct, def_id); self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion)); let mut ctor_vis = vis; let has_non_exhaustive = attr::contains_name(&item.attrs, sym::non_exhaustive); // If the structure is marked as non_exhaustive then lower the visibility // to within the crate. if has_non_exhaustive && vis == ty::Visibility::Public { ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)); } // Record field names for error reporting. let field_names = struct_def.fields().iter().filter_map(|field| { let field_vis = self.resolve_visibility(&field.vis); if ctor_vis.is_at_least(field_vis, &*self.r) { ctor_vis = field_vis; } field.ident.map(|ident| ident.name) }).collect(); let item_def_id = self.r.definitions.local_def_id(item.id); self.insert_field_names(item_def_id, field_names); // If this is a tuple or unit struct, define a name // in the value namespace as well. if let Some(ctor_node_id) = struct_def.ctor_id() { let ctor_res = Res::Def( DefKind::Ctor(CtorOf::Struct, CtorKind::from_ast(struct_def)), self.r.definitions.local_def_id(ctor_node_id), ); self.r.define(parent, ident, ValueNS, (ctor_res, ctor_vis, sp, expansion)); self.r.struct_constructors.insert(res.def_id(), (ctor_res, ctor_vis)); } } ItemKind::Union(ref vdata, _) => { let res = Res::Def(DefKind::Union, self.r.definitions.local_def_id(item.id)); self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion)); // Record field names for error reporting. let field_names = vdata.fields().iter().filter_map(|field| { self.resolve_visibility(&field.vis); field.ident.map(|ident| ident.name) }).collect(); let item_def_id = self.r.definitions.local_def_id(item.id); self.insert_field_names(item_def_id, field_names); } ItemKind::Impl(.., ref impl_items) => { for impl_item in impl_items { self.resolve_visibility(&impl_item.vis); } } ItemKind::Trait(..) => { let def_id = self.r.definitions.local_def_id(item.id); // Add all the items within to a new module. let module_kind = ModuleKind::Def(DefKind::Trait, def_id, ident.name); let module = self.r.new_module(parent, module_kind, parent.normal_ancestor_id, expansion, item.span); self.r.define(parent, ident, TypeNS, (module, vis, sp, expansion)); self.parent_scope.module = module; } ItemKind::MacroDef(..) | ItemKind::Mac(_) => unreachable!(), } } // Constructs the reduced graph for one variant. Variants exist in the // type and value namespaces. fn build_reduced_graph_for_variant(&mut self, variant: &Variant, parent: Module<'a>, vis: ty::Visibility) { let expn_id = self.parent_scope.expansion; let ident = variant.ident; // Define a name in the type namespace. let def_id = self.r.definitions.local_def_id(variant.id); let res = Res::Def(DefKind::Variant, def_id); self.r.define(parent, ident, TypeNS, (res, vis, variant.span, expn_id)); // If the variant is marked as non_exhaustive then lower the visibility to within the // crate. let mut ctor_vis = vis; let has_non_exhaustive = attr::contains_name(&variant.attrs, sym::non_exhaustive); if has_non_exhaustive && vis == ty::Visibility::Public { ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)); } // Define a constructor name in the value namespace. // Braced variants, unlike structs, generate unusable names in // value namespace, they are reserved for possible future use. // It's ok to use the variant's id as a ctor id since an // error will be reported on any use of such resolution anyway. let ctor_node_id = variant.data.ctor_id().unwrap_or(variant.id); let ctor_def_id = self.r.definitions.local_def_id(ctor_node_id); let ctor_kind = CtorKind::from_ast(&variant.data); let ctor_res = Res::Def(DefKind::Ctor(CtorOf::Variant, ctor_kind), ctor_def_id); self.r.define(parent, ident, ValueNS, (ctor_res, ctor_vis, variant.span, expn_id)); } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(&mut self, item: &ForeignItem) { let (res, ns) = match item.node { ForeignItemKind::Fn(..) => { (Res::Def(DefKind::Fn, self.r.definitions.local_def_id(item.id)), ValueNS) } ForeignItemKind::Static(..) => { (Res::Def(DefKind::Static, self.r.definitions.local_def_id(item.id)), ValueNS) } ForeignItemKind::Ty => { (Res::Def(DefKind::ForeignTy, self.r.definitions.local_def_id(item.id)), TypeNS) } ForeignItemKind::Macro(_) => unreachable!(), }; let parent = self.parent_scope.module; let expansion = self.parent_scope.expansion; let vis = self.resolve_visibility(&item.vis); self.r.define(parent, item.ident, ns, (res, vis, item.span, expansion)); } fn build_reduced_graph_for_block(&mut self, block: &Block) { let parent = self.parent_scope.module; let expansion = self.parent_scope.expansion; if self.block_needs_anonymous_module(block) { let module = self.r.new_module(parent, ModuleKind::Block(block.id), parent.normal_ancestor_id, expansion, block.span); self.r.block_map.insert(block.id, module); self.parent_scope.module = module; // Descend into the block. } } /// Builds the reduced graph for a single item in an external crate. fn build_reduced_graph_for_external_crate_res(&mut self, child: Export) { let parent = self.parent_scope.module; let Export { ident, res, vis, span } = child; // FIXME: We shouldn't create the gensym here, it should come from metadata, // but metadata cannot encode gensyms currently, so we create it here. // This is only a guess, two equivalent idents may incorrectly get different gensyms here. let ident = ident.gensym_if_underscore(); let expansion = ExpnId::root(); // FIXME(jseyfried) intercrate hygiene match res { Res::Def(kind @ DefKind::Mod, def_id) | Res::Def(kind @ DefKind::Enum, def_id) => { let module = self.r.new_module(parent, ModuleKind::Def(kind, def_id, ident.name), def_id, expansion, span); self.r.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion)); } Res::Def(DefKind::Variant, _) | Res::Def(DefKind::TyAlias, _) | Res::Def(DefKind::ForeignTy, _) | Res::Def(DefKind::OpaqueTy, _) | Res::Def(DefKind::TraitAlias, _) | Res::PrimTy(..) | Res::ToolMod => { self.r.define(parent, ident, TypeNS, (res, vis, DUMMY_SP, expansion)); } Res::Def(DefKind::Fn, _) | Res::Def(DefKind::Static, _) | Res::Def(DefKind::Const, _) | Res::Def(DefKind::Ctor(CtorOf::Variant, ..), _) => { self.r.define(parent, ident, ValueNS, (res, vis, DUMMY_SP, expansion)); } Res::Def(DefKind::Ctor(CtorOf::Struct, ..), def_id) => { self.r.define(parent, ident, ValueNS, (res, vis, DUMMY_SP, expansion)); if let Some(struct_def_id) = self.r.cstore.def_key(def_id).parent .map(|index| DefId { krate: def_id.krate, index: index }) { self.r.struct_constructors.insert(struct_def_id, (res, vis)); } } Res::Def(DefKind::Trait, def_id) => { let module_kind = ModuleKind::Def(DefKind::Trait, def_id, ident.name); let module = self.r.new_module(parent, module_kind, parent.normal_ancestor_id, expansion, span); self.r.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion)); for child in self.r.cstore.item_children_untracked(def_id, self.r.session) { let res = child.res.map_id(|_| panic!