// trans.rs: Translate the completed AST to the LLVM IR. // // Some functions here, such as trans_block and trans_expr, return a value -- // the result of the translation to LLVM -- while others, such as trans_fn, // trans_impl, and trans_item, are called only for the side effect of adding a // particular definition to the LLVM IR output we're producing. // // Hopefully useful general knowledge about trans: // // * There's no way to find out the ty::t type of a ValueRef. Doing so // would be "trying to get the eggs out of an omelette" (credit: // pcwalton). You can, instead, find out its TypeRef by calling val_ty, // but many TypeRefs correspond to one ty::t; for instance, tup(int, int, // int) and rec(x=int, y=int, z=int) will have the same TypeRef. import libc::c_uint; import std::{map, time}; import std::map::hashmap; import std::map::{int_hash, str_hash}; import driver::session; import session::session; import front::attr; import back::{link, abi, upcall}; import syntax::{ast, ast_util, codemap}; import ast_util::inlined_item_methods; import ast_util::local_def; import syntax::visit; import syntax::codemap::span; import syntax::print::pprust::{expr_to_str, stmt_to_str, path_to_str}; import pat_util::*; import visit::vt; import util::common::*; import lib::llvm::{llvm, mk_target_data, mk_type_names}; import lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef}; import lib::llvm::{True, False}; import link::{mangle_internal_name_by_type_only, mangle_internal_name_by_seq, mangle_internal_name_by_path, mangle_internal_name_by_path_and_seq, mangle_exported_name}; import metadata::{csearch, cstore}; import util::ppaux::{ty_to_str, ty_to_short_str}; import common::*; import build::*; import shape::*; import type_of::*; import type_of::type_of; // Issue #1873 import ast_map::{path, path_mod, path_name}; import std::smallintmap; // Destinations // These are passed around by the code generating functions to track the // destination of a computation's value. enum dest { by_val(@mutable ValueRef), save_in(ValueRef), ignore, } fn dest_str(ccx: @crate_ctxt, d: dest) -> str { alt d { by_val(v) { #fmt["by_val(%s)", val_str(ccx.tn, *v)] } save_in(v) { #fmt["save_in(%s)", val_str(ccx.tn, v)] } ignore { "ignore" } } } fn empty_dest_cell() -> @mutable ValueRef { ret @mutable llvm::LLVMGetUndef(T_nil()); } fn dup_for_join(dest: dest) -> dest { alt dest { by_val(_) { by_val(empty_dest_cell()) } _ { dest } } } resource icx_popper(ccx: @crate_ctxt) { if (ccx.sess.opts.count_llvm_insns) { vec::pop(*ccx.stats.llvm_insn_ctxt); } } impl ccx_icx for @crate_ctxt { fn insn_ctxt(s: str) -> icx_popper { if (self.sess.opts.count_llvm_insns) { *self.stats.llvm_insn_ctxt += [s]; } icx_popper(self) } } impl bcx_icx for block { fn insn_ctxt(s: str) -> icx_popper { self.ccx().insn_ctxt(s) } } impl fcx_icx for fn_ctxt { fn insn_ctxt(s: str) -> icx_popper { self.ccx.insn_ctxt(s) } } fn join_returns(parent_cx: block, in_cxs: [block], in_ds: [dest], out_dest: dest) -> block { let out = sub_block(parent_cx, "join"); let mut reachable = false, i = 0u, phi = none; for cx in in_cxs { if !cx.unreachable { Br(cx, out.llbb); reachable = true; alt in_ds[i] { by_val(cell) { if option::is_none(phi) { phi = some(EmptyPhi(out, val_ty(*cell))); } AddIncomingToPhi(option::get(phi), *cell, cx.llbb); } _ {} } } i += 1u; } if !reachable { Unreachable(out); } else { alt out_dest { by_val(cell) { *cell = option::get(phi); } _ {} } } ret out; } // Used to put an immediate value in a dest. fn store_in_dest(bcx: block, val: ValueRef, dest: dest) -> block { alt dest { ignore {} by_val(cell) { *cell = val; } save_in(addr) { Store(bcx, val, addr); } } ret bcx; } fn get_dest_addr(dest: dest) -> ValueRef { alt dest { save_in(a) { a } _ { fail "get_dest_addr: not a save_in"; } } } fn log_fn_time(ccx: @crate_ctxt, name: str, start: time::timeval, end: time::timeval) { let elapsed = 1000 * ((end.sec - start.sec) as int) + ((end.usec as int) - (start.usec as int)) / 1000; *ccx.stats.fn_times += [{ident: name, time: elapsed}]; } fn decl_fn(llmod: ModuleRef, name: str, cc: lib::llvm::CallConv, llty: TypeRef) -> ValueRef { let llfn: ValueRef = str::as_c_str(name, {|buf| llvm::LLVMGetOrInsertFunction(llmod, buf, llty) }); lib::llvm::SetFunctionCallConv(llfn, cc); ret llfn; } fn decl_cdecl_fn(llmod: ModuleRef, name: str, llty: TypeRef) -> ValueRef { ret decl_fn(llmod, name, lib::llvm::CCallConv, llty); } // Only use this if you are going to actually define the function. It's // not valid to simply declare a function as internal. fn decl_internal_cdecl_fn(llmod: ModuleRef, name: str, llty: TypeRef) -> ValueRef { let llfn = decl_cdecl_fn(llmod, name, llty); lib::llvm::SetLinkage(llfn, lib::llvm::InternalLinkage); ret llfn; } fn get_extern_fn(externs: hashmap, llmod: ModuleRef, name: str, cc: lib::llvm::CallConv, ty: TypeRef) -> ValueRef { if externs.contains_key(name) { ret externs.get(name); } let f = decl_fn(llmod, name, cc, ty); externs.insert(name, f); ret f; } fn get_extern_const(externs: hashmap, llmod: ModuleRef, name: str, ty: TypeRef) -> ValueRef { if externs.contains_key(name) { ret externs.get(name); } let c = str::as_c_str(name, {|buf| llvm::LLVMAddGlobal(llmod, ty, buf) }); externs.insert(name, c); ret c; } fn get_simple_extern_fn(cx: block, externs: hashmap, llmod: ModuleRef, name: str, n_args: int) -> ValueRef { let _icx = cx.insn_ctxt("get_simple_extern_fn"); let ccx = cx.fcx.ccx; let inputs = vec::from_elem(n_args as uint, ccx.int_type); let output = ccx.int_type; let t = T_fn(inputs, output); ret get_extern_fn(externs, llmod, name, lib::llvm::CCallConv, t); } fn trans_native_call(cx: block, externs: hashmap, llmod: ModuleRef, name: str, args: [ValueRef]) -> ValueRef { let _icx = cx.insn_ctxt("trans_native_call"); let n = args.len() as int; let llnative: ValueRef = get_simple_extern_fn(cx, externs, llmod, name, n); let mut call_args: [ValueRef] = []; for a: ValueRef in args { call_args += [ZExtOrBitCast(cx, a, cx.ccx().int_type)]; } ret Call(cx, llnative, call_args); } fn trans_free(cx: block, v: ValueRef) -> block { let _icx = cx.insn_ctxt("trans_free"); Call(cx, cx.ccx().upcalls.free, [PointerCast(cx, v, T_ptr(T_i8()))]); cx } fn trans_shared_free(cx: block, v: ValueRef) -> block { let _icx = cx.insn_ctxt("trans_shared_free"); Call(cx, cx.ccx().upcalls.shared_free, [PointerCast(cx, v, T_ptr(T_i8()))]); ret cx; } fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let _icx = cx.insn_ctxt("umax"); let cond = ICmp(cx, lib::llvm::IntULT, a, b); ret Select(cx, cond, b, a); } fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef { let _icx = cx.insn_ctxt("umin"); let cond = ICmp(cx, lib::llvm::IntULT, a, b); ret Select(cx, cond, a, b); } fn alloca(cx: block, t: TypeRef) -> ValueRef { let _icx = cx.insn_ctxt("alloca"); if cx.unreachable { ret llvm::LLVMGetUndef(t); } ret Alloca(raw_block(cx.fcx, cx.fcx.llstaticallocas), t); } // Given a pointer p, returns a pointer sz(p) (i.e., inc'd by sz bytes). // The type of the returned pointer is always i8*. If you care about the // return type, use bump_ptr(). fn ptr_offs(bcx: block, base: ValueRef, sz: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("ptr_offs"); let raw = PointerCast(bcx, base, T_ptr(T_i8())); InBoundsGEP(bcx, raw, [sz]) } // Increment a pointer by a given amount and then cast it to be a pointer // to a given type. fn bump_ptr(bcx: block, t: ty::t, base: ValueRef, sz: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("bump_ptr"); let ccx = bcx.ccx(); let bumped = ptr_offs(bcx, base, sz); let typ = T_ptr(type_of(ccx, t)); PointerCast(bcx, bumped, typ) } // Replacement for the LLVM 'GEP' instruction when field indexing into a enum. // @llblobptr is the data part of a enum value; its actual type // is meaningless, as it will be cast away. fn GEP_enum(bcx: block, llblobptr: ValueRef, enum_id: ast::def_id, variant_id: ast::def_id, ty_substs: [ty::t], ix: uint) -> result { let _icx = bcx.insn_ctxt("GEP_enum"); let ccx = bcx.ccx(); let variant = ty::enum_variant_with_id(ccx.tcx, enum_id, variant_id); assert ix < variant.args.len(); let arg_lltys = vec::map(variant.args, {|aty| type_of(ccx, ty::substitute_type_params(ccx.tcx, ty_substs, aty)) }); let typed_blobptr = PointerCast(bcx, llblobptr, T_ptr(T_struct(arg_lltys))); rslt(bcx, GEPi(bcx, typed_blobptr, [0, ix as int])) } // trans_shared_malloc: expects a type indicating which pointer type we want // and a size indicating how much space we want malloc'd. fn trans_shared_malloc(cx: block, llptr_ty: TypeRef, llsize: ValueRef) -> result { let _icx = cx.insn_ctxt("opaque_shared_malloc"); let rval = Call(cx, cx.ccx().upcalls.shared_malloc, [llsize]); ret rslt(cx, PointerCast(cx, rval, llptr_ty)); } // Returns a pointer to the body for the box. The box may be an opaque // box. The result will be casted to the type of body_t, if it is statically // known. // // The runtime equivalent is box_body() in "rust_internal.h". fn opaque_box_body(bcx: block, body_t: ty::t, boxptr: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("opaque_box_body"); let ccx = bcx.ccx(); let boxptr = PointerCast(bcx, boxptr, T_ptr(T_box_header(ccx))); let bodyptr = GEPi(bcx, boxptr, [1]); PointerCast(bcx, bodyptr, T_ptr(type_of(ccx, body_t))) } // trans_malloc_boxed_raw: expects an unboxed type and returns a pointer to // enough space for a box of that type. This includes a rust_opaque_box // header. fn trans_malloc_boxed_raw(bcx: block, t: ty::t, &static_ti: option<@tydesc_info>) -> result { let _icx = bcx.insn_ctxt("trans_malloc_boxed_raw"); let mut bcx = bcx; let ccx = bcx.ccx(); // Grab the TypeRef type of box_ptr, because that's what trans_raw_malloc // wants. let box_ptr = ty::mk_imm_box(bcx.tcx(), t); let llty = type_of(ccx, box_ptr); // Get the tydesc for the body: let lltydesc = get_tydesc(ccx, t, static_ti); lazily_emit_all_tydesc_glue(ccx, static_ti); // Allocate space: let rval = Call(bcx, ccx.upcalls.malloc, [lltydesc]); ret rslt(bcx, PointerCast(bcx, rval, llty)); } // trans_malloc_boxed: usefully wraps trans_malloc_box_raw; allocates a box, // initializes the reference count to 1, and pulls out the body and rc fn trans_malloc_boxed(bcx: block, t: ty::t) -> {bcx: block, box: ValueRef, body: ValueRef} { let _icx = bcx.insn_ctxt("trans_malloc_boxed"); let mut ti = none; let {bcx, val:box} = trans_malloc_boxed_raw(bcx, t, ti); let body = GEPi(bcx, box, [0, abi::box_field_body]); ret {bcx: bcx, box: box, body: body}; } // Type descriptor and type glue stuff fn get_tydesc_simple(ccx: @crate_ctxt, t: ty::t) -> ValueRef { let mut ti = none; get_tydesc(ccx, t, ti) } fn get_tydesc(ccx: @crate_ctxt, t: ty::t, &static_ti: option<@tydesc_info>) -> ValueRef { assert !ty::type_has_params(t); // Otherwise, generate a tydesc if necessary, and return it. let info = get_static_tydesc(ccx, t); static_ti = some(info); info.tydesc } fn get_static_tydesc(ccx: @crate_ctxt, t: ty::t) -> @tydesc_info { alt ccx.tydescs.find(t) { some(info) { ret info; } none { ccx.stats.n_static_tydescs += 1u; let info = declare_tydesc(ccx, t); ccx.tydescs.insert(t, info); ret info; } } } fn set_no_inline(f: ValueRef) { llvm::LLVMAddFunctionAttr(f, lib::llvm::NoInlineAttribute as c_uint, 0u as c_uint); } // Tell LLVM to emit the information necessary to unwind the stack for the // function f. fn set_uwtable(f: ValueRef) { llvm::LLVMAddFunctionAttr(f, lib::llvm::UWTableAttribute as c_uint, 0u as c_uint); } fn set_inline_hint(f: ValueRef) { llvm::LLVMAddFunctionAttr(f, lib::llvm::InlineHintAttribute as c_uint, 0u as c_uint); } fn set_inline_hint_if_appr(attrs: [ast::attribute], llfn: ValueRef) { alt attr::find_inline_attr(attrs) { attr::ia_hint { set_inline_hint(llfn); } attr::ia_always { set_always_inline(llfn); } attr::ia_none { /* fallthrough */ } } } fn set_always_inline(f: ValueRef) { llvm::LLVMAddFunctionAttr(f, lib::llvm::AlwaysInlineAttribute as c_uint, 0u as c_uint); } fn set_custom_stack_growth_fn(f: ValueRef) { // FIXME: Remove this hack to work around the lack of u64 in the FFI. llvm::LLVMAddFunctionAttr(f, 0u as c_uint, 1u as c_uint); } fn set_glue_inlining(f: ValueRef, t: ty::t) { if ty::type_is_structural(t) { set_no_inline(f); } else { set_always_inline(f); } } // Double-check that we never ask LLVM to declare the same symbol twice. It // silently mangles such symbols, breaking our linkage model. fn note_unique_llvm_symbol(ccx: @crate_ctxt, sym: str) { if ccx.all_llvm_symbols.contains_key(sym) { ccx.sess.bug("duplicate LLVM symbol: " + sym); } ccx.all_llvm_symbols.insert(sym, ()); } // Generates the declaration for (but doesn't emit) a type descriptor. fn declare_tydesc(ccx: @crate_ctxt, t: ty::t) -> @tydesc_info { let _icx = ccx.insn_ctxt("declare_tydesc"); log(debug, "+++ declare_tydesc " + ty_to_str(ccx.tcx, t)); let llty = type_of(ccx, t); let llsize = llsize_of(ccx, llty); let llalign = llalign_of(ccx, llty); let mut name; //XXX this triggers duplicate LLVM symbols if false /*ccx.sess.opts.debuginfo*/ { name = mangle_internal_name_by_type_only(ccx, t, "tydesc"); } else { name = mangle_internal_name_by_seq(ccx, "tydesc"); } note_unique_llvm_symbol(ccx, name); let gvar = str::as_c_str(name, {|buf| llvm::LLVMAddGlobal(ccx.llmod, ccx.tydesc_type, buf) }); let info = @{ty: t, tydesc: gvar, size: llsize, align: llalign, mutable take_glue: none, mutable drop_glue: none, mutable free_glue: none}; log(debug, "--- declare_tydesc " + ty_to_str(ccx.tcx, t)); ret info; } type glue_helper = fn@(block, ValueRef, ty::t); fn declare_generic_glue(ccx: @crate_ctxt, t: ty::t, llfnty: TypeRef, name: str) -> ValueRef { let _icx = ccx.insn_ctxt("declare_generic_glue"); let name = name; let mut fn_nm; //XXX this triggers duplicate LLVM symbols if false /*ccx.sess.opts.debuginfo*/ { fn_nm = mangle_internal_name_by_type_only(ccx, t, "glue_" + name); } else { fn_nm = mangle_internal_name_by_seq(ccx, "glue_" + name); } note_unique_llvm_symbol(ccx, fn_nm); let llfn = decl_cdecl_fn(ccx.llmod, fn_nm, llfnty); set_glue_inlining(llfn, t); ret llfn; } fn make_generic_glue_inner(ccx: @crate_ctxt, t: ty::t, llfn: ValueRef, helper: glue_helper) -> ValueRef { let _icx = ccx.insn_ctxt("make_generic_glue_inner"); let fcx = new_fn_ctxt(ccx, [], llfn, none); lib::llvm::SetLinkage(llfn, lib::llvm::InternalLinkage); ccx.stats.n_glues_created += 1u; // Any nontrivial glue is with values passed *by alias*; this is a // requirement since in many contexts glue is invoked indirectly and // the caller has no idea if it's dealing with something that can be // passed by value. let llty = T_ptr(type_of(ccx, t)); let bcx = top_scope_block(fcx, none); let lltop = bcx.llbb; let llrawptr0 = llvm::LLVMGetParam(llfn, 3u as c_uint); let llval0 = BitCast(bcx, llrawptr0, llty); helper(bcx, llval0, t); finish_fn(fcx, lltop); ret llfn; } fn make_generic_glue(ccx: @crate_ctxt, t: ty::t, llfn: ValueRef, helper: glue_helper, name: str) -> ValueRef { let _icx = ccx.insn_ctxt("make_generic_glue"); if !ccx.sess.opts.stats { ret make_generic_glue_inner(ccx, t, llfn, helper); } let start = time::get_time(); let llval = make_generic_glue_inner(ccx, t, llfn, helper); let end = time::get_time(); log_fn_time(ccx, "glue " + name + " " + ty_to_short_str(ccx.tcx, t), start, end); ret llval; } fn emit_tydescs(ccx: @crate_ctxt) { let _icx = ccx.insn_ctxt("emit_tydescs"); ccx.tydescs.items {|key, val| let glue_fn_ty = T_ptr(T_glue_fn(ccx)); let ti = val; let take_glue = alt ti.take_glue { none { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) } some(v) { ccx.stats.n_real_glues += 1u; v } }; let drop_glue = alt ti.drop_glue { none { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) } some(v) { ccx.stats.n_real_glues += 1u; v } }; let free_glue = alt ti.free_glue { none { ccx.stats.n_null_glues += 1u; C_null(glue_fn_ty) } some(v) { ccx.stats.n_real_glues += 1u; v } }; let shape = shape_of(ccx, key, []); let shape_tables = llvm::LLVMConstPointerCast(ccx.shape_cx.llshapetables, T_ptr(T_i8())); let tydesc = C_named_struct(ccx.tydesc_type, [C_null(T_ptr(T_ptr(ccx.tydesc_type))), ti.size, // size ti.align, // align take_glue, // take_glue drop_glue, // drop_glue free_glue, // free_glue C_null(T_ptr(T_i8())), // unused C_null(glue_fn_ty), // sever_glue C_null(glue_fn_ty), // mark_glue C_null(glue_fn_ty), // unused C_null(T_ptr(T_i8())), // cmp_glue C_shape(ccx, shape), // shape shape_tables, // shape_tables C_int(ccx, 0), // n_params C_int(ccx, 0)]); // n_obj_params let gvar = ti.tydesc; llvm::LLVMSetInitializer(gvar, tydesc); llvm::LLVMSetGlobalConstant(gvar, True); lib::llvm::SetLinkage(gvar, lib::llvm::InternalLinkage); }; } fn make_take_glue(cx: block, v: ValueRef, t: ty::t) { let _icx = cx.insn_ctxt("make_take_glue"); let mut bcx = cx; // NB: v is a *pointer* to type t here, not a direct value. bcx = alt ty::get(t).struct { ty::ty_box(_) | ty::ty_opaque_box { incr_refcnt_of_boxed(bcx, Load(bcx, v)) } ty::ty_uniq(_) { let r = uniq::duplicate(bcx, Load(bcx, v), t); Store(r.bcx, r.val, v); r.bcx } ty::ty_vec(_) | ty::ty_str { let r = tvec::duplicate(bcx, Load(bcx, v), t); Store(r.bcx, r.val, v); r.bcx } ty::ty_fn(_) { closure::make_fn_glue(bcx, v, t, take_ty) } ty::ty_iface(_, _) { let box = Load(bcx, GEPi(bcx, v, [0, 1])); incr_refcnt_of_boxed(bcx, box) } ty::ty_opaque_closure_ptr(ck) { closure::make_opaque_cbox_take_glue(bcx, ck, v) } _ if ty::type_is_structural(t) { iter_structural_ty(bcx, v, t, take_ty) } _ { bcx } }; build_return(bcx); } fn incr_refcnt_of_boxed(cx: block, box_ptr: ValueRef) -> block { let _icx = cx.insn_ctxt("incr_refcnt_of_boxed"); let ccx = cx.ccx(); maybe_validate_box(cx, box_ptr); let rc_ptr = GEPi(cx, box_ptr, [0, abi::box_field_refcnt]); let rc = Load(cx, rc_ptr); let rc = Add(cx, rc, C_int(ccx, 1)); Store(cx, rc, rc_ptr); ret cx; } fn make_free_glue(bcx: block, v: ValueRef, t: ty::t) { // v is a pointer to the actual box component of the type here. The // ValueRef will have the wrong type here (make_generic_glue is casting // everything to a pointer to the type that the glue acts on). let _icx = bcx.insn_ctxt("make_free_glue"); let ccx = bcx.ccx(); let bcx = alt ty::get(t).struct { ty::ty_box(body_mt) { let v = PointerCast(bcx, v, type_of(ccx, t)); let body = GEPi(bcx, v, [0, abi::box_field_body]); let bcx = drop_ty(bcx, body, body_mt.ty); trans_free(bcx, v) } ty::ty_opaque_box { let v = PointerCast(bcx, v, type_of(ccx, t)); let td = Load(bcx, GEPi(bcx, v, [0, abi::box_field_tydesc])); let valptr = GEPi(bcx, v, [0, abi::box_field_body]); call_tydesc_glue_full(bcx, valptr, td, abi::tydesc_field_drop_glue, none); trans_free(bcx, v) } ty::ty_uniq(content_mt) { let v = PointerCast(bcx, v, type_of(ccx, t)); uniq::make_free_glue(bcx, v, t) } ty::ty_vec(_) | ty::ty_str { tvec::make_free_glue(bcx, PointerCast(bcx, v, type_of(ccx, t)), t) } ty::ty_fn(_) { closure::make_fn_glue(bcx, v, t, free_ty) } ty::ty_opaque_closure_ptr(ck) { closure::make_opaque_cbox_free_glue(bcx, ck, v) } _ { bcx } }; build_return(bcx); } fn make_drop_glue(bcx: block, v0: ValueRef, t: ty::t) { // NB: v0 is an *alias* of type t here, not a direct value. let _icx = bcx.insn_ctxt("make_drop_glue"); let ccx = bcx.ccx(); let bcx = alt ty::get(t).struct { ty::ty_box(_) | ty::ty_opaque_box { decr_refcnt_maybe_free(bcx, Load(bcx, v0), t) } ty::ty_uniq(_) | ty::ty_vec(_) | ty::ty_str { free_ty(bcx, Load(bcx, v0), t) } ty::ty_res(did, inner, tps) { trans_res_drop(bcx, v0, did, inner, tps) } ty::ty_fn(_) { closure::make_fn_glue(bcx, v0, t, drop_ty) } ty::ty_iface(_, _) { let box = Load(bcx, GEPi(bcx, v0, [0, 1])); decr_refcnt_maybe_free(bcx, box, ty::mk_opaque_box(ccx.tcx)) } ty::ty_opaque_closure_ptr(ck) { closure::make_opaque_cbox_drop_glue(bcx, ck, v0) } _ { if ty::type_needs_drop(ccx.tcx, t) && ty::type_is_structural(t) { iter_structural_ty(bcx, v0, t, drop_ty) } else { bcx } } }; build_return(bcx); } fn get_res_dtor(ccx: @crate_ctxt, did: ast::def_id, substs: [ty::t]) -> ValueRef { let _icx = ccx.insn_ctxt("trans_res_dtor"); let did = if did.crate != ast::local_crate && substs.len() > 0u { maybe_instantiate_inline(ccx, did) } else { did }; assert did.crate == ast::local_crate; monomorphic_fn(ccx, did, substs, none, none).val } fn trans_res_drop(bcx: block, rs: ValueRef, did: ast::def_id, inner_t: ty::t, tps: [ty::t]) -> block { let _icx = bcx.insn_ctxt("trans_res_drop"); let ccx = bcx.ccx(); let inner_t_s = ty::substitute_type_params(ccx.tcx, tps, inner_t); let drop_flag = GEPi(bcx, rs, [0, 0]); with_cond(bcx, IsNotNull(bcx, Load(bcx, drop_flag))) {|bcx| let valptr = GEPi(bcx, rs, [0, 1]); // Find and call the actual destructor. let dtor_addr = get_res_dtor(ccx, did, tps); let args = [bcx.fcx.llretptr, null_env_ptr(bcx)]; // Kludge to work around the fact that we know the precise type of the // value here, but the dtor expects a type that might have opaque // boxes and such. let val_llty = lib::llvm::fn_ty_param_tys (llvm::LLVMGetElementType (llvm::LLVMTypeOf(dtor_addr)))[args.len()]; let val_cast = BitCast(bcx, valptr, val_llty); Call(bcx, dtor_addr, args + [val_cast]); let bcx = drop_ty(bcx, valptr, inner_t_s); Store(bcx, C_u8(0u), drop_flag); bcx } } fn maybe_validate_box(_cx: block, _box_ptr: ValueRef) { // Uncomment this when debugging annoying use-after-free // bugs. But do not commit with this uncommented! Big performance hit. // let cx = _cx, box_ptr = _box_ptr; // let ccx = cx.ccx(); // warn_not_to_commit(ccx, "validate_box() is uncommented"); // let raw_box_ptr = PointerCast(cx, box_ptr, T_ptr(T_i8())); // Call(cx, ccx.upcalls.validate_box, [raw_box_ptr]); } fn decr_refcnt_maybe_free(bcx: block, box_ptr: ValueRef, t: ty::t) -> block { let _icx = bcx.insn_ctxt("decr_refcnt_maybe_free"); let ccx = bcx.ccx(); maybe_validate_box(bcx, box_ptr); let llbox_ty = T_opaque_box_ptr(ccx); let box_ptr = PointerCast(bcx, box_ptr, llbox_ty); with_cond(bcx, IsNotNull(bcx, box_ptr)) {|bcx| let rc_ptr = GEPi(bcx, box_ptr, [0, abi::box_field_refcnt]); let rc = Sub(bcx, Load(bcx, rc_ptr), C_int(ccx, 1)); Store(bcx, rc, rc_ptr); let zero_test = ICmp(bcx, lib::llvm::IntEQ, C_int(ccx, 0), rc); with_cond(bcx, zero_test) {|bcx| free_ty(bcx, box_ptr, t)} } } // Structural comparison: a rather involved form of glue. fn maybe_name_value(cx: @crate_ctxt, v: ValueRef, s: str) { if cx.sess.opts.save_temps { let _: () = str::as_c_str(s, {|buf| llvm::LLVMSetValueName(v, buf) }); } } // Used only for creating scalar comparison glue. enum scalar_type { nil_type, signed_int, unsigned_int, floating_point, } fn compare_scalar_types(cx: block, lhs: ValueRef, rhs: ValueRef, t: ty::t, op: ast::binop) -> result { let f = bind compare_scalar_values(cx, lhs, rhs, _, op); alt ty::get(t).struct { ty::ty_nil { ret rslt(cx, f(nil_type)); } ty::ty_bool | ty::ty_ptr(_) { ret rslt(cx, f(unsigned_int)); } ty::ty_int(_) { ret rslt(cx, f(signed_int)); } ty::ty_uint(_) { ret rslt(cx, f(unsigned_int)); } ty::ty_float(_) { ret rslt(cx, f(floating_point)); } ty::ty_type { ret rslt(trans_fail(cx, none, "attempt to compare values of type type"), C_nil()); } _ { // Should never get here, because t is scalar. cx.sess().bug("non-scalar type passed to \ compare_scalar_types"); } } } // A helper function to do the actual comparison of scalar values. fn compare_scalar_values(cx: block, lhs: ValueRef, rhs: ValueRef, nt: scalar_type, op: ast::binop) -> ValueRef { let _icx = cx.insn_ctxt("compare_scalar_values"); fn die_(cx: block) -> ! { cx.tcx().sess.bug("compare_scalar_values: must be a\ comparison operator"); } let die = bind die_(cx); alt nt { nil_type { // We don't need to do actual comparisons for nil. // () == () holds but () < () does not. alt op { ast::eq | ast::le | ast::ge { ret C_bool(true); } ast::ne | ast::lt | ast::gt { ret C_bool(false); } // refinements would be nice _ { die(); } } } floating_point { let cmp = alt op { ast::eq { lib::llvm::RealOEQ } ast::ne { lib::llvm::RealUNE } ast::lt { lib::llvm::RealOLT } ast::le { lib::llvm::RealOLE } ast::gt { lib::llvm::RealOGT } ast::ge { lib::llvm::RealOGE } _ { die(); } }; ret FCmp(cx, cmp, lhs, rhs); } signed_int { let cmp = alt op { ast::eq { lib::llvm::IntEQ } ast::ne { lib::llvm::IntNE } ast::lt { lib::llvm::IntSLT } ast::le { lib::llvm::IntSLE } ast::gt { lib::llvm::IntSGT } ast::ge { lib::llvm::IntSGE } _ { die(); } }; ret ICmp(cx, cmp, lhs, rhs); } unsigned_int { let cmp = alt op { ast::eq { lib::llvm::IntEQ } ast::ne { lib::llvm::IntNE } ast::lt { lib::llvm::IntULT } ast::le { lib::llvm::IntULE } ast::gt { lib::llvm::IntUGT } ast::ge { lib::llvm::IntUGE } _ { die(); } }; ret ICmp(cx, cmp, lhs, rhs); } } } type val_pair_fn = fn@(block, ValueRef, ValueRef) -> block; type val_and_ty_fn = fn@(block, ValueRef, ty::t) -> block; fn load_inbounds(cx: block, p: ValueRef, idxs: [int]) -> ValueRef { ret Load(cx, GEPi(cx, p, idxs)); } fn store_inbounds(cx: block, v: ValueRef, p: ValueRef, idxs: [int]) { Store(cx, v, GEPi(cx, p, idxs)); } // Iterates through the elements of a structural type. fn iter_structural_ty(cx: block, av: ValueRef, t: ty::t, f: val_and_ty_fn) -> block { let _icx = cx.insn_ctxt("iter_structural_ty"); fn iter_variant(cx: block, a_tup: ValueRef, variant: ty::variant_info, tps: [ty::t], tid: ast::def_id, f: val_and_ty_fn) -> block { let _icx = cx.insn_ctxt("iter_variant"); if variant.args.len() == 0u { ret cx; } let fn_ty = variant.ctor_ty; let ccx = cx.ccx(); let mut cx = cx; alt ty::get(fn_ty).struct { ty::ty_fn({inputs: args, _}) { let mut j = 0u; let v_id = variant.id; for a: ty::arg in args { let rslt = GEP_enum(cx, a_tup, tid, v_id, tps, j); let llfldp_a = rslt.val; cx = rslt.bcx; let ty_subst = ty::substitute_type_params(ccx.tcx, tps, a.ty); cx = f(cx, llfldp_a, ty_subst); j += 1u; } } _ { cx.tcx().sess.bug("iter_variant: not a function type"); } } ret cx; } /* Typestate constraint that shows the unimpl case doesn't happen? */ let mut cx = cx; alt ty::get(t).struct { ty::ty_rec(fields) { let mut i: int = 0; for fld: ty::field in fields { let llfld_a = GEPi(cx, av, [0, i]); cx = f(cx, llfld_a, fld.mt.ty); i += 1; } } ty::ty_tup(args) { let mut i = 0; for arg in args { let llfld_a = GEPi(cx, av, [0, i]); cx = f(cx, llfld_a, arg); i += 1; } } ty::ty_res(_, inner, tps) { let tcx = cx.tcx(); let inner1 = ty::substitute_type_params(tcx, tps, inner); let llfld_a = GEPi(cx, av, [0, 1]); ret f(cx, llfld_a, inner1); } ty::ty_enum(tid, tps) { let variants = ty::enum_variants(cx.tcx(), tid); let n_variants = (*variants).len(); // Cast the enums to types we can GEP into. if n_variants == 1u { ret iter_variant(cx, av, variants[0], tps, tid, f); } let ccx = cx.ccx(); let llenumty = T_opaque_enum_ptr(ccx); let av_enum = PointerCast(cx, av, llenumty); let lldiscrim_a_ptr = GEPi(cx, av_enum, [0, 0]); let llunion_a_ptr = GEPi(cx, av_enum, [0, 1]); let lldiscrim_a = Load(cx, lldiscrim_a_ptr); // NB: we must hit the discriminant first so that structural // comparison know not to proceed when the discriminants differ. cx = f(cx, lldiscrim_a_ptr, ty::mk_int(cx.tcx())); let unr_cx = sub_block(cx, "enum-iter-unr"); Unreachable(unr_cx); let llswitch = Switch(cx, lldiscrim_a, unr_cx.llbb, n_variants); let next_cx = sub_block(cx, "enum-iter-next"); for variant: ty::variant_info in *variants { let variant_cx = sub_block(cx, "enum-iter-variant-" + int::to_str(variant.disr_val, 10u)); AddCase(llswitch, C_int(ccx, variant.disr_val), variant_cx.llbb); let variant_cx = iter_variant(variant_cx, llunion_a_ptr, variant, tps, tid, f); Br(variant_cx, next_cx.llbb); } ret next_cx; } ty::ty_class(did, tps) { // a class is like a record type let mut i: int = 0; for fld: ty::field in ty::class_items_as_fields(cx.tcx(), did) { let llfld_a = GEPi(cx, av, [0, i]); cx = f(cx, llfld_a, fld.mt.ty); i += 1; } } _ { cx.sess().unimpl("type in iter_structural_ty"); } } ret cx; } fn lazily_emit_all_tydesc_glue(ccx: @crate_ctxt, static_ti: option<@tydesc_info>) { lazily_emit_tydesc_glue(ccx, abi::tydesc_field_take_glue, static_ti); lazily_emit_tydesc_glue(ccx, abi::tydesc_field_drop_glue, static_ti); lazily_emit_tydesc_glue(ccx, abi::tydesc_field_free_glue, static_ti); } fn lazily_emit_tydesc_glue(ccx: @crate_ctxt, field: int, static_ti: option<@tydesc_info>) { let _icx = ccx.insn_ctxt("lazily_emit_tydesc_glue"); alt static_ti { none { } some(ti) { if field == abi::tydesc_field_take_glue { alt ti.take_glue { some(_) { } none { #debug("+++ lazily_emit_tydesc_glue TAKE %s", ty_to_str(ccx.tcx, ti.ty)); let glue_fn = declare_generic_glue (ccx, ti.ty, T_glue_fn(ccx), "take"); ti.take_glue = some(glue_fn); make_generic_glue(ccx, ti.ty, glue_fn, make_take_glue, "take"); #debug("--- lazily_emit_tydesc_glue TAKE %s", ty_to_str(ccx.tcx, ti.ty)); } } } else if field == abi::tydesc_field_drop_glue { alt ti.drop_glue { some(_) { } none { #debug("+++ lazily_emit_tydesc_glue DROP %s", ty_to_str(ccx.tcx, ti.ty)); let glue_fn = declare_generic_glue(ccx, ti.ty, T_glue_fn(ccx), "drop"); ti.drop_glue = some(glue_fn); make_generic_glue(ccx, ti.ty, glue_fn, make_drop_glue, "drop"); #debug("--- lazily_emit_tydesc_glue DROP %s", ty_to_str(ccx.tcx, ti.ty)); } } } else if field == abi::tydesc_field_free_glue { alt ti.free_glue { some(_) { } none { #debug("+++ lazily_emit_tydesc_glue FREE %s", ty_to_str(ccx.tcx, ti.ty)); let glue_fn = declare_generic_glue(ccx, ti.ty, T_glue_fn(ccx), "free"); ti.free_glue = some(glue_fn); make_generic_glue(ccx, ti.ty, glue_fn, make_free_glue, "free"); #debug("--- lazily_emit_tydesc_glue FREE %s", ty_to_str(ccx.tcx, ti.ty)); } } } } } } fn call_tydesc_glue_full(cx: block, v: ValueRef, tydesc: ValueRef, field: int, static_ti: option<@tydesc_info>) { let _icx = cx.insn_ctxt("call_tydesc_glue_full"); lazily_emit_tydesc_glue(cx.ccx(), field, static_ti); if cx.unreachable { ret; } let mut static_glue_fn = none; alt static_ti { none {/* no-op */ } some(sti) { if field == abi::tydesc_field_take_glue { static_glue_fn = sti.take_glue; } else if field == abi::tydesc_field_drop_glue { static_glue_fn = sti.drop_glue; } else if field == abi::tydesc_field_free_glue { static_glue_fn = sti.free_glue; } } } let llrawptr = PointerCast(cx, v, T_ptr(T_i8())); let lltydescs = GEPi(cx, tydesc, [0, abi::tydesc_field_first_param]); let lltydescs = Load(cx, lltydescs); let llfn = { alt static_glue_fn { none { let llfnptr = GEPi(cx, tydesc, [0, field]); Load(cx, llfnptr) } some(sgf) { sgf } } }; Call(cx, llfn, [C_null(T_ptr(T_nil())), C_null(T_ptr(T_nil())), lltydescs, llrawptr]); } fn call_tydesc_glue(cx: block, v: ValueRef, t: ty::t, field: int) -> block { let _icx = cx.insn_ctxt("call_tydesc_glue"); let mut ti = none; let td = get_tydesc(cx.ccx(), t, ti); call_tydesc_glue_full(cx, v, td, field, ti); ret cx; } fn call_cmp_glue(cx: block, lhs: ValueRef, rhs: ValueRef, t: ty::t, llop: ValueRef) -> result { // We can't use call_tydesc_glue_full() and friends here because compare // glue has a special signature. let _icx = cx.insn_ctxt("call_cmp_glue"); let bcx = cx; let r = spill_if_immediate(bcx, lhs, t); let lllhs = r.val; let bcx = r.bcx; let r = spill_if_immediate(bcx, rhs, t); let llrhs = r.val; let bcx = r.bcx; let llrawlhsptr = BitCast(bcx, lllhs, T_ptr(T_i8())); let llrawrhsptr = BitCast(bcx, llrhs, T_ptr(T_i8())); let lltydesc = get_tydesc_simple(bcx.ccx(), t); let lltydescs = Load(bcx, GEPi(bcx, lltydesc, [0, abi::tydesc_field_first_param])); let llfn = bcx.ccx().upcalls.cmp_type; let llcmpresultptr = alloca(bcx, T_i1()); Call(bcx, llfn, [llcmpresultptr, lltydesc, lltydescs, llrawlhsptr, llrawrhsptr, llop]); ret rslt(bcx, Load(bcx, llcmpresultptr)); } fn take_ty(cx: block, v: ValueRef, t: ty::t) -> block { let _icx = cx.insn_ctxt("take_ty"); if ty::type_needs_drop(cx.tcx(), t) { ret call_tydesc_glue(cx, v, t, abi::tydesc_field_take_glue); } ret cx; } fn drop_ty(cx: block, v: ValueRef, t: ty::t) -> block { let _icx = cx.insn_ctxt("drop_ty"); if ty::type_needs_drop(cx.tcx(), t) { ret call_tydesc_glue(cx, v, t, abi::tydesc_field_drop_glue); } ret cx; } fn drop_ty_immediate(bcx: block, v: ValueRef, t: ty::t) -> block { let _icx = bcx.insn_ctxt("drop_ty_immediate"); alt ty::get(t).struct { ty::ty_uniq(_) | ty::ty_vec(_) | ty::ty_str { free_ty(bcx, v, t) } ty::ty_box(_) | ty::ty_opaque_box { decr_refcnt_maybe_free(bcx, v, t) } _ { bcx.tcx().sess.bug("drop_ty_immediate: non-box ty"); } } } fn take_ty_immediate(bcx: block, v: ValueRef, t: ty::t) -> result { let _icx = bcx.insn_ctxt("take_ty_immediate"); alt ty::get(t).struct { ty::ty_box(_) | ty::ty_opaque_box { rslt(incr_refcnt_of_boxed(bcx, v), v) } ty::ty_uniq(_) { uniq::duplicate(bcx, v, t) } ty::ty_str | ty::ty_vec(_) { tvec::duplicate(bcx, v, t) } _ { rslt(bcx, v) } } } fn free_ty(cx: block, v: ValueRef, t: ty::t) -> block { let _icx = cx.insn_ctxt("free_ty"); if ty::type_needs_drop(cx.tcx(), t) { ret call_tydesc_glue(cx, v, t, abi::tydesc_field_free_glue); } ret cx; } fn call_memmove(cx: block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef) -> result { // FIXME: Provide LLVM with better alignment information when the // alignment is statically known (it must be nothing more than a constant // int, or LLVM complains -- not even a constant element of a tydesc // works). let _icx = cx.insn_ctxt("call_memmove"); let ccx = cx.ccx(); let key = alt ccx.sess.targ_cfg.arch { session::arch_x86 | session::arch_arm { "llvm.memmove.p0i8.p0i8.i32" } session::arch_x86_64 { "llvm.memmove.p0i8.p0i8.i64" } }; let memmove = ccx.intrinsics.get(key); let src_ptr = PointerCast(cx, src, T_ptr(T_i8())); let dst_ptr = PointerCast(cx, dst, T_ptr(T_i8())); let size = IntCast(cx, n_bytes, ccx.int_type); let align = C_i32(1i32); let volatile = C_bool(false); let ret_val = Call(cx, memmove, [dst_ptr, src_ptr, size, align, volatile]); ret rslt(cx, ret_val); } fn memmove_ty(bcx: block, dst: ValueRef, src: ValueRef, t: ty::t) -> block { let _icx = bcx.insn_ctxt("memmove_ty"); let ccx = bcx.ccx(); if ty::type_is_structural(t) { let llsz = llsize_of(ccx, type_of(ccx, t)); ret call_memmove(bcx, dst, src, llsz).bcx; } Store(bcx, Load(bcx, src), dst); ret bcx; } enum copy_action { INIT, DROP_EXISTING, } // These are the types that are passed by pointer. fn type_is_structural_or_param(t: ty::t) -> bool { if ty::type_is_structural(t) { ret true; } alt ty::get(t).struct { ty::ty_param(_, _) { ret true; } _ { ret false; } } } fn copy_val(cx: block, action: copy_action, dst: ValueRef, src: ValueRef, t: ty::t) -> block { let _icx = cx.insn_ctxt("copy_val"); if action == DROP_EXISTING && (type_is_structural_or_param(t) || ty::type_is_unique(t)) { let dstcmp = load_if_immediate(cx, dst, t); let cast = PointerCast(cx, dstcmp, val_ty(src)); // Self-copy check with_cond(cx, ICmp(cx, lib::llvm::IntNE, cast, src)) {|bcx| copy_val_no_check(bcx, action, dst, src, t) } } else { copy_val_no_check(cx, action, dst, src, t) } } fn copy_val_no_check(bcx: block, action: copy_action, dst: ValueRef, src: ValueRef, t: ty::t) -> block { let _icx = bcx.insn_ctxt("copy_val_no_check"); let ccx = bcx.ccx(); let mut bcx = bcx; if ty::type_is_scalar(t) { Store(bcx, src, dst); ret bcx; } if ty::type_is_nil(t) || ty::type_is_bot(t) { ret bcx; } if ty::type_is_boxed(t) || ty::type_is_vec(t) || ty::type_is_unique_box(t) { if action == DROP_EXISTING { bcx = drop_ty(bcx, dst, t); } Store(bcx, src, dst); ret take_ty(bcx, dst, t); } if type_is_structural_or_param(t) { if action == DROP_EXISTING { bcx = drop_ty(bcx, dst, t); } bcx = memmove_ty(bcx, dst, src, t); ret take_ty(bcx, dst, t); } ccx.sess.bug("unexpected type in trans::copy_val_no_check: " + ty_to_str(ccx.tcx, t)); } // This works like copy_val, except that it deinitializes the source. // Since it needs to zero out the source, src also needs to be an