// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use libc::c_uint; use llvm::{self, ValueRef}; use llvm::debuginfo::DIScope; use rustc::ty; use rustc::mir::repr as mir; use rustc::mir::tcx::LvalueTy; use session::config::FullDebugInfo; use base; use common::{self, Block, BlockAndBuilder, CrateContext, FunctionContext, C_null}; use debuginfo::{self, declare_local, DebugLoc, VariableAccess, VariableKind}; use machine; use type_of; use syntax_pos::DUMMY_SP; use syntax::parse::token::keywords; use std::ops::Deref; use std::rc::Rc; use std::iter; use basic_block::BasicBlock; use rustc_data_structures::bitvec::BitVector; use rustc_data_structures::indexed_vec::{IndexVec, Idx}; pub use self::constant::trans_static_initializer; use self::lvalue::{LvalueRef, get_dataptr, get_meta}; use rustc::mir::traversal; use self::operand::{OperandRef, OperandValue}; #[derive(Clone)] pub enum CachedMir<'mir, 'tcx: 'mir> { Ref(&'mir mir::Mir<'tcx>), Owned(Rc>) } impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> { type Target = mir::Mir<'tcx>; fn deref(&self) -> &mir::Mir<'tcx> { match *self { CachedMir::Ref(r) => r, CachedMir::Owned(ref rc) => rc } } } /// Master context for translating MIR. pub struct MirContext<'bcx, 'tcx:'bcx> { mir: CachedMir<'bcx, 'tcx>, /// Function context fcx: &'bcx common::FunctionContext<'bcx, 'tcx>, /// When unwinding is initiated, we have to store this personality /// value somewhere so that we can load it and re-use it in the /// resume instruction. The personality is (afaik) some kind of /// value used for C++ unwinding, which must filter by type: we /// don't really care about it very much. Anyway, this value /// contains an alloca into which the personality is stored and /// then later loaded when generating the DIVERGE_BLOCK. llpersonalityslot: Option, /// A `Block` for each MIR `BasicBlock` blocks: IndexVec>, /// The funclet status of each basic block cleanup_kinds: IndexVec, /// This stores the landing-pad block for a given BB, computed lazily on GNU /// and eagerly on MSVC. landing_pads: IndexVec>>, /// Cached unreachable block unreachable_block: Option>, /// The location where each MIR arg/var/tmp/ret is stored. This is /// usually an `LvalueRef` representing an alloca, but not always: /// sometimes we can skip the alloca and just store the value /// directly using an `OperandRef`, which makes for tighter LLVM /// IR. The conditions for using an `OperandRef` are as follows: /// /// - the type of the local must be judged "immediate" by `type_is_immediate` /// - the operand must never be referenced indirectly /// - we should not take its address using the `&` operator /// - nor should it appear in an lvalue path like `tmp.a` /// - the operand must be defined by an rvalue that can generate immediate /// values /// /// Avoiding allocs can also be important for certain intrinsics, /// notably `expect`. locals: IndexVec>, /// Debug information for MIR scopes. scopes: IndexVec } impl<'blk, 'tcx> MirContext<'blk, 'tcx> { pub fn debug_loc(&self, source_info: mir::SourceInfo) -> DebugLoc { DebugLoc::ScopeAt(self.scopes[source_info.scope], source_info.span) } } enum LocalRef<'tcx> { Lvalue(LvalueRef<'tcx>), Operand(Option>), } impl<'tcx> LocalRef<'tcx> { fn new_operand<'bcx>(ccx: &CrateContext<'bcx, 'tcx>, ty: ty::Ty<'tcx>) -> LocalRef<'tcx> { if common::type_is_zero_size(ccx, ty) { // Zero-size temporaries aren't always initialized, which // doesn't matter because they don't contain data, but // we need something in the operand. let llty = type_of::type_of(ccx, ty); let val = if common::type_is_imm_pair(ccx, ty) { let