("unexpected id")); let ns = if let Res::Def(DefKind::AssocTy, _) = res { TypeNS } else { ValueNS }; self.r.define(module, child.ident, ns, (res, ty::Visibility::Public, DUMMY_SP, expansion)); if self.r.cstore.associated_item_cloned_untracked(child.res.def_id()) .method_has_self_argument { self.r.has_self.insert(res.def_id()); } } module.populated.set(true); } Res::Def(DefKind::Struct, def_id) | Res::Def(DefKind::Union, def_id) => { self.r.define(parent, ident, TypeNS, (res, vis, DUMMY_SP, expansion)); // Record field names for error reporting. let field_names = self.r.cstore.struct_field_names_untracked(def_id); self.insert_field_names(def_id, field_names); } Res::Def(DefKind::Macro(..), _) | Res::NonMacroAttr(..) => { self.r.define(parent, ident, MacroNS, (res, vis, DUMMY_SP, expansion)); } _ => bug!("unexpected resolution: {:?}", res) } } fn legacy_import_macro(&mut self, name: Name, binding: &'a NameBinding<'a>, span: Span, allow_shadowing: bool) { if self.r.macro_use_prelude.insert(name, binding).is_some() && !allow_shadowing { let msg = format!("`{}` is already in scope", name); let note = "macro-expanded `#[macro_use]`s may not shadow existing macros (see RFC 1560)"; self.r.session.struct_span_err(span, &msg).note(note).emit(); } } /// Returns `true` if we should consider the underlying `extern crate` to be used. fn process_legacy_macro_imports(&mut self, item: &Item, module: Module<'a>) -> bool { let mut import_all = None; let mut single_imports = Vec::new(); for attr in &item.attrs { if attr.check_name(sym::macro_use) { if self.parent_scope.module.parent.is_some() { span_err!(self.r.session, item.span, E0468, "an `extern crate` loading macros must be at the crate root"); } if let ItemKind::ExternCrate(Some(orig_name)) = item.node { if orig_name == kw::SelfLower { self.r.session.span_err(attr.span, "`macro_use` is not supported on `extern crate self`"); } } let ill_formed = |span| span_err!(self.r.session, span, E0466, "bad macro import"); match attr.meta() { Some(meta) => match meta.node { MetaItemKind::Word => { import_all = Some(meta.span); break; } MetaItemKind::List(nested_metas) => for nested_meta in nested_metas { match nested_meta.ident() { Some(ident) if nested_meta.is_word() => single_imports.push(ident), _ => ill_formed(nested_meta.span()), } } MetaItemKind::NameValue(..) => ill_formed(meta.span), } None => ill_formed(attr.span), } } } let macro_use_directive = |this: &Self, span| this.r.arenas.alloc_import_directive(ImportDirective { root_id: item.id, id: item.id, parent_scope: this.parent_scope, imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))), subclass: ImportDirectiveSubclass::MacroUse, use_span_with_attributes: item.span_with_attributes(), has_attributes: !item.attrs.is_empty(), use_span: item.span, root_span: span, span, module_path: Vec::new(), vis: Cell::new(ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))), used: Cell::new(false), }); let allow_shadowing = self.parent_scope.expansion == ExpnId::root(); if let Some(span) = import_all { let directive = macro_use_directive(self, span); self.r.potentially_unused_imports.push(directive); module.for_each_child(|ident, ns, binding| if ns == MacroNS { let imported_binding = self.r.import(binding, directive); self.legacy_import_macro(ident.name, imported_binding, span, allow_shadowing); }); } else { for ident in single_imports.iter().cloned() { let result = self.r.resolve_ident_in_module( ModuleOrUniformRoot::Module(module), ident, MacroNS, &self.parent_scope, false, ident.span, ); if let Ok(binding) = result { let directive = macro_use_directive(self, ident.span); self.r.potentially_unused_imports.push(directive); let imported_binding = self.r.import(binding, directive); self.legacy_import_macro(ident.name, imported_binding, ident.span, allow_shadowing); } else { span_err!