lval. // FIXME: We always zero out the source. Ideally we would detect the // case where a variable is always deinitialized by block exit and thus // doesn't need to be dropped. fn move_val(cx: block, action: copy_action, dst: ValueRef, src: lval_result, t: ty::t) -> block { let _icx = cx.insn_ctxt("move_val"); let mut src_val = src.val; let tcx = cx.tcx(); let mut cx = cx; if ty::type_is_scalar(t) { if src.kind == owned { src_val = Load(cx, src_val); } Store(cx, src_val, dst); ret cx; } else if ty::type_is_nil(t) || ty::type_is_bot(t) { ret cx; } else if ty::type_is_boxed(t) || ty::type_is_unique(t) { if src.kind == owned { src_val = Load(cx, src_val); } if action == DROP_EXISTING { cx = drop_ty(cx, dst, t); } Store(cx, src_val, dst); if src.kind == owned { ret zero_alloca(cx, src.val, t); } // If we're here, it must be a temporary. revoke_clean(cx, src_val); ret cx; } else if type_is_structural_or_param(t) { if action == DROP_EXISTING { cx = drop_ty(cx, dst, t); } cx = memmove_ty(cx, dst, src_val, t); if src.kind == owned { ret zero_alloca(cx, src_val, t); } // If we're here, it must be a temporary. revoke_clean(cx, src_val); ret cx; } cx.sess().bug("unexpected type in trans::move_val: " + ty_to_str(tcx, t)); } fn store_temp_expr(cx: block, action: copy_action, dst: ValueRef, src: lval_result, t: ty::t, last_use: bool) -> block { let _icx = cx.insn_ctxt("trans_temp_expr"); // Lvals in memory are not temporaries. Copy them. if src.kind != temporary && !last_use { let v = if src.kind == owned { load_if_immediate(cx, src.val, t) } else { src.val }; ret copy_val(cx, action, dst, v, t); } ret move_val(cx, action, dst, src, t); } fn trans_crate_lit(cx: @crate_ctxt, lit: ast::lit) -> ValueRef { let _icx = cx.insn_ctxt("trans_crate_lit"); alt lit.node { ast::lit_int(i, t) { C_integral(T_int_ty(cx, t), i as u64, True) } ast::lit_uint(u, t) { C_integral(T_uint_ty(cx, t), u, False) } ast::lit_float(fs, t) { C_floating(fs, T_float_ty(cx, t)) } ast::lit_bool(b) { C_bool(b) } ast::lit_nil { C_nil() } ast::lit_str(s) { cx.sess.span_unimpl(lit.span, "unique string in this context"); } } } fn trans_lit(cx: block, lit: ast::lit, dest: dest) -> block { let _icx = cx.insn_ctxt("trans_lit"); if dest == ignore { ret cx; } alt lit.node { ast::lit_str(s) { ret tvec::trans_str(cx, s, dest); } _ { ret store_in_dest(cx, trans_crate_lit(cx.ccx(), lit), dest); } } } fn trans_unary(bcx: block, op: ast::unop, e: @ast::expr, un_expr: @ast::expr, dest: dest) -> block { let _icx = bcx.insn_ctxt("trans_unary"); // Check for user-defined method call alt bcx.ccx().maps.method_map.find(un_expr.id) { some(origin) { let callee_id = ast_util::op_expr_callee_id(un_expr); let fty = node_id_type(bcx, callee_id); ret trans_call_inner(bcx, fty, expr_ty(bcx, un_expr), {|bcx| impl::trans_method_callee(bcx, callee_id, e, origin) }, arg_exprs([]), dest); } _ {} } if dest == ignore { ret trans_expr(bcx, e, ignore); } let e_ty = expr_ty(bcx, e); alt op { ast::not { let {bcx, val} = trans_temp_expr(bcx, e); ret store_in_dest(bcx, Not(bcx, val), dest); } ast::neg { let {bcx, val} = trans_temp_expr(bcx, e); let neg = if ty::type_is_fp(e_ty) { FNeg(bcx, val) } else { Neg(bcx, val) }; ret store_in_dest(bcx, neg, dest); } ast::box(_) { let mut {bcx, box, body} = trans_malloc_boxed(bcx, e_ty); add_clean_free(bcx, box, false); // Cast the body type to the type of the value. This is needed to // make enums work, since enums have a different LLVM type depending // on whether they're boxed or not let ccx = bcx.ccx(); let llety = T_ptr(type_of(ccx, e_ty)); body = PointerCast(bcx, body, llety); bcx = trans_expr_save_in(bcx, e, body); revoke_clean(bcx, box); ret store_in_dest(bcx, box, dest); } ast::uniq(_) { ret uniq::trans_uniq(bcx, e, un_expr.id, dest); } ast::deref { bcx.sess().bug("deref expressions should have been \ translated using trans_lval(), not \ trans_unary()"); } } } fn trans_addr_of(cx: block, e: @ast::expr, dest: dest) -> block { let _icx = cx.insn_ctxt("trans_addr_of"); let mut {bcx, val, kind} = trans_temp_lval(cx, e); let ety = expr_ty(cx, e); let is_immediate = ty::type_is_immediate(ety); if (kind == temporary && is_immediate) || kind == owned_imm { let {bcx: bcx2, val: val2} = do_spill(cx, val, ety); bcx = bcx2; val = val2; } ret store_in_dest(bcx, val, dest); } fn trans_compare(cx: block, op: ast::binop, lhs: ValueRef, _lhs_t: ty::t, rhs: ValueRef, rhs_t: ty::t) -> result { let _icx = cx.insn_ctxt("trans_compare"); if ty::type_is_scalar(rhs_t) { let rs = compare_scalar_types(cx, lhs, rhs, rhs_t, op); ret rslt(rs.bcx, rs.val); } // Determine the operation we need. let llop = { alt op { ast::eq | ast::ne { C_u8(abi::cmp_glue_op_eq) } ast::lt | ast::ge { C_u8(abi::cmp_glue_op_lt) } ast::le | ast::gt { C_u8(abi::cmp_glue_op_le) } _ { cx.tcx().sess.bug("trans_compare got non-comparison-op"); } } }; let rs = call_cmp_glue(cx, lhs, rhs, rhs_t, llop); // Invert the result if necessary. alt op { ast::eq | ast::lt | ast::le { ret rslt(rs.bcx, rs.val); } ast::ne | ast::ge | ast::gt { ret rslt(rs.bcx, Not(rs.bcx, rs.val)); } _ { cx.tcx().sess.bug("trans_compare got\ non-comparison-op"); } } } fn cast_shift_expr_rhs(cx: block, op: ast::binop, lhs: ValueRef, rhs: ValueRef) -> ValueRef { cast_shift_rhs(op, lhs, rhs, bind Trunc(cx, _, _), bind ZExt(cx, _, _)) } fn cast_shift_const_rhs(op: ast::binop, lhs: ValueRef, rhs: ValueRef) -> ValueRef { cast_shift_rhs(op, lhs, rhs, llvm::LLVMConstTrunc, llvm::LLVMConstZExt) } fn cast_shift_rhs(op: ast::binop, lhs: ValueRef, rhs: ValueRef, trunc: fn(ValueRef, TypeRef) -> ValueRef, zext: fn(ValueRef, TypeRef) -> ValueRef ) -> ValueRef { // Shifts may have any size int on the rhs if ast_util::is_shift_binop(op) { let rhs_llty = val_ty(rhs); let lhs_llty = val_ty(lhs); let rhs_sz = llvm::LLVMGetIntTypeWidth(rhs_llty); let lhs_sz = llvm::LLVMGetIntTypeWidth(lhs_llty); if lhs_sz < rhs_sz { trunc(rhs, lhs_llty) } else if lhs_sz > rhs_sz { // FIXME: If shifting by negative values becomes not undefined // then this is wrong. zext(rhs, lhs_llty) } else { rhs } } else { rhs } } // Important to get types for both lhs and rhs, because one might be _|_ // and the other not. fn trans_eager_binop(cx: block, op: ast::binop, lhs: ValueRef, lhs_t: ty::t, rhs: ValueRef, rhs_t: ty::t, dest: dest) -> block { let _icx = cx.insn_ctxt("trans_eager_binop"); if dest == ignore { ret cx; } let intype = { if ty::type_is_bot(lhs_t) { rhs_t } else { lhs_t } }; let is_float = ty::type_is_fp(intype); let rhs = cast_shift_expr_rhs(cx, op, lhs, rhs); if op == ast::add && ty::type_is_sequence(intype) { ret tvec::trans_add(cx, intype, lhs, rhs, dest); } let mut cx = cx; let val = alt op { ast::add { if is_float { FAdd(cx, lhs, rhs) } else { Add(cx, lhs, rhs) } } ast::subtract { if is_float { FSub(cx, lhs, rhs) } else { Sub(cx, lhs, rhs) } } ast::mul { if is_float { FMul(cx, lhs, rhs) } else { Mul(cx, lhs, rhs) } } ast::div { if is_float { FDiv(cx, lhs, rhs) } else if ty::type_is_signed(intype) { SDiv(cx, lhs, rhs) } else { UDiv(cx, lhs, rhs) } } ast::rem { if is_float { FRem(cx, lhs, rhs) } else if ty::type_is_signed(intype) { SRem(cx, lhs, rhs) } else { URem(cx, lhs, rhs) } } ast::bitor { Or(cx, lhs, rhs) } ast::bitand { And(cx, lhs, rhs) } ast::bitxor { Xor(cx, lhs, rhs) } ast::lsl { Shl(cx, lhs, rhs) } ast::lsr { LShr(cx, lhs, rhs) } ast::asr { AShr(cx, lhs, rhs) } _ { let cmpr = trans_compare(cx, op, lhs, lhs_t, rhs, rhs_t); cx = cmpr.bcx; cmpr.val } }; ret store_in_dest(cx, val, dest); } fn trans_assign_op(bcx: block, ex: @ast::expr, op: ast::binop, dst: @ast::expr, src: @ast::expr) -> block { let _icx = bcx.insn_ctxt("trans_assign_op"); let t = expr_ty(bcx, src); let lhs_res = trans_lval(bcx, dst); assert (lhs_res.kind == owned); // A user-defined operator method alt bcx.ccx().maps.method_map.find(ex.id) { some(origin) { let callee_id = ast_util::op_expr_callee_id(ex); let fty = node_id_type(bcx, callee_id); ret trans_call_inner(bcx, fty, expr_ty(bcx, ex), {|bcx| // FIXME provide the already-computed address, not the expr impl::trans_method_callee(bcx, callee_id, dst, origin) }, arg_exprs([src]), save_in(lhs_res.val)); } _ {} } // Special case for `+= [x]` alt ty::get(t).struct { ty::ty_vec(_) { alt src.node { ast::expr_vec(args, _) { ret tvec::trans_append_literal(lhs_res.bcx, lhs_res.val, t, args); } _ { } } } _ { } } let {bcx, val: rhs_val} = trans_temp_expr(lhs_res.bcx, src); if ty::type_is_sequence(t) { alt op { ast::add { ret tvec::trans_append(bcx, t, lhs_res.val, rhs_val); } _ { } } } ret trans_eager_binop(bcx, op, Load(bcx, lhs_res.val), t, rhs_val, t, save_in(lhs_res.val)); } fn autoderef(cx: block, v: ValueRef, t: ty::t) -> result_t { let _icx = cx.insn_ctxt("autoderef"); let mut v1: ValueRef = v; let mut t1: ty::t = t; let ccx = cx.ccx(); loop { alt ty::get(t1).struct { ty::ty_box(mt) { let body = GEPi(cx, v1, [0, abi::box_field_body]); t1 = mt.ty; // Since we're changing levels of box indirection, we may have // to cast this pointer, since statically-sized enum types have // different types depending on whether they're behind a box // or not. let llty = type_of(ccx, t1); v1 = PointerCast(cx, body, T_ptr(llty)); } ty::ty_uniq(_) { let derefed = uniq::autoderef(v1, t1); t1 = derefed.t; v1 = derefed.v; } ty::ty_rptr(_, mt) { t1 = mt.ty; v1 = v; } ty::ty_res(did, inner, tps) { t1 = ty::substitute_type_params(ccx.tcx, tps, inner); v1 = GEPi(cx, v1, [0, 1]); } ty::ty_enum(did, tps) { let variants = ty::enum_variants(ccx.tcx, did); if (*variants).len() != 1u || variants[0].args.len() != 1u { break; } t1 = ty::substitute_type_params(ccx.tcx, tps, variants[0].args[0]); v1 = PointerCast(cx, v1, T_ptr(type_of(ccx, t1))); } _ { break; } } v1 = load_if_immediate(cx, v1, t1); } ret {bcx: cx, val: v1, ty: t1}; } // refinement types would obviate the need for this enum lazy_binop_ty { lazy_and, lazy_or } fn trans_lazy_binop(bcx: block, op: lazy_binop_ty, a: @ast::expr, b: @ast::expr, dest: dest) -> block { let _icx = bcx.insn_ctxt("trans_lazy_binop"); let {bcx: past_lhs, val: lhs} = with_scope_result(bcx, "lhs") {|bcx| trans_temp_expr(bcx, a)}; if past_lhs.unreachable { ret past_lhs; } let join = sub_block(bcx, "join"), before_rhs = sub_block(bcx, "rhs"); alt op { lazy_and { CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb); } lazy_or { CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb); } } let {bcx: past_rhs, val: rhs} = with_scope_result(before_rhs, "rhs") {|bcx| trans_temp_expr(bcx, b)}; if past_rhs.unreachable { ret store_in_dest(join, lhs, dest); } Br(past_rhs, join.llbb); let phi = Phi(join, T_bool(), [lhs, rhs], [past_lhs.llbb, past_rhs.llbb]); ret store_in_dest(join, phi, dest); } fn trans_binary(bcx: block, op: ast::binop, lhs: @ast::expr, rhs: @ast::expr, dest: dest, ex: @ast::expr) -> block { let _icx = bcx.insn_ctxt("trans_binary"); // User-defined operators alt bcx.ccx().maps.method_map.find(ex.id) { some(origin) { let callee_id = ast_util::op_expr_callee_id(ex); let fty = node_id_type(bcx, callee_id); ret trans_call_inner(bcx, fty, expr_ty(bcx, ex), {|bcx| impl::trans_method_callee(bcx, callee_id, lhs, origin) }, arg_exprs([rhs]), dest); } _ {} } // First couple cases are lazy: alt op { ast::and { ret trans_lazy_binop(bcx, lazy_and, lhs, rhs, dest); } ast::or { ret trans_lazy_binop(bcx, lazy_or, lhs, rhs, dest); } _ { // Remaining cases are eager: let lhs_res = trans_temp_expr(bcx, lhs); let rhs_res = trans_temp_expr(lhs_res.bcx, rhs); ret trans_eager_binop(rhs_res.bcx, op, lhs_res.val, expr_ty(bcx, lhs), rhs_res.val, expr_ty(bcx, rhs), dest); } } } fn trans_if(cx: block, cond: @ast::expr, thn: ast::blk, els: option<@ast::expr>, dest: dest) -> block { let _icx = cx.insn_ctxt("trans_if"); let {bcx, val: cond_val} = trans_temp_expr(cx, cond); let then_dest = dup_for_join(dest); let else_dest = dup_for_join(dest); let then_cx = scope_block(bcx, "then"); then_cx.block_span = some(thn.span); let else_cx = scope_block(bcx, "else"); option::may(els) {|e| else_cx.block_span = some(e.span); } CondBr(bcx, cond_val, then_cx.llbb, else_cx.llbb); let then_bcx = trans_block(then_cx, thn, then_dest); let then_bcx = trans_block_cleanups(then_bcx, then_cx); // Calling trans_block directly instead of trans_expr // because trans_expr will create another scope block // context for the block, but we've already got the // 'else' context let else_bcx = alt els { some(elexpr) { alt elexpr.node { ast::expr_if(_, _, _) { let elseif_blk = ast_util::block_from_expr(elexpr); trans_block(else_cx, elseif_blk, else_dest) } ast::expr_block(blk) { trans_block(else_cx, blk, else_dest) } // would be nice to have a constraint on ifs _ { cx.tcx().sess.bug("strange alternative in if"); } } } _ { else_cx } }; let else_bcx = trans_block_cleanups(else_bcx, else_cx); ret join_returns(cx, [then_bcx, else_bcx], [then_dest, else_dest], dest); } fn trans_for(cx: block, local: @ast::local, seq: @ast::expr, body: ast::blk) -> block { let _icx = cx.insn_ctxt("trans_for"); fn inner(bcx: block, local: @ast::local, curr: ValueRef, t: ty::t, body: ast::blk, outer_next_cx: block) -> block { let next_cx = sub_block(bcx, "next"); let scope_cx = loop_scope_block(bcx, cont_other(next_cx), outer_next_cx, "for loop scope", body.span); Br(bcx, scope_cx.llbb); let curr = PointerCast(bcx, curr, T_ptr(type_of(bcx.ccx(), t))); let bcx = alt::bind_irrefutable_pat(scope_cx, local.node.pat, curr, false); let bcx = trans_block(bcx, body, ignore); cleanup_and_Br(bcx, scope_cx, next_cx.llbb); ret next_cx; } let ccx = cx.ccx(); let next_cx = sub_block(cx, "next"); let seq_ty = expr_ty(cx, seq); let {bcx: bcx, val: seq} = trans_temp_expr(cx, seq); let seq = PointerCast(bcx, seq, T_ptr(ccx.opaque_vec_type)); let mut fill = tvec::get_fill(bcx, seq); if ty::type_is_str(seq_ty) { fill = Sub(bcx, fill, C_int(ccx, 1)); } let bcx = tvec::iter_vec_raw(bcx, seq, seq_ty, fill, bind inner(_, local, _, _, body, next_cx)); Br(bcx, next_cx.llbb); ret next_cx; } fn trans_while(cx: block, cond: @ast::expr, body: ast::blk) -> block { let _icx = cx.insn_ctxt("trans_while"); let next_cx = sub_block(cx, "while next"); let loop_cx = loop_scope_block(cx, cont_self, next_cx, "while loop", body.span); let cond_cx = scope_block(loop_cx, "while loop cond"); let body_cx = scope_block(loop_cx, "while loop body"); Br(cx, loop_cx.llbb); Br(loop_cx, cond_cx.llbb); let cond_res = trans_temp_expr(cond_cx, cond); let cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx); CondBr(cond_bcx, cond_res.val, body_cx.llbb, next_cx.llbb); let body_end = trans_block(body_cx, body, ignore); cleanup_and_Br(body_end, body_cx, cond_cx.llbb); ret next_cx; } fn trans_do_while(cx: block, body: ast::blk, cond: @ast::expr) -> block { let _icx = cx.insn_ctxt("trans_do_while"); let next_cx = sub_block(cx, "next"); let body_cx = loop_scope_block(cx, cont_self, next_cx, "do-while loop body", body.span); let body_end = trans_block(body_cx, body, ignore); let cond_cx = scope_block(body_cx, "do-while cond"); cleanup_and_Br(body_end, body_cx, cond_cx.llbb); let cond_res = trans_temp_expr(cond_cx, cond); let cond_bcx = trans_block_cleanups(cond_res.bcx, cond_cx); CondBr(cond_bcx, cond_res.val, body_cx.llbb, next_cx.llbb); Br(cx, body_cx.llbb); ret next_cx; } fn trans_loop(cx:block, body: ast::blk) -> block { let _icx = cx.insn_ctxt("trans_loop"); let next_cx = sub_block(cx, "next"); let body_cx = loop_scope_block(cx, cont_self, next_cx, "infinite loop body", body.span); let body_end = trans_block(body_cx, body, ignore); cleanup_and_Br(body_end, body_cx, body_cx.llbb); Br(cx, body_cx.llbb); ret next_cx; } enum lval_kind { temporary, //< Temporary value passed by value if of immediate type owned, //< Non-temporary value passed by pointer owned_imm, //< Non-temporary value passed by value } type local_var_result = {val: ValueRef, kind: lval_kind}; type lval_result = {bcx: block, val: ValueRef, kind: lval_kind}; enum callee_env { null_env, is_closure, self_env(ValueRef, ty::t, option), } type lval_maybe_callee = {bcx: block, val: ValueRef, kind: lval_kind, env: callee_env, // Tydescs to pass. Only used to call intrinsics tds: option<[ValueRef]>}; fn null_env_ptr(bcx: block) -> ValueRef { C_null(T_opaque_box_ptr(bcx.ccx())) } fn lval_from_local_var(bcx: block, r: local_var_result) -> lval_result { ret { bcx: bcx, val: r.val, kind: r.kind }; } fn lval_owned(bcx: block, val: ValueRef) -> lval_result { ret {bcx: bcx, val: val, kind: owned}; } fn lval_temp(bcx: block, val: ValueRef) -> lval_result { ret {bcx: bcx, val: val, kind: temporary}; } fn lval_no_env(bcx: block, val: ValueRef, kind: lval_kind) -> lval_maybe_callee { ret {bcx: bcx, val: val, kind: kind, env: is_closure, tds: none}; } fn trans_external_path(ccx: @crate_ctxt, did: ast::def_id, t: ty::t) -> ValueRef { let name = csearch::get_symbol(ccx.sess.cstore, did); let llty = alt ty::get(t).struct { ty::ty_fn(_) { type_of_fn_from_ty(ccx, t) } _ { type_of(ccx, t) } }; ret get_extern_const(ccx.externs, ccx.llmod, name, llty); } fn normalize_for_monomorphization(tcx: ty::ctxt, ty: ty::t) -> option { // FIXME[mono] could do this recursively. is that worthwhile? alt ty::get(ty).struct { ty::ty_box(mt) { some(ty::mk_opaque_box(tcx)) } ty::ty_fn(fty) { some(ty::mk_fn(tcx, {proto: fty.proto, inputs: [], output: ty::mk_nil(tcx), ret_style: ast::return_val, constraints: []})) } ty::ty_iface(_, _) { some(ty::mk_fn(tcx, {proto: ast::proto_box, inputs: [], output: ty::mk_nil(tcx), ret_style: ast::return_val, constraints: []})) } ty::ty_ptr(_) { some(ty::mk_uint(tcx)) } _ { none } } } fn make_mono_id(ccx: @crate_ctxt, item: ast::def_id, substs: [ty::t], vtables: option, param_uses: option<[type_use::type_uses]>) -> mono_id { let precise_param_ids = alt vtables { some(vts) { let bounds = ty::lookup_item_type(ccx.tcx, item).bounds; let mut i = 