fields = llty.field_types(); OperandValue::Pair(C_null(fields[0]), C_null(fields[1])) } else { OperandValue::Immediate(C_null(llty)) }; let op = OperandRef { val: val, ty: ty }; LocalRef::Operand(Some(op)) } else { LocalRef::Operand(None) } } } /////////////////////////////////////////////////////////////////////////// pub fn trans_mir<'blk, 'tcx: 'blk>(fcx: &'blk FunctionContext<'blk, 'tcx>) { let bcx = fcx.init(true).build(); let mir = bcx.mir(); // Analyze the temps to determine which must be lvalues // FIXME let (lvalue_locals, cleanup_kinds) = bcx.with_block(|bcx| { (analyze::lvalue_locals(bcx, &mir), analyze::cleanup_kinds(bcx, &mir)) }); // Compute debuginfo scopes from MIR scopes. let scopes = debuginfo::create_mir_scopes(fcx); // Allocate variable and temp allocas let locals = { let args = arg_local_refs(&bcx, &mir, &scopes, &lvalue_locals); let vars = mir.var_decls.iter().enumerate().map(|(i, decl)| { let ty = bcx.monomorphize(&decl.ty); let scope = scopes[decl.source_info.scope]; let dbg = !scope.is_null() && bcx.sess().opts.debuginfo == FullDebugInfo; let local = mir.local_index(&mir::Lvalue::Var(mir::Var::new(i))).unwrap(); if !lvalue_locals.contains(local.index()) && !dbg { return LocalRef::new_operand(bcx.ccx(), ty); } let lvalue = LvalueRef::alloca(&bcx, ty, &decl.name.as_str()); if dbg { bcx.with_block(|bcx| { declare_local(bcx, decl.name, ty, scope, VariableAccess::DirectVariable { alloca: lvalue.llval }, VariableKind::LocalVariable, decl.source_info.span); }); } LocalRef::Lvalue(lvalue) }); let locals = mir.temp_decls.iter().enumerate().map(|(i, decl)| { (mir::Lvalue::Temp(mir::Temp::new(i)), decl.ty) }).chain(iter::once((mir::Lvalue::ReturnPointer, mir.return_ty))); args.into_iter().chain(vars).chain(locals.map(|(lvalue, ty)| { let ty = bcx.monomorphize(&ty); let local = mir.local_index(&lvalue).unwrap(); if lvalue == mir::Lvalue::ReturnPointer && fcx.fn_ty.ret.is_indirect() { let llretptr = llvm::get_param(fcx.llfn, 0); LocalRef::Lvalue(LvalueRef::new_sized(llretptr, LvalueTy::from_ty(ty))) } else if lvalue_locals.contains(local.index()) { LocalRef::Lvalue(LvalueRef::alloca(&bcx, ty, &format!("{:?}", lvalue))) } else { // If this is an immediate local, we do not create an // alloca in advance. Instead we wait until we see the // definition and update the operand there. LocalRef::new_operand(bcx.ccx(), ty) } })).collect() }; // Allocate a `Block` for every basic block let block_bcxs: IndexVec> = mir.basic_blocks().indices().map(|bb| { if bb == mir::START_BLOCK { fcx.new_block("start") } else { fcx.new_block(&format!("{:?}", bb)) } }).collect(); // Branch to the START block let start_bcx = block_bcxs[mir::START_BLOCK]; bcx.br(start_bcx.llbb); // Up until here, IR instructions for this function have explicitly not been annotated with // source code location, so we don't step into call setup code. From here on, source location // emitting should be enabled. debuginfo::start_emitting_source_locations(fcx); let mut mircx = MirContext { mir: mir.clone(), fcx: fcx, llpersonalityslot: None, blocks: block_bcxs, unreachable_block: None, cleanup_kinds: cleanup_kinds, landing_pads: IndexVec::from_elem(None, mir.basic_blocks()), locals: locals, scopes: scopes }; let mut visited = BitVector::new(mir.basic_blocks().len()); let mut rpo = traversal::reverse_postorder(&mir); // Prepare each block for translation. for (bb, _) in rpo.by_ref() { mircx.init_cpad(bb); } rpo.reset(); // Translate the body of each block using reverse postorder for (bb, _) in rpo { visited.insert(bb.index()); mircx.trans_block(bb); } // Remove blocks that haven't been visited, or have no // predecessors. for bb in mir.basic_blocks().indices() { let block = mircx.blocks[bb]; let block = BasicBlock(block.llbb); // Unreachable block if !visited.contains(bb.index()) { debug!