(self.r.session, ident.span, E0469, "imported macro not found"); } } } import_all.is_some() || !single_imports.is_empty() } /// Returns `true` if this attribute list contains `macro_use`. fn contains_macro_use(&mut self, attrs: &[ast::Attribute]) -> bool { for attr in attrs { if attr.check_name(sym::macro_escape) { let msg = "macro_escape is a deprecated synonym for macro_use"; let mut err = self.r.session.struct_span_warn(attr.span, msg); if let ast::AttrStyle::Inner = attr.style { err.help("consider an outer attribute, `#[macro_use]` mod ...").emit(); } else { err.emit(); } } else if !attr.check_name(sym::macro_use) { continue; } if !attr.is_word() { self.r.session.span_err(attr.span, "arguments to macro_use are not allowed here"); } return true; } false } fn visit_invoc(&mut self, id: ast::NodeId) -> LegacyScope<'a> { let invoc_id = id.placeholder_to_expn_id(); self.parent_scope.module.unresolved_invocations.borrow_mut().insert(invoc_id); let old_parent_scope = self.r.invocation_parent_scopes.insert(invoc_id, self.parent_scope); assert!(old_parent_scope.is_none(), "invocation data is reset for an invocation"); LegacyScope::Invocation(invoc_id) } fn proc_macro_stub(item: &ast::Item) -> Option<(MacroKind, Ident, Span)> { if attr::contains_name(&item.attrs, sym::proc_macro) { return Some((MacroKind::Bang, item.ident, item.span)); } else if attr::contains_name(&item.attrs, sym::proc_macro_attribute) { return Some((MacroKind::Attr, item.ident, item.span)); } else if let Some(attr) = attr::find_by_name(&item.attrs, sym::proc_macro_derive) { if let Some(nested_meta) = attr.meta_item_list().and_then(|list| list.get(0).cloned()) { if let Some(ident) = nested_meta.ident() { return Some((MacroKind::Derive, ident, ident.span)); } } } None } fn define_macro(&mut self, item: &ast::Item) -> LegacyScope<'a> { let parent_scope = &self.parent_scope; let expansion = parent_scope.expansion; let (ext, ident, span, is_legacy) = match &item.node { ItemKind::MacroDef(def) => { let ext = self.r.compile_macro(item, self.r.session.edition()); (ext, item.ident, item.span, def.legacy) } ItemKind::Fn(..) => match Self::proc_macro_stub(item) { Some((macro_kind, ident, span)) => { self.r.proc_macro_stubs.insert(item.id); (self.r.dummy_ext(macro_kind), ident, span, false) } None => return parent_scope.legacy, } _ => unreachable!(), }; let def_id = self.r.definitions.local_def_id(item.id); let res = Res::Def(DefKind::Macro(ext.macro_kind()), def_id); self.r.macro_map.insert(def_id, ext); self.r.local_macro_def_scopes.insert(item.id, parent_scope.module); if is_legacy { let ident = ident.modern(); self.r.macro_names.insert(ident); let is_macro_export = attr::contains_name(&item.attrs, sym::macro_export); let vis = if is_macro_export { ty::Visibility::Public } else { ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)) }; let binding = (res, vis, span, expansion).to_name_binding(self.r.arenas); self.r.set_binding_parent_module(binding, parent_scope.module); self.r.all_macros.insert(ident.name, res); if is_macro_export { let module = self.r.graph_root; self.r.define(module, ident, MacroNS, (res, vis, span, expansion, IsMacroExport)); } else { self.r.check_reserved_macro_name(ident, res); self.r.unused_macros.insert(item.id, span); } LegacyScope::Binding(self.r.arenas.alloc_legacy_binding(LegacyBinding { parent_legacy_scope: parent_scope.legacy, binding, ident })) } else { let module = parent_scope.module; let vis = self.resolve_visibility(&item.vis); if vis != ty::Visibility::Public { self.r.unused_macros.insert(item.id, span); } self.r.define(module, ident, MacroNS, (res, vis, span, expansion)); self.parent_scope.legacy } } } macro_rules! method { ($visit:ident: $ty:ty, $invoc:path, $walk:ident) => { fn $visit(&mut self, node: &'b $ty) { if let $invoc(..) = node.node { self.visit_invoc(node.id); } else { visit::$walk(self, node); } } } } impl<'a, 'b> Visitor<'b> for BuildReducedGraphVisitor<'a, 'b> { method!