0u; vec::map2(*bounds, substs, {|bounds, subst| let mut v = []; for bound in *bounds { alt bound { ty::bound_iface(_) { v += [impl::vtable_id(ccx, vts[i])]; i += 1u; } _ {} } } mono_precise(subst, if v.len() > 0u { some(v) } else { none }) }) } none { vec::map(substs, {|subst| mono_precise(subst, none)}) } }; let param_ids = alt param_uses { some(uses) { vec::map2(precise_param_ids, uses, {|id, uses| alt check id { mono_precise(_, some(_)) { id } mono_precise(subst, none) { if uses == 0u { mono_any } else if uses == type_use::use_repr && !ty::type_needs_drop(ccx.tcx, subst) { let llty = type_of(ccx, subst); let size = shape::llsize_of_real(ccx, llty); let align = shape::llalign_of_real(ccx, llty); // Special value for nil to prevent problems with undef // return pointers. if size == 1u && ty::type_is_nil(subst) { mono_repr(0u, 0u) } else { mono_repr(size, align) } } else { id } } } }) } none { precise_param_ids } }; @{def: item, params: param_ids} } fn monomorphic_fn(ccx: @crate_ctxt, fn_id: ast::def_id, real_substs: [ty::t], vtables: option, ref_id: option) -> {val: ValueRef, must_cast: bool, intrinsic: bool} { let _icx = ccx.insn_ctxt("monomorphic_fn"); let mut must_cast = false; let substs = vec::map(real_substs, {|t| alt normalize_for_monomorphization(ccx.tcx, t) { some(t) { must_cast = true; t } none { t } } }); let param_uses = type_use::type_uses_for(ccx, fn_id, substs.len()); let hash_id = make_mono_id(ccx, fn_id, substs, vtables, some(param_uses)); if vec::any(hash_id.params, {|p| alt p { mono_precise(_, _) { false } _ { true } } }) { must_cast = true; } alt ccx.monomorphized.find(hash_id) { some(val) { ret {val: val, must_cast: must_cast, intrinsic: false}; } none {} } let tpt = ty::lookup_item_type(ccx.tcx, fn_id); let mut item_ty = tpt.ty; let map_node = ccx.tcx.items.get(fn_id.node); // Get the path so that we can create a symbol let (pt, name) = alt map_node { ast_map::node_item(i, pt) { alt i.node { ast::item_res(_, _, _, dtor_id, _) { item_ty = ty::node_id_to_type(ccx.tcx, dtor_id); } _ {} } (pt, i.ident) } ast_map::node_variant(v, _, pt) { (pt, v.node.name) } ast_map::node_method(m, _, pt) { (pt, m.ident) } ast_map::node_native_item(i, ast::native_abi_rust_builtin, pt) { (pt, i.ident) } ast_map::node_native_item(_, abi, _) { // Natives don't have to be monomorphized. ret {val: get_item_val(ccx, fn_id.node), must_cast: true, intrinsic: abi == ast::native_abi_rust_intrinsic}; } ast_map::node_ctor(i, _) { alt check ccx.tcx.items.get(i.id) { ast_map::node_item(i, pt) { (pt, i.ident) } } } _ { fail "unexpected node type"; } }; let mono_ty = ty::substitute_type_params(ccx.tcx, substs, item_ty); let llfty = type_of_fn_from_ty(ccx, mono_ty); let pt = *pt + [path_name(ccx.names(name))]; let s = mangle_exported_name(ccx, pt, mono_ty); let lldecl = decl_internal_cdecl_fn(ccx.llmod, s, llfty); ccx.monomorphized.insert(hash_id, lldecl); ccx.item_symbols.insert(fn_id.node, s); let psubsts = some({tys: substs, vtables: vtables, bounds: tpt.bounds}); alt check map_node { ast_map::node_item(i@@{node: ast::item_fn(decl, _, body), _}, _) { set_inline_hint_if_appr(i.attrs, lldecl); trans_fn(ccx, pt, decl, body, lldecl, no_self, psubsts, fn_id.node, none); } ast_map::node_item(@{node: ast::item_res(d, _, body, d_id, _), _}, _) { trans_fn(ccx, pt, d, body, lldecl, no_self, psubsts, d_id, none); } ast_map::node_native_item(i, _, _) { native::trans_builtin(ccx, lldecl, i, pt, option::get(psubsts), ref_id); } ast_map::node_variant(v, enum_item, _) { let tvs = ty::enum_variants(ccx.tcx, local_def(enum_item.id)); let this_tv = option::get(vec::find(*tvs, {|tv| tv.id.node == fn_id.node})); set_inline_hint(lldecl); trans_enum_variant(ccx, enum_item.id, v, this_tv.disr_val, (*tvs).len() == 1u, psubsts, lldecl); } ast_map::node_method(mth, impl_def_id, _) { set_inline_hint_if_appr(mth.attrs, lldecl); let selfty = ty::node_id_to_type(ccx.tcx, mth.self_id); let selfty = ty::substitute_type_params(ccx.tcx, substs, selfty); trans_fn(ccx, pt, mth.decl, mth.body, lldecl, impl_self(selfty), psubsts, fn_id.node, none); } ast_map::node_ctor(i, _) { alt check i.node { ast::item_res(decl, _, _, _, _) { set_inline_hint(lldecl); trans_res_ctor(ccx, pt, decl, fn_id.node, psubsts, lldecl); } ast::item_class(_, _, ctor) { ccx.sess.unimpl("monomorphic class constructor"); } } } } {val: lldecl, must_cast: must_cast, intrinsic: false} } fn maybe_instantiate_inline(ccx: @crate_ctxt, fn_id: ast::def_id) -> ast::def_id { let _icx = ccx.insn_ctxt("maybe_instantiate_inline"); alt ccx.external.find(fn_id) { some(some(node_id)) { // Already inline #debug["maybe_instantiate_inline(%s): already inline as node id %d", ty::item_path_str(ccx.tcx, fn_id), node_id]; local_def(node_id) } some(none) { fn_id } // Not inlinable none { // Not seen yet alt check csearch::maybe_get_item_ast(ccx.tcx, ccx.maps, fn_id) { csearch::not_found { ccx.external.insert(fn_id, none); fn_id } csearch::found(ast::ii_item(item)) { ccx.external.insert(fn_id, some(item.id)); trans_item(ccx, *item); local_def(item.id) } csearch::found(ast::ii_native(item)) { ccx.external.insert(fn_id, some(item.id)); local_def(item.id) } csearch::found_parent(parent_id, ast::ii_item(item)) { ccx.external.insert(parent_id, some(item.id)); let mut my_id = 0; alt check item.node { ast::item_enum(_, _) { let vs_here = ty::enum_variants(ccx.tcx, local_def(item.id)); let vs_there = ty::enum_variants(ccx.tcx, parent_id); vec::iter2(*vs_here, *vs_there) {|here, there| if there.id == fn_id { my_id = here.id.node; } ccx.external.insert(there.id, some(here.id.node)); } } ast::item_res(_, _, _, _, ctor_id) { my_id = ctor_id; } } trans_item(ccx, *item); local_def(my_id) } csearch::found(ast::ii_method(impl_did, mth)) { ccx.external.insert(fn_id, some(mth.id)); let {bounds: impl_bnds, ty: impl_ty} = ty::lookup_item_type(ccx.tcx, impl_did); if (*impl_bnds).len() + mth.tps.len() == 0u { let llfn = get_item_val(ccx, mth.id); let path = ty::item_path(ccx.tcx, impl_did) + [path_name(mth.ident)]; trans_fn(ccx, path, mth.decl, mth.body, llfn, impl_self(impl_ty), none, mth.id, none); } local_def(mth.id) } } } } } fn lval_intrinsic_fn(bcx: block, val: ValueRef, tys: [ty::t], id: ast::node_id) -> lval_maybe_callee { let _icx = bcx.insn_ctxt("lval_intrinsic_fn"); fn add_tydesc_params(ccx: @crate_ctxt, llfty: TypeRef, n: uint) -> TypeRef { let out_ty = llvm::LLVMGetReturnType(llfty); let n_args = llvm::LLVMCountParamTypes(llfty); let args = vec::from_elem(n_args as uint, 0 as TypeRef); unsafe { llvm::LLVMGetParamTypes(llfty, vec::unsafe::to_ptr(args)); } T_fn(vec::slice(args, 0u, first_real_arg) + vec::from_elem(n, T_ptr(ccx.tydesc_type)) + vec::tailn(args, first_real_arg), out_ty) } let mut bcx = bcx; let ccx = bcx.ccx(); let tds = vec::map(tys, {|t| let mut ti = none, td = get_tydesc(bcx.ccx(), t, ti); lazily_emit_all_tydesc_glue(ccx, ti); td }); let llfty = type_of_fn_from_ty(ccx, node_id_type(bcx, id)); let val = PointerCast(bcx, val, T_ptr(add_tydesc_params( ccx, llfty, tys.len()))); {bcx: bcx, val: val, kind: owned, env: null_env, tds: some(tds)} } fn lval_static_fn(bcx: block, fn_id: ast::def_id, id: ast::node_id) -> lval_maybe_callee { let _icx = bcx.insn_ctxt("lval_static_fn"); let vts = option::map(bcx.ccx().maps.vtable_map.find(id), {|vts| impl::resolve_vtables_in_fn_ctxt(bcx.fcx, vts) }); lval_static_fn_inner(bcx, fn_id, id, node_id_type_params(bcx, id), vts) } fn lval_static_fn_inner(bcx: block, fn_id: ast::def_id, id: ast::node_id, tys: [ty::t], vtables: option) -> lval_maybe_callee { let _icx = bcx.insn_ctxt("lval_static_fn_inner"); let ccx = bcx.ccx(), tcx = ccx.tcx; let tpt = ty::lookup_item_type(tcx, fn_id); // Check whether this fn has an inlined copy and, if so, redirect fn_id to // the local id of the inlined copy. let fn_id = if fn_id.crate != ast::local_crate { maybe_instantiate_inline(ccx, fn_id) } else { fn_id }; if fn_id.crate == ast::local_crate && tys.len() > 0u { let mut {val, must_cast, intrinsic} = monomorphic_fn(ccx, fn_id, tys, vtables, some(id)); if intrinsic { ret lval_intrinsic_fn(bcx, val, tys, id); } if must_cast { val = PointerCast(bcx, val, T_ptr(type_of_fn_from_ty( ccx, node_id_type(bcx, id)))); } ret {bcx: bcx, val: val, kind: owned, env: null_env, tds: none}; } let mut val = if fn_id.crate == ast::local_crate { // Internal reference. get_item_val(ccx, fn_id.node) } else { // External reference. trans_external_path(ccx, fn_id, tpt.ty) }; if tys.len() > 0u { // This is supposed to be an external native function. // Unfortunately, I found no easy/cheap way to assert that. if csearch::item_is_intrinsic(ccx.sess.cstore, fn_id) { ret lval_intrinsic_fn(bcx, val, tys, id); } val = PointerCast(bcx, val, T_ptr(type_of_fn_from_ty( ccx, node_id_type(bcx, id)))); } // FIXME: Need to support external crust functions if fn_id.crate == ast::local_crate { alt bcx.tcx().def_map.find(id) { some(ast::def_fn(_, ast::crust_fn)) { // Crust functions are just opaque pointers let val = PointerCast(bcx, val, T_ptr(T_i8())); ret lval_no_env(bcx, val, owned_imm); } _ { } } } ret {bcx: bcx, val: val, kind: owned, env: null_env, tds: none}; } fn lookup_discriminant(ccx: @crate_ctxt, vid: ast::def_id) -> ValueRef { let _icx = ccx.insn_ctxt("lookup_discriminant"); alt ccx.discrims.find(vid) { none { // It's an external discriminant that we haven't seen yet. assert (vid.crate != ast::local_crate); let sym = csearch::get_symbol(ccx.sess.cstore, vid); let gvar = str::as_c_str(sym, {|buf| llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf) }); lib::llvm::SetLinkage(gvar, lib::llvm::ExternalLinkage); llvm::LLVMSetGlobalConstant(gvar, True); ccx.discrims.insert(vid, gvar); ret gvar; } some(llval) { ret llval; } } } fn trans_local_var(cx: block, def: ast::def) -> local_var_result { let _icx = cx.insn_ctxt("trans_local_var"); fn take_local(table: hashmap, id: ast::node_id) -> local_var_result { alt table.find(id) { some(local_mem(v)) { {val: v, kind: owned} } some(local_imm(v)) { {val: v, kind: owned_imm} } r { fail("take_local: internal error"); } } } alt def { ast::def_upvar(nid, _, _) { assert (cx.fcx.llupvars.contains_key(nid)); ret { val: cx.fcx.llupvars.get(nid), kind: owned }; } ast::def_arg(nid, _) { assert (cx.fcx.llargs.contains_key(nid)); ret take_local(cx.fcx.llargs, nid); } ast::def_local(nid, _) | ast::def_binding(nid) { assert (cx.fcx.lllocals.contains_key(nid)); ret take_local(cx.fcx.lllocals, nid); } ast::def_self(_) { let slf = option::get(cx.fcx.llself); let ptr = PointerCast(cx, slf.v, T_ptr(type_of(cx.ccx(), slf.t))); ret {val: ptr, kind: owned}; } _ { cx.sess().unimpl(#fmt("unsupported def type in trans_local_def: %?", def)); } } } // The third argument (path) ends up getting used when the id // refers to a field within the enclosing class, since the name // gets turned into a record field name. fn trans_path(cx: block, id: ast::node_id, path: @ast::path) -> lval_maybe_callee { let _icx = cx.insn_ctxt("trans_path"); alt cx.tcx().def_map.find(id) { none { cx.sess().bug("trans_path: unbound node ID"); } some(df) { ret trans_var(cx, df, id, path); } } } fn trans_var(cx: block, def: ast::def, id: ast::node_id, path: @ast::path) -> lval_maybe_callee { let _icx = cx.insn_ctxt("trans_var"); let ccx = cx.ccx(); alt def { ast::def_fn(did, _) { ret lval_static_fn(cx, did, id); } ast::def_variant(tid, vid) { if ty::enum_variant_with_id(ccx.tcx, tid, vid).args.len() > 0u { // N-ary variant. ret lval_static_fn(cx, vid, id); } else { // Nullary variant. let enum_ty = node_id_type(cx, id); let alloc_result = alloc_ty(cx, enum_ty); let llenumblob = alloc_result.val; let llenumty = type_of_enum(ccx, tid, enum_ty); let bcx = alloc_result.bcx; let llenumptr = PointerCast(bcx, llenumblob, T_ptr(llenumty)); let lldiscrimptr = GEPi(bcx, llenumptr, [0, 0]); let lldiscrim_gv = lookup_discriminant(bcx.fcx.ccx, vid); let lldiscrim = Load(bcx, lldiscrim_gv); Store(bcx, lldiscrim, lldiscrimptr); ret lval_no_env(bcx, llenumptr, temporary); } } ast::def_const(did) { if did.crate == ast::local_crate { ret lval_no_env(cx, get_item_val(ccx, did.node), owned); } else { let tp = node_id_type(cx, id); let val = trans_external_path(ccx, did, tp); ret lval_no_env(cx, load_if_immediate(cx, val, tp), owned_imm); } } ast::def_class_field(parent, did) { // base is implicitly "Self" alt cx.fcx.self_id { some(slf) { let {bcx, val, kind} = trans_rec_field(cx, slf, // TODO: only supporting local objects for now path_to_ident(path)); ret lval_no_env(bcx, val, kind); } _ { cx.sess().bug("unbound self param in class"); } } } _ { let loc = trans_local_var(cx, def); ret lval_no_env(cx, loc.val, loc.kind); } } } fn trans_rec_field(bcx: block, base: @ast::expr, field: ast::ident) -> lval_result { let _icx = bcx.insn_ctxt("trans_rec_field"); let {bcx, val} = trans_temp_expr(bcx, base); let {bcx, val, ty} = autoderef(bcx, val, expr_ty(bcx, base)); let fields = alt ty::get(ty).struct { ty::ty_rec(fs) { fs } ty::ty_class(did,_) { ty::class_items_as_fields(bcx.tcx(), did) } // Constraint? _ { bcx.tcx().sess.span_bug(base.span, "trans_rec_field:\ base expr has non-record type"); } }; let ix = option::get(ty::field_idx(field, fields)); let val = GEPi(bcx, val, [0, ix as int]); ret {bcx: bcx, val: val, kind: owned}; } fn trans_index(cx: block, ex: @ast::expr, base: @ast::expr, idx: @ast::expr) -> lval_result { let _icx = cx.insn_ctxt("trans_index"); let base_ty = expr_ty(cx, base); let exp = trans_temp_expr(cx, base); let lv = autoderef(exp.bcx, exp.val, base_ty); let ix = trans_temp_expr(lv.bcx, idx); let v = lv.val; let bcx = ix.bcx; let ccx = cx.ccx(); // Cast to an LLVM integer. Rust is less strict than LLVM in this regard. let ix_size = llsize_of_real(cx.ccx(), val_ty(ix.val)); let int_size = llsize_of_real(cx.ccx(), ccx.int_type); let ix_val = if ix_size < int_size { ZExt(bcx, ix.val, ccx.int_type) } else if ix_size > int_size { Trunc(bcx, ix.val, ccx.int_type) } else { ix.val }; let unit_ty = node_id_type(cx, ex.id); let llunitty = type_of(ccx, unit_ty); let unit_sz = llsize_of(ccx, llunitty); maybe_name_value(cx.ccx(), unit_sz, "unit_sz"); let scaled_ix = Mul(bcx, ix_val, unit_sz); maybe_name_value(cx.ccx(), scaled_ix, "scaled_ix"); let lim = tvec::get_fill(bcx, v); let body = tvec::get_dataptr(bcx, v, type_of(ccx, unit_ty)); let bounds_check = ICmp(bcx, lib::llvm::IntUGE, scaled_ix, lim); let bcx = with_cond(bcx, bounds_check) {|bcx| // fail: bad bounds check. trans_fail(bcx, some(ex.span), "bounds check") }; let elt = InBoundsGEP(bcx, body, [ix_val]); ret lval_owned(bcx, PointerCast(bcx, elt, T_ptr(llunitty))); } fn expr_is_lval(bcx: block, e: @ast::expr) -> bool { let ccx = bcx.ccx(); ty::expr_is_lval(ccx.maps.method_map, e) } fn trans_callee(bcx: block, e: @ast::expr) -> lval_maybe_callee { let _icx = bcx.insn_ctxt("trans_callee"); alt e.node { ast::expr_path(path) { ret trans_path(bcx, e.id, path); } ast::expr_field(base, ident, _) { // Lval means this is a record field, so not a method if !expr_is_lval(bcx, e) { alt bcx.ccx().maps.method_map.find(e.id) { some(origin) { // An impl method ret impl::trans_method_callee(bcx, e.id, base, origin); } _ { bcx.ccx().sess.span_bug(e.span, "trans_callee: weird expr"); } } } } _ {} } let lv = trans_temp_lval(bcx, e); ret lval_no_env(lv.bcx, lv.val, lv.kind); } // Use this when you know you are compiling an lval. // The additional bool returned indicates whether it's mem (that is // represented as an alloca or heap, hence needs a 'load' to be used as an // immediate). fn trans_lval(cx: block, e: @ast::expr) -> lval_result { let _icx = cx.insn_ctxt("trans_lval"); alt e.node { ast::expr_path(p) { let v = trans_path(cx, e.id, p); ret lval_maybe_callee_to_lval(v, expr_ty(cx, e)); } ast::expr_field(base, ident, _) { ret trans_rec_field(cx, base, ident); } ast::expr_index(base, idx) { ret trans_index(cx, e, base, idx); } ast::expr_unary(ast::deref, base) { let ccx = cx.ccx(); let sub = trans_temp_expr(cx, base); let t = expr_ty(cx, base); let val = alt check ty::get(t).struct { ty::ty_box(_) { GEPi(sub.bcx, sub.val, [0, abi::box_field_body]) } ty::ty_res(_, _, _) { GEPi(sub.bcx, sub.val, [0, 1]) } ty::ty_enum(_, _) { let ety = expr_ty(cx, e); let ellty = T_ptr(type_of(ccx, ety)); PointerCast(sub.bcx, sub.val, ellty) } ty::ty_ptr(_) | ty::ty_uniq(_) | ty::ty_rptr(_,_) { sub.val } }; ret lval_owned(sub.bcx, val); } _ { cx.sess().span_bug(e.span, "non-lval in trans_lval"); } } } fn lval_maybe_callee_to_lval(c: lval_maybe_callee, ty: ty::t) -> lval_result { let must_bind = alt c.env { self_env(_, _, _) { true } _ { false } }; if must_bind { let n_args = ty::ty_fn_args(ty).len(); let args = vec::from_elem(n_args, none); let space = alloc_ty(c.bcx, ty); let bcx = closure::trans_bind_1(space.bcx, ty, c, args, ty, save_in(space.val)); add_clean_temp(bcx, space.val, ty); {bcx: bcx, val: space.val, kind: temporary} } else { alt check c.env { is_closure { {bcx: c.bcx, val: c.val, kind: c.kind} } null_env { let llfnty = llvm::LLVMGetElementType(val_ty(c.val)); let llfn = create_real_fn_pair(c.bcx, llfnty, c.val, null_env_ptr(c.bcx)); {bcx: c.bcx, val: llfn, kind: temporary} } } } } fn int_cast(bcx: block, lldsttype: TypeRef, llsrctype: TypeRef, llsrc: ValueRef, signed: bool) -> ValueRef { let _icx = bcx.insn_ctxt("int_cast"); let srcsz = llvm::LLVMGetIntTypeWidth(llsrctype); let dstsz = llvm::LLVMGetIntTypeWidth(lldsttype); ret if dstsz == srcsz { BitCast(bcx, llsrc, lldsttype) } else if srcsz > dstsz { TruncOrBitCast(bcx, llsrc, lldsttype) } else if signed { SExtOrBitCast(bcx, llsrc, lldsttype) } else { ZExtOrBitCast(bcx, llsrc, lldsttype) }; } fn float_cast(bcx: block, lldsttype: TypeRef, llsrctype: TypeRef, llsrc: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("float_cast"); let srcsz = lib::llvm::float_width(llsrctype); let dstsz = lib::llvm::float_width(lldsttype); ret