("trans_mir: block {:?} was not visited", bb); block.delete(); } } DebugLoc::None.apply(fcx); fcx.cleanup(); } /// Produce, for each argument, a `ValueRef` pointing at the /// argument's value. As arguments are lvalues, these are always /// indirect. fn arg_local_refs<'bcx, 'tcx>(bcx: &BlockAndBuilder<'bcx, 'tcx>, mir: &mir::Mir<'tcx>, scopes: &IndexVec, lvalue_locals: &BitVector) -> Vec> { let fcx = bcx.fcx(); let tcx = bcx.tcx(); let mut idx = 0; let mut llarg_idx = fcx.fn_ty.ret.is_indirect() as usize; // Get the argument scope, if it exists and if we need it. let arg_scope = scopes[mir::ARGUMENT_VISIBILITY_SCOPE]; let arg_scope = if !arg_scope.is_null() && bcx.sess().opts.debuginfo == FullDebugInfo { Some(arg_scope) } else { None }; mir.arg_decls.iter().enumerate().map(|(arg_index, arg_decl)| { let arg_ty = bcx.monomorphize(&arg_decl.ty); let local = mir.local_index(&mir::Lvalue::Arg(mir::Arg::new(arg_index))).unwrap(); if arg_decl.spread { // This argument (e.g. the last argument in the "rust-call" ABI) // is a tuple that was spread at the ABI level and now we have // to reconstruct it into a tuple local variable, from multiple // individual LLVM function arguments. let tupled_arg_tys = match arg_ty.sty { ty::TyTuple(ref tys) => tys, _ => bug!("spread argument isn't a tuple?!") }; let lltuplety = type_of::type_of(bcx.ccx(), arg_ty); let lltemp = bcx.with_block(|bcx| { base::alloc_ty(bcx, arg_ty, &format!("arg{}", arg_index)) }); for (i, &tupled_arg_ty) in tupled_arg_tys.iter().enumerate() { let dst = bcx.struct_gep(lltemp, i); let arg = &fcx.fn_ty.args[idx]; idx += 1; if common::type_is_fat_ptr(tcx, tupled_arg_ty) { // We pass fat pointers as two words, but inside the tuple // they are the two sub-fields of a single aggregate field. let meta = &fcx.fn_ty.args[idx]; idx += 1; arg.store_fn_arg(bcx, &mut llarg_idx, get_dataptr(bcx, dst)); meta.store_fn_arg(bcx, &mut llarg_idx, get_meta(bcx, dst)); } else { arg.store_fn_arg(bcx, &mut llarg_idx, dst); } bcx.with_block(|bcx| arg_scope.map(|scope| { let byte_offset_of_var_in_tuple = machine::llelement_offset(bcx.ccx(), lltuplety, i); let ops = unsafe { [llvm::LLVMRustDIBuilderCreateOpDeref(), llvm::LLVMRustDIBuilderCreateOpPlus(), byte_offset_of_var_in_tuple as i64] }; let variable_access = VariableAccess::IndirectVariable { alloca: lltemp, address_operations: &ops }; declare_local(bcx, keywords::Invalid.name(), tupled_arg_ty, scope, variable_access, VariableKind::ArgumentVariable(arg_index + i + 1), bcx.fcx().span.unwrap_or(DUMMY_SP)); })); } return LocalRef::Lvalue(LvalueRef::new_sized(lltemp, LvalueTy::from_ty(arg_ty))); } let arg = &fcx.fn_ty.args[idx]; idx += 1; let llval = if arg.is_indirect() && bcx.sess().opts.debuginfo != FullDebugInfo { // Don't copy an indirect argument to an alloca, the caller // already put it in a temporary alloca and gave it up, unless // we emit extra-debug-info, which requires local allocas :(. // FIXME: lifetimes if arg.pad.is_some() { llarg_idx += 1; } let llarg = llvm::get_param(fcx.llfn, llarg_idx as c_uint); llarg_idx += 1; llarg } else if !lvalue_locals.contains(local.index()) && !arg.is_indirect() && arg.cast.is_none() && arg_scope.is_none() { if arg.is_ignore() { return LocalRef::new_operand(bcx.ccx(), arg_ty); } // We don't have to cast or keep the argument in the alloca. // FIXME(eddyb): We should figure out how to use llvm.dbg.value instead // of putting everything in allocas just so we can use llvm.dbg.declare. if arg.pad.is_some() { llarg_idx += 1; } let llarg = llvm::get_param(fcx.llfn, llarg_idx as c_uint); llarg_idx += 1; let val = if common::type_is_fat_ptr(tcx, arg_ty) { let meta = &fcx.fn_ty.args[idx]; idx += 1; assert_eq!