(visit_impl_item: ast::ImplItem, ast::ImplItemKind::Macro, walk_impl_item); method!(visit_expr: ast::Expr, ast::ExprKind::Mac, walk_expr); method!(visit_pat: ast::Pat, ast::PatKind::Mac, walk_pat); method!(visit_ty: ast::Ty, ast::TyKind::Mac, walk_ty); fn visit_item(&mut self, item: &'b Item) { let macro_use = match item.node { ItemKind::MacroDef(..) => { self.parent_scope.legacy = self.define_macro(item); return } ItemKind::Mac(..) => { self.parent_scope.legacy = self.visit_invoc(item.id); return } ItemKind::Mod(..) => self.contains_macro_use(&item.attrs), _ => false, }; let orig_current_module = self.parent_scope.module; let orig_current_legacy_scope = self.parent_scope.legacy; self.build_reduced_graph_for_item(item); visit::walk_item(self, item); self.parent_scope.module = orig_current_module; if !macro_use { self.parent_scope.legacy = orig_current_legacy_scope; } } fn visit_stmt(&mut self, stmt: &'b ast::Stmt) { if let ast::StmtKind::Mac(..) = stmt.node { self.parent_scope.legacy = self.visit_invoc(stmt.id); } else { visit::walk_stmt(self, stmt); } } fn visit_foreign_item(&mut self, foreign_item: &'b ForeignItem) { if let ForeignItemKind::Macro(_) = foreign_item.node { self.visit_invoc(foreign_item.id); return; } self.build_reduced_graph_for_foreign_item(foreign_item); visit::walk_foreign_item(self, foreign_item); } fn visit_block(&mut self, block: &'b Block) { let orig_current_module = self.parent_scope.module; let orig_current_legacy_scope = self.parent_scope.legacy; self.build_reduced_graph_for_block(block); visit::walk_block(self, block); self.parent_scope.module = orig_current_module; self.parent_scope.legacy = orig_current_legacy_scope; } fn visit_trait_item(&mut self, item: &'b TraitItem) { let parent = self.parent_scope.module; if let TraitItemKind::Macro(_) = item.node { self.visit_invoc(item.id); return } // Add the item to the trait info. let item_def_id = self.r.definitions.local_def_id(item.id); let (res, ns) = match item.node { TraitItemKind::Const(..) => (Res::Def(DefKind::AssocConst, item_def_id), ValueNS), TraitItemKind::Method(ref sig, _) => { if sig.decl.has_self() { self.r.has_self.insert(item_def_id); } (Res::Def(DefKind::Method, item_def_id), ValueNS) } TraitItemKind::Type(..) => (Res::Def(DefKind::AssocTy, item_def_id), TypeNS), TraitItemKind::Macro(_) => bug!(), // handled above }; let vis = ty::Visibility::Public; let expansion = self.parent_scope.expansion; self.r.define(parent, item.ident, ns, (res, vis, item.span, expansion)); self.parent_scope.module = parent.parent.unwrap(); // nearest normal ancestor visit::walk_trait_item(self, item); self.parent_scope.module = parent; } fn visit_token(&mut self, t: Token) { if let token::Interpolated(nt) = t.kind { if let token::NtExpr(ref expr) = *nt { if let ast::ExprKind::Mac(..) = expr.node { self.visit_invoc(expr.id); } } } } fn visit_attribute(&mut self, attr: &'b ast::Attribute) { if !attr.is_sugared_doc && is_builtin_attr(attr) { self.r.builtin_attrs.push((attr.path.segments[0].ident, self.parent_scope)); } visit::walk_attribute(self, attr); } }