if dstsz > srcsz { FPExt(bcx, llsrc, lldsttype) } else if srcsz > dstsz { FPTrunc(bcx, llsrc, lldsttype) } else { llsrc }; } enum cast_kind { cast_pointer, cast_integral, cast_float, cast_enum, cast_other, } fn cast_type_kind(t: ty::t) -> cast_kind { if ty::type_is_fp(t) { cast_float } else if ty::type_is_unsafe_ptr(t) { cast_pointer } else if ty::type_is_integral(t) { cast_integral } else if ty::type_is_enum(t) { cast_enum } else { cast_other } } fn trans_cast(cx: block, e: @ast::expr, id: ast::node_id, dest: dest) -> block { let _icx = cx.insn_ctxt("trans_cast"); let ccx = cx.ccx(); let t_out = node_id_type(cx, id); alt ty::get(t_out).struct { ty::ty_iface(_, _) { ret impl::trans_cast(cx, e, id, dest); } _ {} } let e_res = trans_temp_expr(cx, e); let ll_t_in = val_ty(e_res.val); let t_in = expr_ty(cx, e); let ll_t_out = type_of(ccx, t_out); let k_in = cast_type_kind(t_in); let k_out = cast_type_kind(t_out); let s_in = k_in == cast_integral && ty::type_is_signed(t_in); let newval = alt {in: k_in, out: k_out} { {in: cast_integral, out: cast_integral} { int_cast(e_res.bcx, ll_t_out, ll_t_in, e_res.val, s_in) } {in: cast_float, out: cast_float} { float_cast(e_res.bcx, ll_t_out, ll_t_in, e_res.val) } {in: cast_integral, out: cast_float} { if s_in { SIToFP(e_res.bcx, e_res.val, ll_t_out) } else { UIToFP(e_res.bcx, e_res.val, ll_t_out) } } {in: cast_float, out: cast_integral} { if ty::type_is_signed(t_out) { FPToSI(e_res.bcx, e_res.val, ll_t_out) } else { FPToUI(e_res.bcx, e_res.val, ll_t_out) } } {in: cast_integral, out: cast_pointer} { IntToPtr(e_res.bcx, e_res.val, ll_t_out) } {in: cast_pointer, out: cast_integral} { PtrToInt(e_res.bcx, e_res.val, ll_t_out) } {in: cast_pointer, out: cast_pointer} { PointerCast(e_res.bcx, e_res.val, ll_t_out) } {in: cast_enum, out: cast_integral} | {in: cast_enum, out: cast_float} { let cx = e_res.bcx; let llenumty = T_opaque_enum_ptr(ccx); let av_enum = PointerCast(cx, e_res.val, llenumty); let lldiscrim_a_ptr = GEPi(cx, av_enum, [0, 0]); let lldiscrim_a = Load(cx, lldiscrim_a_ptr); alt k_out { cast_integral {int_cast(e_res.bcx, ll_t_out, val_ty(lldiscrim_a), lldiscrim_a, true)} cast_float {SIToFP(e_res.bcx, lldiscrim_a, ll_t_out)} _ { ccx.sess.bug("translating unsupported cast.") } } } _ { ccx.sess.bug("translating unsupported cast.") } }; ret store_in_dest(e_res.bcx, newval, dest); } // temp_cleanups: cleanups that should run only if failure occurs before the // call takes place: fn trans_arg_expr(cx: block, arg: ty::arg, lldestty: TypeRef, e: @ast::expr, &temp_cleanups: [ValueRef]) -> result { let _icx = cx.insn_ctxt("trans_arg_expr"); let ccx = cx.ccx(); let e_ty = expr_ty(cx, e); let is_bot = ty::type_is_bot(e_ty); let lv = trans_temp_lval(cx, e); let mut bcx = lv.bcx; let mut val = lv.val; let arg_mode = ty::resolved_mode(ccx.tcx, arg.mode); if is_bot { // For values of type _|_, we generate an // "undef" value, as such a value should never // be inspected. It's important for the value // to have type lldestty (the callee's expected type). val = llvm::LLVMGetUndef(lldestty); } else if arg_mode == ast::by_ref || arg_mode == ast::by_val { let mut copied = false; let imm = ty::type_is_immediate(e_ty); if arg_mode == ast::by_ref && lv.kind != owned && imm { val = do_spill_noroot(bcx, val); copied = true; } if ccx.maps.copy_map.contains_key(e.id) && lv.kind != temporary { if !copied { let alloc = alloc_ty(bcx, e_ty); bcx = copy_val(alloc.bcx, INIT, alloc.val, load_if_immediate(alloc.bcx, val, e_ty), e_ty); val = alloc.val; } else { bcx = take_ty(bcx, val, e_ty); } add_clean(bcx, val, e_ty); } if arg_mode == ast::by_val && (lv.kind == owned || !imm) { val = Load(bcx, val); } } else if arg_mode == ast::by_copy || arg_mode == ast::by_move { let {bcx: cx, val: alloc} = alloc_ty(bcx, e_ty); let move_out = arg_mode == ast::by_move || ccx.maps.last_uses.contains_key(e.id); bcx = cx; if lv.kind == temporary { revoke_clean(bcx, val); } if lv.kind == owned || !ty::type_is_immediate(e_ty) { bcx = memmove_ty(bcx, alloc, val, e_ty); if move_out && ty::type_needs_drop(ccx.tcx, e_ty) { bcx = zero_alloca(bcx, val, e_ty); } } else { Store(bcx, val, alloc); } val = alloc; if lv.kind != temporary && !move_out { bcx = take_ty(bcx, val, e_ty); } // In the event that failure occurs before the call actually // happens, have to cleanup this copy: add_clean_temp_mem(bcx, val, e_ty); temp_cleanups += [val]; } else if ty::type_is_immediate(e_ty) && lv.kind != owned { let r = do_spill(bcx, val, e_ty); val = r.val; bcx = r.bcx; } if !is_bot && arg.ty != e_ty || ty::type_has_params(arg.ty) { val = PointerCast(bcx, val, lldestty); } ret rslt(bcx, val); } enum call_args { arg_exprs([@ast::expr]), arg_vals([ValueRef]) } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn trans_args(cx: block, llenv: ValueRef, args: call_args, fn_ty: ty::t, dest: dest, generic_intrinsic: bool) -> {bcx: block, args: [ValueRef], retslot: ValueRef} { let _icx = cx.insn_ctxt("trans_args"); let mut temp_cleanups = []; let arg_tys = ty::ty_fn_args(fn_ty); let mut llargs: [ValueRef] = []; let ccx = cx.ccx(); let mut bcx = cx; let retty = ty::ty_fn_ret(fn_ty); // Arg 0: Output pointer. let llretslot = alt dest { ignore { if ty::type_is_nil(retty) && !generic_intrinsic { llvm::LLVMGetUndef(T_ptr(T_nil())) } else { let {bcx: cx, val} = alloc_ty(bcx, retty); bcx = cx; val } } save_in(dst) { dst } by_val(_) { let {bcx: cx, val} = alloc_ty(bcx, retty); bcx = cx; val } }; llargs += [llretslot]; // Arg 1: Env (closure-bindings / self value) llargs += [llenv]; // ... then explicit args. // First we figure out the caller's view of the types of the arguments. // This will be needed if this is a generic call, because the callee has // to cast her view of the arguments to the caller's view. alt args { arg_exprs(es) { let llarg_tys = type_of_explicit_args(ccx, arg_tys); let mut i = 0u; for e: @ast::expr in es { let r = trans_arg_expr(bcx, arg_tys[i], llarg_tys[i], e, temp_cleanups); bcx = r.bcx; llargs += [r.val]; i += 1u; } } arg_vals(vs) { llargs += vs; } } // now that all arguments have been successfully built, we can revoke any // temporary cleanups, as they are only needed if argument construction // should fail (for example, cleanup of copy mode args). vec::iter(temp_cleanups) {|c| revoke_clean(bcx, c) } ret {bcx: bcx, args: llargs, retslot: llretslot}; } fn trans_call(in_cx: block, f: @ast::expr, args: call_args, id: ast::node_id, dest: dest) -> block { let _icx = in_cx.insn_ctxt("trans_call"); trans_call_inner(in_cx, expr_ty(in_cx, f), node_id_type(in_cx, id), {|cx| trans_callee(cx, f)}, args, dest) } fn trans_call_inner(in_cx: block, fn_expr_ty: ty::t, ret_ty: ty::t, get_callee: fn(block) -> lval_maybe_callee, args: call_args, dest: dest) -> block { with_scope(in_cx, "call") {|cx| let f_res = get_callee(cx); let mut bcx = f_res.bcx; let ccx = cx.ccx(); let mut faddr = f_res.val; let llenv = alt f_res.env { null_env { llvm::LLVMGetUndef(T_opaque_box_ptr(ccx)) } self_env(e, _, _) { PointerCast(bcx, e, T_opaque_box_ptr(ccx)) } is_closure { // It's a closure. Have to fetch the elements if f_res.kind == owned { faddr = load_if_immediate(bcx, faddr, fn_expr_ty); } let pair = faddr; faddr = GEPi(bcx, pair, [0, abi::fn_field_code]); faddr = Load(bcx, faddr); let llclosure = GEPi(bcx, pair, [0, abi::fn_field_box]); Load(bcx, llclosure) } }; let args_res = { trans_args(bcx, llenv, args, fn_expr_ty, dest, option::is_some(f_res.tds)) }; bcx = args_res.bcx; let mut llargs = args_res.args; option::may(f_res.tds) {|vals| llargs = vec::slice(llargs, 0u, first_real_arg) + vals + vec::tailn(llargs, first_real_arg); } let llretslot = args_res.retslot; /* If the block is terminated, then one or more of the args has type _|_. Since that means it diverges, the code for the call itself is unreachable. */ bcx = invoke_full(bcx, faddr, llargs); alt dest { ignore { if llvm::LLVMIsUndef(llretslot) != lib::llvm::True { bcx = drop_ty(bcx, llretslot, ret_ty); } } save_in(_) { } // Already saved by callee by_val(cell) { *cell = Load(bcx, llretslot); } } if ty::type_is_bot(ret_ty) { Unreachable(bcx); } bcx } } fn invoke(bcx: block, llfn: ValueRef, llargs: [ValueRef]) -> block { ret invoke_(bcx, llfn, llargs, Invoke); } fn invoke_full(bcx: block, llfn: ValueRef, llargs: [ValueRef]) -> block { ret invoke_(bcx, llfn, llargs, Invoke); } fn invoke_(bcx: block, llfn: ValueRef, llargs: [ValueRef], invoker: fn(block, ValueRef, [ValueRef], BasicBlockRef, BasicBlockRef)) -> block { let _icx = bcx.insn_ctxt("invoke_"); // FIXME: May be worth turning this into a plain call when there are no // cleanups to run if bcx.unreachable { ret bcx; } let normal_bcx = sub_block(bcx, "normal return"); /*io::println("fn: " + lib::llvm::type_to_str(bcx.ccx().tn, val_ty(llfn))); for a in llargs { io::println(" a: " + lib::llvm::type_to_str(bcx.ccx().tn, val_ty(a))); }// */ invoker(bcx, llfn, llargs, normal_bcx.llbb, get_landing_pad(bcx)); ret normal_bcx; } fn get_landing_pad(bcx: block) -> BasicBlockRef { let _icx = bcx.insn_ctxt("get_landing_pad"); fn in_lpad_scope_cx(bcx: block, f: fn(scope_info)) { let mut bcx = bcx; loop { alt bcx.kind { block_scope(info) { if info.cleanups.len() > 0u || bcx.parent == parent_none { f(info); ret; } } _ {} } bcx = block_parent(bcx); } } let mut cached = none, pad_bcx = bcx; // Guaranteed to be set below in_lpad_scope_cx(bcx) {|info| // If there is a valid landing pad still around, use it alt info.landing_pad { some(target) { cached = some(target); ret; } none {} } pad_bcx = sub_block(bcx, "unwind"); info.landing_pad = some(pad_bcx.llbb); } alt cached { some(b) { ret b; } none {} } // Can't return from block above // The landing pad return type (the type being propagated). Not sure what // this represents but it's determined by the personality function and // this is what the EH proposal example uses. let llretty = T_struct([T_ptr(T_i8()), T_i32()]); // The exception handling personality function. This is the C++ // personality function __gxx_personality_v0, wrapped in our naming // convention. let personality = bcx.ccx().upcalls.rust_personality; // The only landing pad clause will be 'cleanup' let llretval = LandingPad(pad_bcx, llretty, personality, 1u); // The landing pad block is a cleanup SetCleanup(pad_bcx, llretval); // Because we may have unwound across a stack boundary, we must call into // the runtime to figure out which stack segment we are on and place the // stack limit back into the TLS. Call(pad_bcx, bcx.ccx().upcalls.reset_stack_limit, []); // We store the retval in a function-central alloca, so that calls to // Resume can find it. alt bcx.fcx.personality { some(addr) { Store(pad_bcx, llretval, addr); } none { let addr = alloca(pad_bcx, val_ty(llretval)); bcx.fcx.personality = some(addr); Store(pad_bcx, llretval, addr); } } // Unwind all parent scopes, and finish with a Resume instr cleanup_and_leave(pad_bcx, none, none); ret pad_bcx.llbb; } fn trans_tup(bcx: block, elts: [@ast::expr], dest: dest) -> block { let _icx = bcx.insn_ctxt("trans_tup"); let mut bcx = bcx; let addr = alt dest { ignore { for ex in elts { bcx = trans_expr(bcx, ex, ignore); } ret bcx; } save_in(pos) { pos } _ { bcx.tcx().sess.bug("trans_tup: weird dest"); } }; let mut temp_cleanups = [], i = 0; for e in elts { let dst = GEPi(bcx, addr, [0, i]); let e_ty = expr_ty(bcx, e); bcx = trans_expr_save_in(bcx, e, dst); add_clean_temp_mem(bcx, dst, e_ty); temp_cleanups += [dst]; i += 1; } for cleanup in temp_cleanups { revoke_clean(bcx, cleanup); } ret bcx; } fn trans_rec(bcx: block, fields: [ast::field], base: option<@ast::expr>, id: ast::node_id, dest: dest) -> block { let _icx = bcx.insn_ctxt("trans_rec"); let t = node_id_type(bcx, id); let mut bcx = bcx; let addr = alt dest { ignore { for fld in fields { bcx = trans_expr(bcx, fld.node.expr, ignore); } ret bcx; } save_in(pos) { pos } _ { bcx.tcx().sess.bug("trans_rec: weird dest"); } }; let ty_fields = alt ty::get(t).struct { ty::ty_rec(f) { f } _ { bcx.tcx().sess.bug("trans_rec: id doesn't\ have a record type") } }; let mut temp_cleanups = []; for fld in fields { let ix = option::get(vec::position(ty_fields, {|ft| str::eq(fld.node.ident, ft.ident) })); let dst = GEPi(bcx, addr, [0, ix as int]); bcx = trans_expr_save_in(bcx, fld.node.expr, dst); add_clean_temp_mem(bcx, dst, ty_fields[ix].mt.ty); temp_cleanups += [dst]; } alt base { some(bexp) { let {bcx: cx, val: base_val} = trans_temp_expr(bcx, bexp); let mut i = 0; bcx = cx; // Copy over inherited fields for tf in ty_fields { if !vec::any(fields, {|f| str::eq(f.node.ident, tf.ident)}) { let dst = GEPi(bcx, addr, [0, i]); let base = GEPi(bcx, base_val, [0, i]); let val = load_if_immediate(bcx, base, tf.mt.ty); bcx = copy_val(bcx, INIT, dst, val, tf.mt.ty); } i += 1; } } none {} }; // Now revoke the cleanups as we pass responsibility for the data // structure on to the caller for cleanup in temp_cleanups { revoke_clean(bcx, cleanup); } ret bcx; } // Store the result of an expression in the given memory location, ensuring // that nil or bot expressions get ignore rather than save_in as destination. fn trans_expr_save_in(bcx: block, e: @ast::expr, dest: ValueRef) -> block { let t = expr_ty(bcx, e); let do_ignore = ty::type_is_bot(t) || ty::type_is_nil(t); ret trans_expr(bcx, e, if do_ignore { ignore } else { save_in(dest) }); } // Call this to compile an expression that you need as an intermediate value, // and you want to know whether you're dealing with an lval or not (the kind // field in the returned struct). For non-intermediates, use trans_expr or // trans_expr_save_in. For intermediates where you don't care about lval-ness, // use trans_temp_expr. fn trans_temp_lval(bcx: block, e: @ast::expr) -> lval_result { let _icx = bcx.insn_ctxt("trans_temp_lval"); let mut bcx = bcx; if expr_is_lval(bcx, e) { ret trans_lval(bcx, e); } else { let ty = expr_ty(bcx, e); if ty::type_is_nil(ty) || ty::type_is_bot(ty) { bcx = trans_expr(bcx, e, ignore); ret {bcx: bcx, val: C_nil(), kind: temporary}; } else if ty::type_is_immediate(ty) { let cell = empty_dest_cell(); bcx = trans_expr(bcx, e, by_val(cell)); add_clean_temp(bcx, *cell, ty); ret {bcx: bcx, val: *cell, kind: temporary}; } else { let {bcx, val: scratch} = alloc_ty(bcx, ty); let bcx = trans_expr_save_in(bcx, e, scratch); add_clean_temp(bcx, scratch, ty); ret {bcx: bcx, val: scratch, kind: temporary}; } } } // Use only for intermediate values. See trans_expr and trans_expr_save_in for // expressions that must 'end up somewhere' (or get ignored). fn trans_temp_expr(bcx: block, e: @ast::expr) -> result { let _icx = bcx.insn_ctxt("trans_temp_expr"); let mut {bcx, val, kind} = trans_temp_lval(bcx, e); if kind == owned { val = load_if_immediate(bcx, val, expr_ty(bcx, e)); } ret {bcx: bcx, val: val}; } // Translate an expression, with the dest argument deciding what happens with // the result. Invariants: // - exprs returning nil or bot always get dest=ignore // - exprs with non-immediate type never get dest=by_val fn trans_expr(bcx: block, e: @ast::expr, dest: dest) -> block { let _icx = bcx.insn_ctxt("trans_expr"); let tcx = bcx.tcx(); debuginfo::update_source_pos(bcx, e.span); #debug["trans_expr(e=%s,e.id=%d,dest=%s,ty=%s)", expr_to_str(e), e.id, dest_str(bcx.ccx(), dest), ty_to_str(tcx, expr_ty(bcx, e))]; if expr_is_lval(bcx, e) { ret lval_to_dps(bcx, e, dest); } alt e.node { ast::expr_if(cond, thn, els) | ast::expr_if_check(cond, thn, els) { ret trans_if(bcx, cond, thn, els, dest); } ast::expr_alt(expr, arms, mode) { ret alt::trans_alt(bcx, expr, arms, mode, dest); } ast::expr_block(blk) { ret with_scope(bcx, "block-expr body") {|bcx| bcx.block_span = some(blk.span); trans_block(bcx, blk, dest) }; } ast::expr_rec(args, base) { ret trans_rec(bcx, args, base, e.id, dest); } ast::expr_tup(args) { ret trans_tup(bcx, args, dest); } ast::expr_lit(lit) { ret trans_lit(bcx, *lit, dest); } ast::expr_vec(args, _) { ret tvec::trans_vec(bcx, args, e.id, dest); } ast::expr_binary(op, lhs, rhs) { ret trans_binary(bcx, op, lhs, rhs, dest, e); } ast::expr_unary(op, x) { assert op != ast::deref; // lvals are handled above ret trans_unary(bcx, op, x, e, dest); } ast::expr_addr_of(_, x) { ret trans_addr_of(bcx, x, dest); } ast::expr_fn(proto, decl, body, cap_clause) { ret closure::trans_expr_fn( bcx, proto, decl, body, e.span, e.id, *cap_clause, dest); } ast::expr_fn_block(decl, body) { alt ty::get(expr_ty(bcx, e)).struct { ty::ty_fn({proto, _}) { #debug("translating fn_block %s with type %s", expr_to_str(e), ty_to_str(tcx, expr_ty(bcx, e))); let cap_clause = { copies: [], moves: [] }; ret closure::trans_expr_fn( bcx, proto, decl, body, e.span, e.id, cap_clause, dest); } _ { fail "type of fn block is not a function!"; } } } ast::expr_bind(f, args) { ret closure::trans_bind( bcx, f, args, e.id, dest); } ast::expr_copy(a) { if !expr_is_lval(bcx, a) { ret trans_expr(bcx, a, dest); } else { ret lval_to_dps(bcx, a, dest); } } ast::expr_cast(val, _) { ret trans_cast(bcx, val, e.id, dest); } ast::expr_call(f, args, _) { ret trans_call(bcx, f, arg_exprs(args), e.id, dest); } ast::expr_field(base, _, _) { if dest == ignore { ret trans_expr(bcx, base, ignore); } let callee = trans_callee(bcx, e), ty = expr_ty(bcx, e); let lv = lval_maybe_callee_to_lval(callee, ty); revoke_clean(lv.bcx, lv.val); ret memmove_ty(lv.bcx, get_dest_addr(dest), lv.val, ty); } ast::expr_index(base, idx) { // If it is here, it's not an lval, so this is a user-defined index op let origin = bcx.ccx().maps.method_map.get(e.id); let callee_id = ast_util::op_expr_callee_id(e); let fty = node_id_type(bcx, callee_id); ret trans_call_inner(bcx, fty, expr_ty(bcx, e), {|bcx| impl::trans_method_callee(bcx, callee_id, base, origin) }, arg_exprs([idx]), dest); } // These return nothing ast::expr_break { assert dest == ignore; ret