((meta.cast, meta.pad), (None, None)); let llmeta = llvm::get_param(fcx.llfn, llarg_idx as c_uint); llarg_idx += 1; OperandValue::Pair(llarg, llmeta) } else { OperandValue::Immediate(llarg) }; let operand = OperandRef { val: val, ty: arg_ty }; return LocalRef::Operand(Some(operand.unpack_if_pair(bcx))); } else { let lltemp = bcx.with_block(|bcx| { base::alloc_ty(bcx, arg_ty, &format!("arg{}", arg_index)) }); if common::type_is_fat_ptr(tcx, arg_ty) { // we pass fat pointers as two words, but we want to // represent them internally as a pointer to two words, // so make an alloca to store them in. let meta = &fcx.fn_ty.args[idx]; idx += 1; arg.store_fn_arg(bcx, &mut llarg_idx, get_dataptr(bcx, lltemp)); meta.store_fn_arg(bcx, &mut llarg_idx, get_meta(bcx, lltemp)); } else { // otherwise, arg is passed by value, so make a // temporary and store it there arg.store_fn_arg(bcx, &mut llarg_idx, lltemp); } lltemp }; bcx.with_block(|bcx| arg_scope.map(|scope| { // Is this a regular argument? if arg_index > 0 || mir.upvar_decls.is_empty() { declare_local(bcx, arg_decl.debug_name, arg_ty, scope, VariableAccess::DirectVariable { alloca: llval }, VariableKind::ArgumentVariable(arg_index + 1), bcx.fcx().span.unwrap_or(DUMMY_SP)); return; } // Or is it the closure environment? let (closure_ty, env_ref) = if let ty::TyRef(_, mt) = arg_ty.sty { (mt.ty, true) } else { (arg_ty, false) }; let upvar_tys = if let ty::TyClosure(_, ref substs) = closure_ty.sty { &substs.upvar_tys[..] } else { bug!("upvar_decls with non-closure arg0 type `{}`", closure_ty); }; // Store the pointer to closure data in an alloca for debuginfo // because that's what the llvm.dbg.declare intrinsic expects. // FIXME(eddyb) this shouldn't be necessary but SROA seems to // mishandle DW_OP_plus not preceded by DW_OP_deref, i.e. it // doesn't actually strip the offset when splitting the closure // environment into its components so it ends up out of bounds. let env_ptr = if !env_ref { use base::*; use build::*; use common::*; let alloc = alloca(bcx, val_ty(llval), "__debuginfo_env_ptr"); Store(bcx, llval, alloc); alloc } else { llval }; let llclosurety = type_of::type_of(bcx.ccx(), closure_ty); for (i, (decl, ty)) in mir.upvar_decls.iter().zip(upvar_tys).enumerate() { let byte_offset_of_var_in_env = machine::llelement_offset(bcx.ccx(), llclosurety, i); let ops = unsafe { [llvm::LLVMRustDIBuilderCreateOpDeref(), llvm::LLVMRustDIBuilderCreateOpPlus(), byte_offset_of_var_in_env as i64, llvm::LLVMRustDIBuilderCreateOpDeref()] }; // The environment and the capture can each be indirect. // FIXME(eddyb) see above why we have to keep // a pointer in an alloca for debuginfo atm. let mut ops = if env_ref || true { &ops[..] } else { &ops[1..] }; let ty = if let (true, &ty::TyRef(_, mt)) = (decl.by_ref, &ty.sty) { mt.ty } else { ops = &ops[..ops.len() - 1]; ty }; let variable_access = VariableAccess::IndirectVariable { alloca: env_ptr, address_operations: &ops }; declare_local(bcx, decl.debug_name, ty, scope, variable_access, VariableKind::CapturedVariable, bcx.fcx().span.unwrap_or(DUMMY_SP)); } })); LocalRef::Lvalue(LvalueRef::new_sized(llval, LvalueTy::from_ty(arg_ty))) }).collect() } mod analyze; mod block; mod constant; mod lvalue; mod operand; mod rvalue; mod statement;