trans_break(bcx); } ast::expr_cont { assert dest == ignore; ret trans_cont(bcx); } ast::expr_ret(ex) { assert dest == ignore; ret trans_ret(bcx, ex); } ast::expr_be(ex) { ret trans_be(bcx, ex); } ast::expr_fail(expr) { assert dest == ignore; ret trans_fail_expr(bcx, some(e.span), expr); } ast::expr_log(_, lvl, a) { assert dest == ignore; ret trans_log(lvl, bcx, a); } ast::expr_assert(a) { assert dest == ignore; ret trans_check_expr(bcx, a, "Assertion"); } ast::expr_check(ast::checked_expr, a) { assert dest == ignore; ret trans_check_expr(bcx, a, "Predicate"); } ast::expr_check(ast::claimed_expr, a) { assert dest == ignore; /* Claims are turned on and off by a global variable that the RTS sets. This case generates code to check the value of that variable, doing nothing if it's set to false and acting like a check otherwise. */ let c = get_extern_const(bcx.ccx().externs, bcx.ccx().llmod, "check_claims", T_bool()); ret with_cond(bcx, Load(bcx, c)) {|bcx| trans_check_expr(bcx, a, "Claim") }; } ast::expr_for(decl, seq, body) { assert dest == ignore; ret trans_for(bcx, decl, seq, body); } ast::expr_while(cond, body) { assert dest == ignore; ret trans_while(bcx, cond, body); } ast::expr_loop(body) { assert dest == ignore; ret trans_loop(bcx, body); } ast::expr_do_while(body, cond) { assert dest == ignore; ret trans_do_while(bcx, body, cond); } ast::expr_assign(dst, src) { assert dest == ignore; let src_r = trans_temp_lval(bcx, src); let {bcx, val: addr, kind} = trans_lval(src_r.bcx, dst); assert kind == owned; ret store_temp_expr(bcx, DROP_EXISTING, addr, src_r, expr_ty(bcx, src), bcx.ccx().maps.last_uses.contains_key(src.id)); } ast::expr_move(dst, src) { // FIXME: calculate copy init-ness in typestate. assert dest == ignore; let src_r = trans_temp_lval(bcx, src); let {bcx, val: addr, kind} = trans_lval(src_r.bcx, dst); assert kind == owned; ret move_val(bcx, DROP_EXISTING, addr, src_r, expr_ty(bcx, src)); } ast::expr_swap(dst, src) { assert dest == ignore; let lhs_res = trans_lval(bcx, dst); assert lhs_res.kind == owned; let rhs_res = trans_lval(lhs_res.bcx, src); let t = expr_ty(bcx, src); let {bcx: bcx, val: tmp_alloc} = alloc_ty(rhs_res.bcx, t); // Swap through a temporary. let bcx = move_val(bcx, INIT, tmp_alloc, lhs_res, t); let bcx = move_val(bcx, INIT, lhs_res.val, rhs_res, t); ret move_val(bcx, INIT, rhs_res.val, lval_owned(bcx, tmp_alloc), t); } ast::expr_assign_op(op, dst, src) { assert dest == ignore; ret trans_assign_op(bcx, e, op, dst, src); } ast::expr_new(pool, alloc_id, val) { // First, call pool->alloc(sz, align) to get back a void*. Then, cast // this memory to the required type and evaluate value into it. let ccx = bcx.ccx(); // Allocate space for the ptr that will be returned from // `pool.alloc()`: let ptr_ty = expr_ty(bcx, e); let {bcx, val: ptr_ptr_val} = alloc_ty(bcx, ptr_ty); #debug["ptr_ty = %s", ty_to_str(tcx, ptr_ty)]; #debug["ptr_ptr_val = %s", val_str(ccx.tn, ptr_ptr_val)]; let void_ty = ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm}); let voidval = { let llvoid_ty = type_of(ccx, void_ty); PointerCast(bcx, ptr_ptr_val, T_ptr(llvoid_ty)) }; #debug["voidval = %s", val_str(ccx.tn, voidval)]; let llval_ty = type_of(ccx, expr_ty(bcx, val)); let args = [llsize_of(ccx, llval_ty), llalign_of(ccx, llval_ty)]; let origin = bcx.ccx().maps.method_map.get(alloc_id); let bcx = trans_call_inner( bcx, node_id_type(bcx, alloc_id), void_ty, {|bcx| impl::trans_method_callee(bcx, alloc_id, pool, origin) }, arg_vals(args), save_in(voidval)); #debug["dest = %s", dest_str(ccx, dest)]; let ptr_val = Load(bcx, ptr_ptr_val); #debug["ptr_val = %s", val_str(ccx.tn, ptr_val)]; let bcx = trans_expr(bcx, val, save_in(ptr_val)); store_in_dest(bcx, ptr_val, dest) } _ { bcx.tcx().sess.span_bug(e.span, "trans_expr reached \ fall-through case"); } } } fn lval_to_dps(bcx: block, e: @ast::expr, dest: dest) -> block { let lv = trans_lval(bcx, e), ccx = bcx.ccx(); let mut {bcx, val, kind} = lv; let last_use = kind == owned && ccx.maps.last_uses.contains_key(e.id); let ty = expr_ty(bcx, e); alt dest { by_val(cell) { if kind == temporary { revoke_clean(bcx, val); *cell = val; } else if last_use { *cell = Load(bcx, val); if ty::type_needs_drop(ccx.tcx, ty) { bcx = zero_alloca(bcx, val, ty); } } else { if kind == owned { val = Load(bcx, val); } let {bcx: cx, val} = take_ty_immediate(bcx, val, ty); *cell = val; bcx = cx; } } save_in(loc) { bcx = store_temp_expr(bcx, INIT, loc, lv, ty, last_use); } ignore {} } ret bcx; } fn do_spill(cx: block, v: ValueRef, t: ty::t) -> result { // We have a value but we have to spill it, and root it, to pass by alias. let mut bcx = cx; if ty::type_is_bot(t) { ret rslt(bcx, C_null(T_ptr(T_i8()))); } let r = alloc_ty(bcx, t); bcx = r.bcx; let llptr = r.val; Store(bcx, v, llptr); ret rslt(bcx, llptr); } // Since this function does *not* root, it is the caller's responsibility to // ensure that the referent is pointed to by a root. fn do_spill_noroot(cx: block, v: ValueRef) -> ValueRef { let llptr = alloca(cx, val_ty(v)); Store(cx, v, llptr); ret llptr; } fn spill_if_immediate(cx: block, v: ValueRef, t: ty::t) -> result { let _icx = cx.insn_ctxt("spill_if_immediate"); if ty::type_is_immediate(t) { ret do_spill(cx, v, t); } ret rslt(cx, v); } fn load_if_immediate(cx: block, v: ValueRef, t: ty::t) -> ValueRef { let _icx = cx.insn_ctxt("load_if_immediate"); if ty::type_is_immediate(t) { ret Load(cx, v); } ret v; } fn trans_log(lvl: @ast::expr, bcx: block, e: @ast::expr) -> block { let _icx = bcx.insn_ctxt("trans_log"); let ccx = bcx.ccx(); if ty::type_is_bot(expr_ty(bcx, lvl)) { ret trans_expr(bcx, lvl, ignore); } let modpath = [path_mod(ccx.link_meta.name)] + vec::filter(bcx.fcx.path, {|e| alt e { path_mod(_) { true } _ { false } } }); let modname = path_str(modpath); let global = if ccx.module_data.contains_key(modname) { ccx.module_data.get(modname) } else { let s = link::mangle_internal_name_by_path_and_seq( ccx, modpath, "loglevel"); let global = str::as_c_str(s, {|buf| llvm::LLVMAddGlobal(ccx.llmod, T_i32(), buf) }); llvm::LLVMSetGlobalConstant(global, False); llvm::LLVMSetInitializer(global, C_null(T_i32())); lib::llvm::SetLinkage(global, lib::llvm::InternalLinkage); ccx.module_data.insert(modname, global); global }; let current_level = Load(bcx, global); let {bcx, val: level} = with_scope_result(bcx, "level") {|bcx| trans_temp_expr(bcx, lvl) }; with_cond(bcx, ICmp(bcx, lib::llvm::IntUGE, current_level, level)) {|bcx| with_scope(bcx, "log") {|bcx| let {bcx, val, _} = trans_temp_expr(bcx, e); let e_ty = expr_ty(bcx, e); let tydesc = get_tydesc_simple(ccx, e_ty); // Call the polymorphic log function. let {bcx, val} = spill_if_immediate(bcx, val, e_ty); let val = PointerCast(bcx, val, T_ptr(T_i8())); Call(bcx, ccx.upcalls.log_type, [tydesc, val, level]); bcx } } } fn trans_check_expr(bcx: block, e: @ast::expr, s: str) -> block { let _icx = bcx.insn_ctxt("trans_check_expr"); let expr_str = s + " " + expr_to_str(e) + " failed"; let {bcx, val} = with_scope_result(bcx, "check") {|bcx| trans_temp_expr(bcx, e) }; with_cond(bcx, Not(bcx, val)) {|bcx| trans_fail(bcx, some(e.span), expr_str) } } fn trans_fail_expr(bcx: block, sp_opt: option, fail_expr: option<@ast::expr>) -> block { let _icx = bcx.insn_ctxt("trans_fail_expr"); let mut bcx = bcx; alt fail_expr { some(expr) { let ccx = bcx.ccx(), tcx = ccx.tcx; let expr_res = trans_temp_expr(bcx, expr); let e_ty = expr_ty(bcx, expr); bcx = expr_res.bcx; if ty::type_is_str(e_ty) { let data = tvec::get_dataptr( bcx, expr_res.val, type_of( ccx, ty::mk_mach_uint(tcx, ast::ty_u8))); ret trans_fail_value(bcx, sp_opt, data); } else if bcx.unreachable || ty::type_is_bot(e_ty) { ret bcx; } else { bcx.sess().span_bug( expr.span, "fail called with unsupported type " + ty_to_str(tcx, e_ty)); } } _ { ret trans_fail(bcx, sp_opt, "explicit failure"); } } } fn trans_fail(bcx: block, sp_opt: option, fail_str: str) -> block { let _icx = bcx.insn_ctxt("trans_fail"); let V_fail_str = C_cstr(bcx.ccx(), fail_str); ret trans_fail_value(bcx, sp_opt, V_fail_str); } fn trans_fail_value(bcx: block, sp_opt: option, V_fail_str: ValueRef) -> block { let _icx = bcx.insn_ctxt("trans_fail_value"); let ccx = bcx.ccx(); let {V_filename, V_line} = alt sp_opt { some(sp) { let sess = bcx.sess(); let loc = codemap::lookup_char_pos(sess.parse_sess.cm, sp.lo); {V_filename: C_cstr(bcx.ccx(), loc.file.name), V_line: loc.line as int} } none { {V_filename: C_cstr(bcx.ccx(), ""), V_line: 0} } }; let V_str = PointerCast(bcx, V_fail_str, T_ptr(T_i8())); let V_filename = PointerCast(bcx, V_filename, T_ptr(T_i8())); let args = [V_str, V_filename, C_int(ccx, V_line)]; let bcx = invoke(bcx, bcx.ccx().upcalls._fail, args); Unreachable(bcx); ret bcx; } fn trans_break_cont(bcx: block, to_end: bool) -> block { let _icx = bcx.insn_ctxt("trans_break_cont"); // Locate closest loop block, outputting cleanup as we go. let mut unwind = bcx; let mut target = bcx; loop { alt unwind.kind { block_scope({is_loop: some({cnt, brk}), _}) { target = if to_end { brk } else { alt cnt { cont_other(o) { o } cont_self { unwind } } }; break; } _ {} } unwind = alt check unwind.parent { parent_some(cx) { cx } parent_none { bcx.sess().bug (if to_end { "break" } else { "cont" } + " outside a loop"); } }; } cleanup_and_Br(bcx, unwind, target.llbb); Unreachable(bcx); ret bcx; } fn trans_break(cx: block) -> block { ret trans_break_cont(cx, true); } fn trans_cont(cx: block) -> block { ret trans_break_cont(cx, false); } fn trans_ret(bcx: block, e: option<@ast::expr>) -> block { let _icx = bcx.insn_ctxt("trans_ret"); let mut bcx = bcx; alt e { some(x) { bcx = trans_expr_save_in(bcx, x, bcx.fcx.llretptr); } _ {} } cleanup_and_leave(bcx, none, some(bcx.fcx.llreturn)); Unreachable(bcx); ret bcx; } fn build_return(bcx: block) { let _icx = bcx.insn_ctxt("build_return"); Br(bcx, bcx.fcx.llreturn); } fn trans_be(cx: block, e: @ast::expr) -> block { // FIXME: Turn this into a real tail call once // calling convention issues are settled let _icx = cx.insn_ctxt("trans_be"); ret trans_ret(cx, some(e)); } fn init_local(bcx: block, local: @ast::local) -> block { let _icx = bcx.insn_ctxt("init_local"); let ty = node_id_type(bcx, local.node.id); let llptr = alt bcx.fcx.lllocals.find(local.node.id) { some(local_mem(v)) { v } some(_) { bcx.tcx().sess.span_bug(local.span, "init_local: Someone forgot to document why it's\ safe to assume local.node.init must be local_mem!"); } // This is a local that is kept immediate none { let initexpr = alt local.node.init { some({expr, _}) { expr } none { bcx.tcx().sess.span_bug(local.span, "init_local: Someone forgot to document why it's\ safe to assume local.node.init isn't none!"); } }; let mut {bcx, val, kind} = trans_temp_lval(bcx, initexpr); if kind != temporary { if kind == owned { val = Load(bcx, val); } let rs = take_ty_immediate(bcx, val, ty); bcx = rs.bcx; val = rs.val; add_clean_temp(bcx, val, ty); } bcx.fcx.lllocals.insert(local.node.pat.id, local_imm(val)); ret bcx; } }; let mut bcx = bcx; alt local.node.init { some(init) { if init.op == ast::init_assign || !expr_is_lval(bcx, init.expr) { bcx = trans_expr_save_in(bcx, init.expr, llptr); } else { // This is a move from an lval, must perform an actual move let sub = trans_lval(bcx, init.expr); bcx = move_val(sub.bcx, INIT, llptr, sub, ty); } } _ { bcx = zero_alloca(bcx, llptr, ty); } } // Make a note to drop this slot on the way out. add_clean(bcx, llptr, ty); ret alt::bind_irrefutable_pat(bcx, local.node.pat, llptr, false); } fn zero_alloca(cx: block, llptr: ValueRef, t: ty::t) -> block { let _icx = cx.insn_ctxt("zero_alloca"); let bcx = cx; let ccx = cx.ccx(); let llty = type_of(ccx, t); Store(bcx, C_null(llty), llptr); ret bcx; } fn trans_stmt(cx: block, s: ast::stmt) -> block { let _icx = cx.insn_ctxt("trans_stmt"); #debug["trans_stmt(%s)", stmt_to_str(s)]; if (!cx.sess().opts.no_asm_comments) { add_span_comment(cx, s.span, stmt_to_str(s)); } let mut bcx = cx; debuginfo::update_source_pos(cx, s.span); alt s.node { ast::stmt_expr(e, _) | ast::stmt_semi(e, _) { bcx = trans_expr(cx, e, ignore); } ast::stmt_decl(d, _) { alt d.node { ast::decl_local(locals) { for local in locals { bcx = init_local(bcx, local); if cx.sess().opts.extra_debuginfo { debuginfo::create_local_var(bcx, local); } } } ast::decl_item(i) { trans_item(cx.fcx.ccx, *i); } } } _ { cx.sess().unimpl("stmt variant"); } } ret bcx; } // You probably don't want to use this one. See the // next three functions instead. fn new_block(cx: fn_ctxt, parent: block_parent, kind: block_kind, name: str, block_span: option) -> block { let s = if cx.ccx.sess.opts.save_temps || cx.ccx.sess.opts.debuginfo { cx.ccx.names(name) } else { "" }; let llbb: BasicBlockRef = str::as_c_str(s, {|buf| llvm::LLVMAppendBasicBlock(cx.llfn, buf) }); let bcx = @{llbb: llbb, mutable terminated: false, mutable unreachable: false, parent: parent, kind: kind, mutable block_span: block_span, fcx: cx}; alt parent { parent_some(cx) { if cx.unreachable { Unreachable(bcx); } } _ {} } ret bcx; } fn simple_block_scope() -> block_kind { block_scope({is_loop: none, mutable cleanups: [], mutable cleanup_paths: [], mutable landing_pad: none}) } // Use this when you're at the top block of a function or the like. fn top_scope_block(fcx: fn_ctxt, sp: option) -> block { ret new_block(fcx, parent_none, simple_block_scope(), "function top level", sp); } fn scope_block(bcx: block, n: str) -> block { ret new_block(bcx.fcx, parent_some(bcx), simple_block_scope(), n, none); } fn loop_scope_block(bcx: block, _cont: loop_cont, _break: block, n: str, sp: span) -> block { ret new_block(bcx.fcx, parent_some(bcx), block_scope({ is_loop: some({cnt: _cont, brk: _break}), mutable cleanups: [], mutable cleanup_paths: [], mutable landing_pad: none }), n, some(sp)); } // Use this when you're making a general CFG BB within a scope. fn sub_block(bcx: block, n: str) -> block { ret new_block(bcx.fcx, parent_some(bcx), block_non_scope, n, none); } fn raw_block(fcx: fn_ctxt, llbb: BasicBlockRef) -> block { ret @{llbb: llbb, mutable terminated: false, mutable unreachable: false, parent: parent_none, kind: block_non_scope, mutable block_span: none, fcx: fcx}; } // trans_block_cleanups: Go through all the cleanups attached to this // block and execute them. // // When translating a block that introdces new variables during its scope, we // need to make sure those variables go out of scope when the block ends. We // do that by running a 'cleanup' function for each variable. // trans_block_cleanups runs all the cleanup functions for the block. fn trans_block_cleanups(bcx: block, cleanup_cx: block) -> block { let _icx = bcx.insn_ctxt("trans_block_cleanups"); if bcx.unreachable { ret bcx; } let mut bcx = bcx; alt check cleanup_cx.kind { block_scope({cleanups, _}) { vec::riter(cleanups) {|cu| alt cu { clean(cfn) | clean_temp(_, cfn) { bcx = cfn(bcx); } } } } } ret bcx; } // In the last argument, some(block) mean jump to this block, and none means // this is a landing pad and leaving should be accomplished with a resume // instruction. fn cleanup_and_leave(bcx: block, upto: option, leave: option) { let _icx = bcx.insn_ctxt("cleanup_and_leave"); let mut cur = bcx, bcx = bcx; loop { alt cur.kind { block_scope(info) if info.cleanups.len() > 0u { for exists in info.cleanup_paths { if exists.target == leave { Br(bcx, exists.dest); ret; } } let sub_cx = sub_block(bcx, "cleanup"); Br(bcx, sub_cx.llbb); info.cleanup_paths += [{target: leave, dest: sub_cx.llbb}]; bcx = trans_block_cleanups(sub_cx, cur); } _ {} } alt upto { some(bb) { if cur.llbb == bb { break; } } _ {} } cur = alt cur.parent { parent_some(next) { next } parent_none { assert option::is_none(upto); break; } }; } alt leave { some(target) { Br(bcx, target); } none { Resume(bcx, Load(bcx, option::get(bcx.fcx.personality))); } } } fn cleanup_and_Br(bcx: block, upto: block, target: BasicBlockRef) { let _icx = bcx.insn_ctxt("cleanup_and_Br"); cleanup_and_leave(bcx, some(upto.llbb), some(target)); } fn leave_block(bcx: block, out_of: block) -> block { let _icx = bcx.insn_ctxt("leave_block"); let next_cx = sub_block(block_parent(out_of), "next"); if bcx.unreachable { Unreachable(next_cx); } cleanup_and_Br(bcx, out_of, next_cx.llbb); next_cx } fn with_scope(bcx: block, name: str, f: fn(block) -> block) -> block { let _icx = bcx.insn_ctxt("with_scope"); let scope_cx = scope_block(bcx, name); Br(bcx, scope_cx.llbb); leave_block(f(scope_cx), scope_cx) } fn with_scope_result(bcx: block, name: str, f: fn(block) -> result) -> result { let _icx = bcx.insn_ctxt("with_scope_result"); let scope_cx = scope_block(bcx, name); Br(bcx, scope_cx.llbb); let {bcx, val} = f(scope_cx); {bcx: leave_block(bcx, scope_cx), val: val} } fn with_cond(bcx: block, val: ValueRef, f: fn(block) -> block) -> block { let _icx = bcx.insn_ctxt("with_cond"); let next_cx = sub_block(bcx, "next"), cond_cx = sub_block(bcx, "cond"); CondBr(bcx, val, cond_cx.llbb, next_cx.llbb); let after_cx = f(cond_cx); if !after_cx.terminated { Br(after_cx, next_cx.llbb); } next_cx } fn block_locals(b: ast::blk, it: fn(@ast::local)) { for s: @ast::stmt in b.node.stmts { alt s.node { ast::stmt_decl(d, _) { alt d.node { ast::decl_local(locals) { for local in locals { it(local); } } _ {/* fall through */ } } } _ {/* fall through */ } } } } fn alloc_ty(cx: block, t: ty::t) -> result { let _icx = cx.insn_ctxt("alloc_ty"); let bcx = cx, ccx = cx.ccx(); let llty = type_of(ccx, t); assert !ty::type_has_params(t); let val = alloca(bcx, llty); // NB: since we've pushed all size calculations in this // function up to the alloca block, we actually return the // block passed into us unmodified; it doesn't really // have to be passed-and-returned here, but it fits // past caller conventions and may well make sense again, // so we leave it as-is. ret rslt(cx, val); } fn alloc_local(cx: block, local: @ast::local) -> block { let _icx = cx.insn_ctxt("alloc_local"); let t = node_id_type(cx, local.node.id); let simple_name = alt local.node.pat.node { ast::pat_ident(pth, none) { some(path_to_ident(pth)) } _ { none } }; // Do not allocate space for locals that can be kept immediate. let ccx = cx.ccx(); if option::is_some(simple_name) && !ccx.maps.mutbl_map.contains_key(local.node.pat.id) && !ccx.maps.last_uses.contains_key(local.node.pat.id) && ty::type_is_immediate(t) { alt local.node.init { some({op: ast::init_assign, _}) { ret cx; } _ {} } } let {bcx, val} = alloc_ty(cx, t); if cx.sess().opts.debuginfo { option::may(simple_name) {|name| str::as_c_str(name, {|buf| llvm::LLVMSetValueName(val, buf) }); } } cx.fcx.lllocals.insert(local.node.id, local_mem(val)); ret bcx; } fn trans_block(bcx: block, b: ast::blk, dest: dest) -> block { let _icx = bcx.insn_ctxt("trans_block"); let mut bcx = bcx; block_locals(b) {|local| bcx = alloc_local(bcx, local); }; for s: @ast::stmt in b.node.stmts { debuginfo::update_source_pos(bcx, b.span); bcx = trans_stmt(bcx, *s); } alt b.node.expr { some(e) { let bt = ty::type_is_bot(expr_ty(bcx, e)); debuginfo::update_source_pos(bcx, e.span); bcx = trans_expr(bcx, e, if bt { ignore } else { dest }); } _ { assert dest == ignore || bcx.unreachable; } } ret bcx; } // Creates the standard set of basic blocks for a function fn mk_standard_basic_blocks(llfn: ValueRef) -> {sa: BasicBlockRef, ca: BasicBlockRef, rt: BasicBlockRef} { {sa: str::as_c_str("static_allocas", {|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }), ca: str::as_c_str("load_env", {|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }), rt: str::as_c_str("return", {|buf| llvm::LLVMAppendBasicBlock(llfn, buf) })} } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args fn new_fn_ctxt_w_id(ccx: @crate_ctxt, path: path, llfndecl: ValueRef, id: ast::node_id, maybe_self_id: option<@ast::expr>, param_substs: option, sp: option) -> fn_ctxt { let llbbs = mk_standard_basic_blocks(llfndecl); ret @{llfn: llfndecl, llenv: llvm::LLVMGetParam(llfndecl, 1u as c_uint), llretptr: llvm::LLVMGetParam(llfndecl, 0u as c_uint), mutable llstaticallocas: llbbs.sa, mutable llloadenv: llbbs.ca, mutable llreturn: llbbs.rt, mutable llself: none, mutable personality: none, llargs: int_hash::(), lllocals: int_hash::(), llupvars: int_hash::(), id: id, self_id: maybe_self_id, param_substs: param_substs, span: sp, path: path, ccx: ccx}; } fn new_fn_ctxt(ccx: @crate_ctxt, path: path, llfndecl: ValueRef, sp: option) -> fn_ctxt { ret new_fn_ctxt_w_id(ccx, path, llfndecl, -1, none, none, sp); } // NB: must keep 4 fns in sync: // // - type_of_fn // - create_llargs_for_fn_args. // - new_fn_ctxt // - trans_args // create_llargs_for_fn_args: Creates a mapping from incoming arguments to // allocas created for them. // // When we translate a function, we need to map its incoming arguments to the // spaces that have been created for them (by code in the llallocas field of // the function's fn_ctxt). create_llargs_for_fn_args populates the llargs // field of the fn_ctxt with fn create_llargs_for_fn_args(cx: fn_ctxt, ty_self: self_arg, args: [ast::arg]) { let _icx = cx.insn_ctxt("create_llargs_for_fn_args"); // Skip the implicit arguments 0, and 1. let mut arg_n = first_real_arg; alt ty_self { impl_self(tt) { cx.llself = some({v: cx.llenv, t: tt}); } no_self {} } // Populate the llargs field of the function context with the ValueRefs // that we get from llvm::LLVMGetParam for each argument. for arg: ast::arg in args { let llarg = llvm::LLVMGetParam(cx.llfn, arg_n as c_uint); assert (llarg as int != 0); // Note that this uses local_mem even for things passed by value. // copy_args_to_allocas will overwrite the table entry with local_imm // before it's actually used. cx.llargs.insert(arg.id, local_mem(llarg)); arg_n += 1u; } } fn copy_args_to_allocas(fcx: fn_ctxt, bcx: block, args: [ast::arg], arg_tys: [ty::arg]) -> block { let _icx = fcx.insn_ctxt("copy_args_to_allocas"); let tcx = bcx.tcx(); let mut arg_n: uint = 0u, bcx = bcx; let epic_fail = fn@() -> ! { tcx.sess.bug("someone forgot\ to document an invariant in copy_args_to_allocas!"); }; for arg in arg_tys { let id = args[arg_n].id; let argval = alt fcx.llargs.get(id) { local_mem(v) { v } _ { epic_fail() } }; alt ty::resolved_mode(tcx, arg.mode) { ast::by_mutbl_ref { } ast::by_move | ast::by_copy { add_clean(bcx, argval, arg.ty); } ast::by_val { if !ty::type_is_immediate(arg.ty) { let {bcx: cx, val: alloc} = alloc_ty(bcx, arg.ty); bcx = cx; Store(bcx, argval, alloc); fcx.llargs.insert(id, local_mem(alloc)); } else { fcx.llargs.insert(id, local_imm(argval)); } } ast::by_ref {} } if fcx.ccx.sess.opts.extra_debuginfo { debuginfo::create_arg(bcx, args[arg_n], args[arg_n].ty.span); } arg_n += 1u; } ret bcx; } // Ties up the llstaticallocas -> llloadenv -> lltop edges, // and builds the return block. fn finish_fn(fcx: fn_ctxt, lltop: BasicBlockRef) { let _icx = fcx.insn_ctxt("finish_fn"); tie_up_header_blocks(fcx, lltop); let ret_cx = raw_block(fcx, fcx.llreturn); RetVoid(ret_cx); } fn tie_up_header_blocks(fcx: fn_ctxt, lltop: BasicBlockRef) { let _icx = fcx.insn_ctxt("tie_up_header_blocks"); Br(raw_block(fcx, fcx.llstaticallocas), fcx.llloadenv); Br(raw_block(fcx, fcx.llloadenv), lltop); } enum self_arg { impl_self(ty::t), no_self, } // trans_closure: Builds an LLVM function out of a source function. // If the function closes over its environment a closure will be // returned. fn trans_closure(ccx: @crate_ctxt, path: path, decl: ast::fn_decl, body: ast::blk, llfndecl: ValueRef, ty_self: self_arg, param_substs: option, id: ast::node_id, maybe_self_id: option<@ast::expr>, maybe_load_env: fn(fn_ctxt)) { let _icx = ccx.insn_ctxt("trans_closure"); set_uwtable(llfndecl); // Set up arguments to the function. let fcx = new_fn_ctxt_w_id(ccx, path, llfndecl, id, maybe_self_id, param_substs, some(body.span)); create_llargs_for_fn_args(fcx, ty_self, decl.inputs); // Create the first basic block in the function and keep a handle on it to // pass to finish_fn later. let bcx_top = top_scope_block(fcx, some(body.span)); let mut bcx = bcx_top; let lltop = bcx.llbb; let block_ty = node_id_type(bcx, body.node.id); let arg_tys = ty::ty_fn_args(node_id_type(bcx, id)); bcx = copy_args_to_allocas(fcx, bcx, decl.inputs, arg_tys); maybe_load_env(fcx); // This call to trans_block is the place where we bridge between // translation calls that don't have a return value (trans_crate, // trans_mod, trans_item, et cetera) and those that do // (trans_block, trans_expr, et cetera). if option::is_none(maybe_self_id) // hack -- /* avoids the need for special cases to assign a type to the constructor body (since it has no explicit return) */ && (option::is_none(body.node.expr) || ty::type_is_bot(block_ty) || ty::type_is_nil(block_ty)) { bcx = trans_block(bcx, body, ignore); } else { bcx = trans_block(bcx, body, save_in(fcx.llretptr)); } cleanup_and_Br(bcx, bcx_top, fcx.llreturn); // Insert the mandatory first few basic blocks before lltop. finish_fn(fcx, lltop); } // trans_fn: creates an LLVM function corresponding to a source language // function. fn trans_fn(ccx: @crate_ctxt, path: path, decl: ast::fn_decl, body: ast::blk, llfndecl: ValueRef, ty_self: self_arg, param_substs: option, id: ast::node_id, maybe_self_id: option<@ast::expr>) { let do_time = ccx.sess.opts.stats; let start = if do_time { time::get_time() } else { {sec: 0u32, usec: 0u32} }; let _icx = ccx.insn_ctxt("trans_fn"); trans_closure(ccx, path, decl, body, llfndecl, ty_self, param_substs, id, maybe_self_id, {|fcx| if ccx.sess.opts.extra_debuginfo { debuginfo::create_function(fcx); } }); if do_time { let end = time::get_time(); log_fn_time(ccx, path_str(path), start, end); } } fn trans_res_ctor(ccx: @crate_ctxt, path: path, dtor: ast::fn_decl, ctor_id: ast::node_id, param_substs: option, llfndecl: ValueRef) { let _icx = ccx.insn_ctxt("trans_res_ctor"); // Create a function for the constructor let fcx = new_fn_ctxt_w_id(ccx, path, llfndecl, ctor_id, none, param_substs, none); create_llargs_for_fn_args(fcx, no_self, dtor.inputs); let mut bcx = top_scope_block(fcx, none), lltop = bcx.llbb; let fty = node_id_type(bcx, ctor_id); let arg_t = ty::ty_fn_args(fty)[0].ty; let arg = alt fcx.llargs.find(dtor.inputs[0].id) { some(local_mem(x)) { x } _ { ccx.sess.bug("Someone forgot to document an invariant \ in trans_res_ctor"); } }; let llretptr = fcx.llretptr; let dst = GEPi(bcx, llretptr, [0, 1]); bcx = memmove_ty(bcx, dst, arg, arg_t); let flag = GEPi(bcx, llretptr, [0, 0]); let one = C_u8(1u); Store(bcx, one, flag); build_return(bcx); finish_fn(fcx, lltop); } fn trans_enum_variant(ccx: @crate_ctxt, enum_id: ast::node_id, variant: ast::variant, disr: int, is_degen: bool, param_substs: option, llfndecl: ValueRef) { let _icx = ccx.insn_ctxt("trans_enum_variant"); // Translate variant arguments to function arguments. let mut fn_args = [], i = 0u; for varg in variant.node.args { fn_args += [{mode: ast::expl(ast::by_copy), ty: varg.ty, ident: "arg" + uint::to_str(i, 10u), id: varg.id}]; } let fcx = new_fn_ctxt_w_id(ccx, [], llfndecl, variant.node.id, none, param_substs, none); create_llargs_for_fn_args(fcx, no_self, fn_args); let ty_param_substs = alt param_substs { some(substs) { substs.tys } none { [] } }; let mut bcx = top_scope_block(fcx, none), lltop = bcx.llbb; let arg_tys = ty::ty_fn_args(node_id_type(bcx, variant.node.id)); bcx = copy_args_to_allocas(fcx, bcx, fn_args, arg_tys); // Cast the enum to a type we can GEP into. let llblobptr = if is_degen { fcx.llretptr } else { let llenumptr = PointerCast(bcx, fcx.llretptr, T_opaque_enum_ptr(ccx)); let lldiscrimptr = GEPi(bcx, llenumptr, [0, 0]); Store(bcx, C_int(ccx, disr), lldiscrimptr); GEPi(bcx, llenumptr, [0, 1]) }; let mut i = 0u; let t_id = local_def(enum_id); let v_id = local_def(variant.node.id); for va: ast::variant_arg in variant.node.args { let rslt = GEP_enum(bcx, llblobptr, t_id, v_id, ty_param_substs, i); bcx = rslt.bcx; let lldestptr = rslt.val; // If this argument to this function is a enum, it'll have come in to // this function as an opaque blob due to the way that type_of() // works. So we have to cast to the destination's view of the type. let llarg = alt check fcx.llargs.find(va.id) { some(local_mem(x)) { x } }; let arg_ty = arg_tys[i].ty; bcx = memmove_ty(bcx, lldestptr, llarg, arg_ty); i += 1u; } build_return(bcx); finish_fn(fcx, lltop); } // FIXME: this should do some structural hash-consing to avoid // duplicate constants. I think. Maybe LLVM has a magical mode // that does so later on? fn trans_const_expr(cx: @crate_ctxt, e: @ast::expr) -> ValueRef { let _icx = cx.insn_ctxt("trans_const_expr"); alt e.node { ast::expr_lit(lit) { ret trans_crate_lit(cx, *lit); } ast::expr_binary(b, e1, e2) { let te1 = trans_const_expr(cx, e1); let te2 = trans_const_expr(cx, e2); let te2 = cast_shift_const_rhs(b, te1, te2); /* Neither type is bottom, and we expect them to be unified already, * so the following is safe. */ let ty = ty::expr_ty(cx.tcx, e1); let is_float = ty::type_is_fp(ty); let signed = ty::type_is_signed(ty); ret alt b { ast::add { if is_float { llvm::LLVMConstFAdd(te1, te2) } else { llvm::LLVMConstAdd(te1, te2) } } ast::subtract { if is_float { llvm::LLVMConstFSub(te1, te2) } else { llvm::LLVMConstSub(te1, te2) } } ast::mul { if is_float { llvm::LLVMConstFMul(te1, te2) } else { llvm::LLVMConstMul(te1, te2) } } ast::div { if is_float { llvm::LLVMConstFDiv(te1, te2) } else if signed { llvm::LLVMConstSDiv(te1, te2) } else { llvm::LLVMConstUDiv(te1, te2) } } ast::rem { if is_float { llvm::LLVMConstFRem(te1, te2) } else if signed { llvm::LLVMConstSRem(te1, te2) } else { llvm::LLVMConstURem(te1, te2) } } ast::and | ast::or { cx.sess.span_unimpl(e.span, "binop logic"); } ast::bitxor { llvm::LLVMConstXor(te1, te2) } ast::bitand { llvm::LLVMConstAnd(te1, te2) } ast::bitor { llvm::LLVMConstOr(te1, te2) } ast::lsl { llvm::LLVMConstShl(te1, te2) } ast::lsr { llvm::LLVMConstLShr(te1, te2) } ast::asr { llvm::LLVMConstAShr(te1, te2) } ast::eq | ast::lt | ast::le | ast::ne | ast::ge | ast::gt { cx.sess.span_unimpl(e.span, "binop comparator"); } } } ast::expr_unary(u, e) { let te = trans_const_expr(cx, e); let ty = ty::expr_ty(cx.tcx, e); let is_float = ty::type_is_fp(ty); ret alt u { ast::box(_) | ast::uniq(_) | ast::deref { cx.sess.span_bug(e.span, "bad unop type in trans_const_expr"); } ast::not { llvm::LLVMConstNot(te) } ast::neg { if is_float { llvm::LLVMConstFNeg(te) } else { llvm::LLVMConstNeg(te) } } } } ast::expr_cast(base, tp) { let ety = ty::expr_ty(cx.tcx, e), llty = type_of(cx, ety); let basety = ty::expr_ty(cx.tcx, base); let v = trans_const_expr(cx, base); alt check (cast_type_kind(basety), cast_type_kind(ety)) { (cast_integral, cast_integral) { let s = if ty::type_is_signed(basety) { True } else { False }; llvm::LLVMConstIntCast(v, llty, s) } (cast_integral, cast_float) { if ty::type_is_signed(basety) { llvm::LLVMConstSIToFP(v, llty) } else { llvm::LLVMConstUIToFP(v, llty) } } (cast_float, cast_float) { llvm::LLVMConstFPCast(v, llty) } (cast_float, cast_integral) { if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty) } else { llvm::LLVMConstFPToUI(v, llty) } } } } _ { cx.sess.span_bug(e.span, "bad constant expression type in trans_const_expr"); } } } fn trans_const(ccx: @crate_ctxt, e: @ast::expr, id: ast::node_id) { let _icx = ccx.insn_ctxt("trans_const"); let v = trans_const_expr(ccx, e); // The scalars come back as 1st class LLVM vals // which we have to stick into global constants. let g = get_item_val(ccx, id); llvm::LLVMSetInitializer(g, v); llvm::LLVMSetGlobalConstant(g, True); } fn trans_item(ccx: @crate_ctxt, item: ast::item) { let _icx = ccx.insn_ctxt("trans_item"); let path = alt check ccx.tcx.items.get(item.id) { ast_map::node_item(_, p) { p } }; alt item.node { ast::item_fn(decl, tps, body) { if decl.purity == ast::crust_fn { let llfndecl = get_item_val(ccx, item.id); native::trans_crust_fn(ccx, *path + [path_name(item.ident)], decl, body, llfndecl, item.id); } else if tps.len() == 0u { let llfndecl = get_item_val(ccx, item.id); trans_fn(ccx, *path + [path_name(item.ident)], decl, body, llfndecl, no_self, none, item.id, none); } else { for stmt in body.node.stmts { alt stmt.node { ast::stmt_decl(@{node: ast::decl_item(i), _}, _) { trans_item(ccx, *i); } _ {} } } } } ast::item_impl(tps, _, _, ms) { impl::trans_impl(ccx, *path, item.ident, ms, tps); } ast::item_res(decl, tps, body, dtor_id, ctor_id) { if tps.len() == 0u { let llctor_decl = get_item_val(ccx, ctor_id); trans_res_ctor(ccx, *path, decl, ctor_id, none, llctor_decl); let lldtor_decl = get_item_val(ccx, item.id); trans_fn(ccx, *path + [path_name(item.ident)], decl, body, lldtor_decl, no_self, none, dtor_id, none); } } ast::item_mod(m) { trans_mod(ccx, m); } ast::item_enum(variants, tps) { if tps.len() == 0u { let degen = variants.len() == 1u; let vi = ty::enum_variants(ccx.tcx, local_def(item.id)); let mut i = 0; for variant: ast::variant in variants { if variant.node.args.len() > 0u { let llfn = get_item_val(ccx, variant.node.id); trans_enum_variant(ccx, item.id, variant, vi[i].disr_val, degen, none, llfn); } i += 1; } } } ast::item_const(_, expr) { trans_const(ccx, expr, item.id); } ast::item_native_mod(native_mod) { let abi = alt attr::native_abi(item.attrs) { either::right(abi_) { abi_ } either::left(msg) { ccx.sess.span_fatal(item.span, msg) } }; native::trans_native_mod(ccx, native_mod, abi); } ast::item_class(tps, items, ctor) { // FIXME factor our ctor translation, call from monomorphic_fn let llctor_decl = get_item_val(ccx, ctor.node.id); // Translate the ctor // First, add a preamble that // generates a new name, obj: // let obj = { ... } (uninit record fields) let rslt_path_ = {global: false, idents: ["obj"], types: []}; // ?? let rslt_path = @{node: rslt_path_, span: ctor.node.body.span}; let rslt_id : ast::node_id = ccx.sess.next_node_id(); let rslt_pat : @ast::pat = @{id: ccx.sess.next_node_id(), node: ast::pat_ident(rslt_path, none), span: ctor.node.body.span}; // Set up obj's type let rslt_ast_ty : @ast::ty = @{id: ccx.sess.next_node_id(), node: ast::ty_infer, span: ctor.node.body.span}; // kludgy let mut ty_args = [], i = 0u; for tp in tps { ty_args += [ty::mk_param(ccx.tcx, i, local_def(tps[i].id))]; i += 1u; } let rslt_ty = ty::mk_class(ccx.tcx, local_def(item.id), ty_args); // Set up a local for obj let rslt_loc_ : ast::local_ = {is_mutbl: true, ty: rslt_ast_ty, // ??? pat: rslt_pat, init: none::, id: rslt_id}; // Register a type for obj smallintmap::insert(*ccx.tcx.node_types, rslt_loc_.id as uint, rslt_ty); // Create the decl statement that initializes obj let rslt_loc : @ast::local = @{node: rslt_loc_, span: ctor.node.body.span}; let rslt_decl_ : ast::decl_ = ast::decl_local([rslt_loc]); let rslt_decl : @ast::decl = @{node: rslt_decl_, span: ctor.node.body.span}; let prologue = @{node: ast::stmt_decl(rslt_decl, ccx.sess.next_node_id()), span: ctor.node.body.span}; let rslt_node_id = ccx.sess.next_node_id(); ccx.tcx.def_map.insert(rslt_node_id, ast::def_local(rslt_loc_.id, true)); // And give the statement a type smallintmap::insert(*ccx.tcx.node_types, rslt_node_id as uint, rslt_ty); // The result expression of the constructor is now a // reference to obj let rslt_expr : @ast::expr = @{id: rslt_node_id, node: ast::expr_path(rslt_path), span: ctor.node.body.span}; let ctor_body_new : ast::blk_ = {stmts: [prologue] + ctor.node.body.node.stmts, expr: some(rslt_expr) with ctor.node.body.node}; let ctor_body__ : ast::blk = {node: ctor_body_new with ctor.node.body}; trans_fn(ccx, *path + [path_name(item.ident)], ctor.node.dec, ctor_body__, llctor_decl, no_self, none, ctor.node.id, some(rslt_expr)); // Translate methods let (_, ms) = ast_util::split_class_items(items); // not sure how this is going to work what with "self" and fields impl::trans_impl(ccx, *path, item.ident, ms, tps); } _ {/* fall through */ } } } // Translate a module. Doing this amounts to translating the items in the // module; there ends up being no artifact (aside from linkage names) of // separate modules in the compiled program. That's because modules exist // only as a convenience for humans working with the code, to organize names // and control visibility. fn trans_mod(ccx: @crate_ctxt, m: ast::_mod) { let _icx = ccx.insn_ctxt("trans_mod"); for item in m.items { trans_item(ccx, *item); } } fn get_pair_fn_ty(llpairty: TypeRef) -> TypeRef { // Bit of a kludge: pick the fn typeref out of the pair. ret struct_elt(llpairty, 0u); } fn register_fn(ccx: @crate_ctxt, sp: span, path: path, node_id: ast::node_id) -> ValueRef { let t = ty::node_id_to_type(ccx.tcx, node_id); register_fn_full(ccx, sp, path, node_id, t) } fn register_fn_full(ccx: @crate_ctxt, sp: span, path: path, node_id: ast::node_id, node_type: ty::t) -> ValueRef { let llfty = type_of_fn_from_ty(ccx, node_type); register_fn_fuller(ccx, sp, path, node_id, node_type, lib::llvm::CCallConv, llfty) } fn register_fn_fuller(ccx: @crate_ctxt, sp: span, path: path, node_id: ast::node_id, node_type: ty::t, cc: lib::llvm::CallConv, llfty: TypeRef) -> ValueRef { let ps: str = mangle_exported_name(ccx, path, node_type); let llfn: ValueRef = decl_fn(ccx.llmod, ps, cc, llfty); ccx.item_symbols.insert(node_id, ps); #debug["register_fn_fuller created fn %s for item %d with path %s", val_str(ccx.tn, llfn), node_id, ast_map::path_to_str(path)]; let is_main = is_main_name(path) && !ccx.sess.building_library; if is_main { create_main_wrapper(ccx, sp, llfn, node_type); } llfn } // Create a _rust_main(args: [str]) function which will be called from the // runtime rust_start function fn create_main_wrapper(ccx: @crate_ctxt, sp: span, main_llfn: ValueRef, main_node_type: ty::t) { if ccx.main_fn != none:: { ccx.sess.span_fatal(sp, "multiple 'main' functions"); } let main_takes_argv = // invariant! alt ty::get(main_node_type).struct { ty::ty_fn({inputs, _}) { inputs.len() != 0u } _ { ccx.sess.span_fatal(sp, "main has a non-function type"); } }; let llfn = create_main(ccx, main_llfn, main_takes_argv); ccx.main_fn = some(llfn); create_entry_fn(ccx, llfn); fn create_main(ccx: @crate_ctxt, main_llfn: ValueRef, takes_argv: bool) -> ValueRef { let unit_ty = ty::mk_str(ccx.tcx); let vecarg_ty: ty::arg = {mode: ast::expl(ast::by_val), ty: ty::mk_vec(ccx.tcx, {ty: unit_ty, mutbl: ast::m_imm})}; let nt = ty::mk_nil(ccx.tcx); let llfty = type_of_fn(ccx, [vecarg_ty], nt); let llfdecl = decl_fn(ccx.llmod, "_rust_main", lib::llvm::CCallConv, llfty); let fcx = new_fn_ctxt(ccx, [], llfdecl, none); let bcx = top_scope_block(fcx, none); let lltop = bcx.llbb; let lloutputarg = llvm::LLVMGetParam(llfdecl, 0 as c_uint); let llenvarg = llvm::LLVMGetParam(llfdecl, 1 as c_uint); let mut args = [lloutputarg, llenvarg]; if takes_argv { args += [llvm::LLVMGetParam(llfdecl, 2 as c_uint)]; } Call(bcx, main_llfn, args); build_return(bcx); finish_fn(fcx, lltop); ret llfdecl; } fn create_entry_fn(ccx: @crate_ctxt, rust_main: ValueRef) { #[cfg(target_os = "win32")] fn main_name() -> str { ret "WinMain@16"; } #[cfg(target_os = "macos")] fn main_name() -> str { ret "main"; } #[cfg(target_os = "linux")] fn main_name() -> str { ret "main"; } #[cfg(target_os = "freebsd")] fn main_name() -> str { ret "main"; } let llfty = T_fn([ccx.int_type, ccx.int_type], ccx.int_type); let llfn = decl_cdecl_fn(ccx.llmod, main_name(), llfty); let llbb = str::as_c_str("top", {|buf| llvm::LLVMAppendBasicBlock(llfn, buf) }); let bld = *ccx.builder; llvm::LLVMPositionBuilderAtEnd(bld, llbb); let crate_map = ccx.crate_map; let start_ty = T_fn([val_ty(rust_main), ccx.int_type, ccx.int_type, val_ty(crate_map)], ccx.int_type); let start = str::as_c_str("rust_start", {|buf| llvm::LLVMAddGlobal(ccx.llmod, start_ty, buf) }); let args = [rust_main, llvm::LLVMGetParam(llfn, 0 as c_uint), llvm::LLVMGetParam(llfn, 1 as c_uint), crate_map]; let result = unsafe { llvm::LLVMBuildCall(bld, start, vec::unsafe::to_ptr(args), args.len() as c_uint, noname()) }; llvm::LLVMBuildRet(bld, result); } } // Create a /real/ closure: this is like create_fn_pair, but creates a // a fn value on the stack with a specified environment (which need not be // on the stack). fn create_real_fn_pair(cx: block, llfnty: TypeRef, llfn: ValueRef, llenvptr: ValueRef) -> ValueRef { let pair = alloca(cx, T_fn_pair(cx.ccx(), llfnty)); fill_fn_pair(cx, pair, llfn, llenvptr); ret pair; } fn fill_fn_pair(bcx: block, pair: ValueRef, llfn: ValueRef, llenvptr: ValueRef) { let ccx = bcx.ccx(); let code_cell = GEPi(bcx, pair, [0, abi::fn_field_code]); Store(bcx, llfn, code_cell); let env_cell = GEPi(bcx, pair, [0, abi::fn_field_box]); let llenvblobptr = PointerCast(bcx, llenvptr, T_opaque_box_ptr(ccx)); Store(bcx, llenvblobptr, env_cell); } fn item_path(ccx: @crate_ctxt, i: @ast::item) -> path { *alt check ccx.tcx.items.get(i.id) { ast_map::node_item(_, p) { p } } + [path_name(i.ident)] } fn get_item_val(ccx: @crate_ctxt, id: ast::node_id) -> ValueRef { alt ccx.item_vals.find(id) { some(v) { v } none { let mut exprt = false; let val = alt check ccx.tcx.items.get(id) { ast_map::node_item(i, pth) { let my_path = *pth + [path_name(i.ident)]; alt check i.node { ast::item_const(_, _) { let typ = ty::node_id_to_type(ccx.tcx, i.id); let s = mangle_exported_name(ccx, my_path, typ); let g = str::as_c_str(s, {|buf| llvm::LLVMAddGlobal(ccx.llmod, type_of(ccx, typ), buf) }); ccx.item_symbols.insert(i.id, s); g } ast::item_fn(decl, _, _) { let llfn = if decl.purity != ast::crust_fn { register_fn(ccx, i.span, my_path, i.id) } else { native::register_crust_fn(ccx, i.span, my_path, i.id) }; set_inline_hint_if_appr(i.attrs, llfn); llfn } ast::item_res(_, _, _, dtor_id, _) { // Note that the destructor is associated with the item's id, // not the dtor_id. This is a bit counter-intuitive, but // simplifies ty_res, which would have to carry around two // def_ids otherwise -- one to identify the type, and one to // find the dtor symbol. let t = ty::node_id_to_type(ccx.tcx, dtor_id); register_fn_full(ccx, i.span, my_path + [path_name("dtor")], i.id, t) } } } ast_map::node_method(m, impl_id, pth) { exprt = true; let mty = ty::node_id_to_type(ccx.tcx, id); let pth = *pth + [path_name(ccx.names("meth")), path_name(m.ident)]; let llfn = register_fn_full(ccx, m.span, pth, id, mty); set_inline_hint_if_appr(m.attrs, llfn); llfn } ast_map::node_native_item(ni, _, pth) { exprt = true; native::decl_native_fn(ccx, ni, *pth + [path_name(ni.ident)]) } ast_map::node_ctor(i, _) { alt check i.node { ast::item_res(_, _, _, _, _) { let my_path = item_path(ccx, i); let llctor = register_fn(ccx, i.span, my_path, id); set_inline_hint(llctor); llctor } ast::item_class(_, _, ctor) { register_fn(ccx, i.span, item_path(ccx, i), id) } } } ast_map::node_variant(v, enm, pth) { assert v.node.args.len() != 0u; let pth = *pth + [path_name(enm.ident), path_name(v.node.name)]; let llfn = alt check enm.node { ast::item_enum(_, _) { register_fn(ccx, v.span, pth, id) } }; set_inline_hint(llfn); llfn } }; if !(exprt || ccx.reachable.contains_key(id)) { lib::llvm::SetLinkage(val, lib::llvm::InternalLinkage); } ccx.item_vals.insert(id, val); val } } } // The constant translation pass. fn trans_constant(ccx: @crate_ctxt, it: @ast::item) { let _icx = ccx.insn_ctxt("trans_constant"); alt it.node { ast::item_enum(variants, _) { let vi = ty::enum_variants(ccx.tcx, {crate: ast::local_crate, node: it.id}); let mut i = 0; let path = item_path(ccx, it); for variant in variants { let p = path + [path_name(variant.node.name), path_name("discrim")]; let s = mangle_exported_name(ccx, p, ty::mk_int(ccx.tcx)); let disr_val = vi[i].disr_val; note_unique_llvm_symbol(ccx, s); let discrim_gvar = str::as_c_str(s, {|buf| llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf) }); llvm::LLVMSetInitializer(discrim_gvar, C_int(ccx, disr_val)); llvm::LLVMSetGlobalConstant(discrim_gvar, True); ccx.discrims.insert( local_def(variant.node.id), discrim_gvar); ccx.discrim_symbols.insert(variant.node.id, s); i += 1; } } _ { } } } fn trans_constants(ccx: @crate_ctxt, crate: @ast::crate) { visit::visit_crate(*crate, (), visit::mk_simple_visitor(@{ visit_item: bind trans_constant(ccx, _) with *visit::default_simple_visitor() })); } fn vp2i(cx: block, v: ValueRef) -> ValueRef { let ccx = cx.ccx(); ret PtrToInt(cx, v, ccx.int_type); } fn p2i(ccx: @crate_ctxt, v: ValueRef) -> ValueRef { ret llvm::LLVMConstPtrToInt(v, ccx.int_type); } fn declare_intrinsics(llmod: ModuleRef) -> hashmap { let T_memmove32_args: [TypeRef] = [T_ptr(T_i8()), T_ptr(T_i8()), T_i32(), T_i32(), T_i1()]; let T_memmove64_args: [TypeRef] = [T_ptr(T_i8()), T_ptr(T_i8()), T_i64(), T_i32(), T_i1()]; let T_memset32_args: [TypeRef] = [T_ptr(T_i8()), T_i8(), T_i32(), T_i32(), T_i1()]; let T_memset64_args: [TypeRef] = [T_ptr(T_i8()), T_i8(), T_i64(), T_i32(), T_i1()]; let T_trap_args: [TypeRef] = []; let gcroot = decl_cdecl_fn(llmod, "llvm.gcroot", T_fn([T_ptr(T_ptr(T_i8())), T_ptr(T_i8())], T_void())); let gcread = decl_cdecl_fn(llmod, "llvm.gcread", T_fn([T_ptr(T_i8()), T_ptr(T_ptr(T_i8()))], T_void())); let memmove32 = decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i32", T_fn(T_memmove32_args, T_void())); let memmove64 = decl_cdecl_fn(llmod, "llvm.memmove.p0i8.p0i8.i64", T_fn(T_memmove64_args, T_void())); let memset32 = decl_cdecl_fn(llmod, "llvm.memset.p0i8.i32", T_fn(T_memset32_args, T_void())); let memset64 = decl_cdecl_fn(llmod, "llvm.memset.p0i8.i64", T_fn(T_memset64_args, T_void())); let trap = decl_cdecl_fn(llmod, "llvm.trap", T_fn(T_trap_args, T_void())); let intrinsics = str_hash::(); intrinsics.insert("llvm.gcroot", gcroot); intrinsics.insert("llvm.gcread", gcread); intrinsics.insert("llvm.memmove.p0i8.p0i8.i32", memmove32); intrinsics.insert("llvm.memmove.p0i8.p0i8.i64", memmove64); intrinsics.insert("llvm.memset.p0i8.i32", memset32); intrinsics.insert("llvm.memset.p0i8.i64", memset64); intrinsics.insert("llvm.trap", trap); ret intrinsics; } fn declare_dbg_intrinsics(llmod: ModuleRef, intrinsics: hashmap) { let declare = decl_cdecl_fn(llmod, "llvm.dbg.declare", T_fn([T_metadata(), T_metadata()], T_void())); let value = decl_cdecl_fn(llmod, "llvm.dbg.value", T_fn([T_metadata(), T_i64(), T_metadata()], T_void())); intrinsics.insert("llvm.dbg.declare", declare); intrinsics.insert("llvm.dbg.value", value); } fn trap(bcx: block) { let v: [ValueRef] = []; alt bcx.ccx().intrinsics.find("llvm.trap") { some(x) { Call(bcx, x, v); } _ { bcx.sess().bug("unbound llvm.trap in trap"); } } } fn create_module_map(ccx: @crate_ctxt) -> ValueRef { let elttype = T_struct([ccx.int_type, ccx.int_type]); let maptype = T_array(elttype, ccx.module_data.size() + 1u); let map = str::as_c_str("_rust_mod_map", {|buf| llvm::LLVMAddGlobal(ccx.llmod, maptype, buf) }); lib::llvm::SetLinkage(map, lib::llvm::InternalLinkage); let mut elts: [ValueRef] = []; ccx.module_data.items {|key, val| let elt = C_struct([p2i(ccx, C_cstr(ccx, key)), p2i(ccx, val)]); elts += [elt]; }; let term = C_struct([C_int(ccx, 0), C_int(ccx, 0)]); elts += [term]; llvm::LLVMSetInitializer(map, C_array(elttype, elts)); ret map; } fn decl_crate_map(sess: session::session, mapname: str, llmod: ModuleRef) -> ValueRef { let targ_cfg = sess.targ_cfg; let int_type = T_int(targ_cfg); let mut n_subcrates = 1; let cstore = sess.cstore; while cstore::have_crate_data(cstore, n_subcrates) { n_subcrates += 1; } let mapname = if sess.building_library { mapname } else { "toplevel" }; let sym_name = "_rust_crate_map_" + mapname; let arrtype = T_array(int_type, n_subcrates as uint); let maptype = T_struct([int_type, arrtype]); let map = str::as_c_str(sym_name, {|buf| llvm::LLVMAddGlobal(llmod, maptype, buf) }); lib::llvm::SetLinkage(map, lib::llvm::ExternalLinkage); ret map; } // FIXME use hashed metadata instead of crate names once we have that fn fill_crate_map(ccx: @crate_ctxt, map: ValueRef) { let mut subcrates: [ValueRef] = []; let mut i = 1; let cstore = ccx.sess.cstore; while cstore::have_crate_data(cstore, i) { let nm = "_rust_crate_map_" + cstore::get_crate_data(cstore, i).name; let cr = str::as_c_str(nm, {|buf| llvm::LLVMAddGlobal(ccx.llmod, ccx.int_type, buf) }); subcrates += [p2i(ccx, cr)]; i += 1; } subcrates += [C_int(ccx, 0)]; llvm::LLVMSetInitializer(map, C_struct( [p2i(ccx, create_module_map(ccx)), C_array(ccx.int_type, subcrates)])); } fn write_metadata(cx: @crate_ctxt, crate: @ast::crate) { if !cx.sess.building_library { ret; } let llmeta = C_bytes(metadata::encoder::encode_metadata(cx, crate)); let llconst = C_struct([llmeta]); let mut llglobal = str::as_c_str("rust_metadata", {|buf| llvm::LLVMAddGlobal(cx.llmod, val_ty(llconst), buf) }); llvm::LLVMSetInitializer(llglobal, llconst); str::as_c_str(cx.sess.targ_cfg.target_strs.meta_sect_name, {|buf| llvm::LLVMSetSection(llglobal, buf) }); lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage); let t_ptr_i8 = T_ptr(T_i8()); llglobal = llvm::LLVMConstBitCast(llglobal, t_ptr_i8); let llvm_used = str::as_c_str("llvm.used", {|buf| llvm::LLVMAddGlobal(cx.llmod, T_array(t_ptr_i8, 1u), buf) }); lib::llvm::SetLinkage(llvm_used, lib::llvm::AppendingLinkage); llvm::LLVMSetInitializer(llvm_used, C_array(t_ptr_i8, [llglobal])); } // Writes the current ABI version into the crate. fn write_abi_version(ccx: @crate_ctxt) { mk_global(ccx, "rust_abi_version", C_uint(ccx, abi::abi_version), false); } fn trans_crate(sess: session::session, crate: @ast::crate, tcx: ty::ctxt, output: str, emap: resolve::exp_map, maps: maps) -> (ModuleRef, link::link_meta) { let sha = std::sha1::sha1(); let link_meta = link::build_link_meta(sess, *crate, output, sha); let reachable = reachable::find_reachable(crate.node.module, emap, tcx, maps.method_map); // Append ".rc" to crate name as LLVM module identifier. // // LLVM code generator emits a ".file filename" directive // for ELF backends. Value of the "filename" is set as the // LLVM module identifier. Due to a LLVM MC bug[1], LLVM // crashes if the module identifer is same as other symbols // such as a function name in the module. // 1. http://llvm.org/bugs/show_bug.cgi?id=11479 let llmod_id = link_meta.name + ".rc"; let llmod = str::as_c_str(llmod_id, {|buf| llvm::LLVMModuleCreateWithNameInContext (buf, llvm::LLVMGetGlobalContext()) }); let data_layout = sess.targ_cfg.target_strs.data_layout; let targ_triple = sess.targ_cfg.target_strs.target_triple; let _: () = str::as_c_str(data_layout, {|buf| llvm::LLVMSetDataLayout(llmod, buf) }); let _: () = str::as_c_str(targ_triple, {|buf| llvm::LLVMSetTarget(llmod, buf) }); let targ_cfg = sess.targ_cfg; let td = mk_target_data(sess.targ_cfg.target_strs.data_layout); let tn = mk_type_names(); let intrinsics = declare_intrinsics(llmod); if sess.opts.extra_debuginfo { declare_dbg_intrinsics(llmod, intrinsics); } let int_type = T_int(targ_cfg); let float_type = T_float(targ_cfg); let task_type = T_task(targ_cfg); let taskptr_type = T_ptr(task_type); lib::llvm::associate_type(tn, "taskptr", taskptr_type); let tydesc_type = T_tydesc(targ_cfg); lib::llvm::associate_type(tn, "tydesc", tydesc_type); let crate_map = decl_crate_map(sess, link_meta.name, llmod); let dbg_cx = if sess.opts.debuginfo { option::some(debuginfo::mk_ctxt(llmod_id)) } else { option::none }; let ccx = @{sess: sess, llmod: llmod, td: td, tn: tn, externs: str_hash::(), intrinsics: intrinsics, item_vals: int_hash::(), exp_map: emap, reachable: reachable, item_symbols: int_hash::(), mutable main_fn: none::, link_meta: link_meta, enum_sizes: ty::new_ty_hash(), discrims: ast_util::new_def_id_hash::(), discrim_symbols: int_hash::(), tydescs: ty::new_ty_hash(), external: util::common::new_def_hash(), monomorphized: map::hashmap(hash_mono_id, {|a, b| a == b}), type_use_cache: util::common::new_def_hash(), vtables: map::hashmap(hash_mono_id, {|a, b| a == b}), module_data: str_hash::(), lltypes: ty::new_ty_hash(), names: new_namegen(), sha: sha, type_sha1s: ty::new_ty_hash(), type_short_names: ty::new_ty_hash(), all_llvm_symbols: str_hash::<()>(), tcx: tcx, maps: maps, stats: {mutable n_static_tydescs: 0u, mutable n_glues_created: 0u, mutable n_null_glues: 0u, mutable n_real_glues: 0u, llvm_insn_ctxt: @mutable [], llvm_insns: str_hash(), fn_times: @mutable []}, upcalls: upcall::declare_upcalls(targ_cfg, tn, tydesc_type, llmod), tydesc_type: tydesc_type, int_type: int_type, float_type: float_type, task_type: task_type, opaque_vec_type: T_opaque_vec(targ_cfg), builder: BuilderRef_res(llvm::LLVMCreateBuilder()), shape_cx: mk_ctxt(llmod), crate_map: crate_map, dbg_cx: dbg_cx, mutable do_not_commit_warning_issued: false}; { let _icx = ccx.insn_ctxt("data"); trans_constants(ccx, crate); } { let _icx = ccx.insn_ctxt("text"); trans_mod(ccx, crate.node.module); } fill_crate_map(ccx, crate_map); emit_tydescs(ccx); gen_shape_tables(ccx); write_abi_version(ccx); // Translate the metadata. write_metadata(ccx, crate); if ccx.sess.opts.stats { io::println("--- trans stats ---"); io::println(#fmt("n_static_tydescs: %u", ccx.stats.n_static_tydescs)); io::println(#fmt("n_glues_created: %u", ccx.stats.n_glues_created)); io::println(#fmt("n_null_glues: %u", ccx.stats.n_null_glues)); io::println(#fmt("n_real_glues: %u", ccx.stats.n_real_glues)); for timing: {ident: str, time: int} in *ccx.stats.fn_times { io::println(#fmt("time: %s took %d ms", timing.ident, timing.time)); } } if ccx.sess.opts.count_llvm_insns { ccx.stats.llvm_insns.items() { |k, v| io::println(#fmt("%-7u %s", v, k)); } } ret (llmod, link_meta); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //