use crate::prelude::*; use rustc::ty::subst::SubstsRef; macro intrinsic_pat { (_) => { _ }, ($name:ident) => { stringify!($name) }, ($name:literal) => { stringify!($name) }, ($x:ident . $($xs:tt).*) => { concat!(stringify!($x), ".", intrinsic_pat!($($xs).*)) } } macro intrinsic_arg { (o $fx:expr, $arg:ident) => { $arg }, (c $fx:expr, $arg:ident) => { trans_operand($fx, $arg) }, (v $fx:expr, $arg:ident) => { trans_operand($fx, $arg).load_scalar($fx) } } macro intrinsic_substs { ($substs:expr, $index:expr,) => {}, ($substs:expr, $index:expr, $first:ident $(,$rest:ident)*) => { let $first = $substs.type_at($index); intrinsic_substs!($substs, $index+1, $($rest),*); } } pub macro intrinsic_match { ($fx:expr, $intrinsic:expr, $substs:expr, $args:expr, _ => $unknown:block; $( $($($name:tt).*)|+ $(if $cond:expr)?, $(<$($subst:ident),*>)? ($($a:ident $arg:ident),*) $content:block; )*) => { match $intrinsic { $( $(intrinsic_pat!($($name).*))|* $(if $cond)? => { #[allow(unused_parens, non_snake_case)] { $( intrinsic_substs!($substs, 0, $($subst),*); )? if let [$($arg),*] = $args { let ($($arg,)*) = ( $(intrinsic_arg!($a $fx, $arg),)* ); #[warn(unused_parens, non_snake_case)] { $content } } else { bug!("wrong number of args for intrinsic {:?}", $intrinsic); } } } )* _ => $unknown, } } } macro_rules! call_intrinsic_match { ($fx:expr, $intrinsic:expr, $substs:expr, $ret:expr, $destination:expr, $args:expr, $( $name:ident($($arg:ident),*) -> $ty:ident => $func:ident, )*) => { match $intrinsic { $( stringify!($name) => { assert!($substs.is_noop()); if let [$(ref $arg),*] = *$args { let ($($arg,)*) = ( $(trans_operand($fx, $arg),)* ); let res = $fx.easy_call(stringify!($func), &[$($arg),*], $fx.tcx.types.$ty); $ret.write_cvalue($fx, res); if let Some((_, dest)) = $destination { let ret_ebb = $fx.get_ebb(dest); $fx.bcx.ins().jump(ret_ebb, &[]); return; } else { unreachable!(); } } else { bug!("wrong number of args for intrinsic {:?}", $intrinsic); } } )* _ => {} } } } macro_rules! atomic_binop_return_old { ($fx:expr, $op:ident<$T:ident>($ptr:ident, $src:ident) -> $ret:ident) => { let clif_ty = $fx.clif_type($T).unwrap(); let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0); let new = $fx.bcx.ins().$op(old, $src); $fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0); $ret.write_cvalue($fx, CValue::by_val(old, $fx.layout_of($T))); }; } macro_rules! atomic_minmax { ($fx:expr, $cc:expr, <$T:ident> ($ptr:ident, $src:ident) -> $ret:ident) => { // Read old let clif_ty = $fx.clif_type($T).unwrap(); let old = $fx.bcx.ins().load(clif_ty, MemFlags::new(), $ptr, 0); // Compare let is_eq = $fx.bcx.ins().icmp(IntCC::SignedGreaterThan, old, $src); let new = crate::common::codegen_select(&mut $fx.bcx, is_eq, old, $src); // Write new $fx.bcx.ins().store(MemFlags::new(), new, $ptr, 0); let ret_val = CValue::by_val(old, $ret.layout()); $ret.write_cvalue($fx, ret_val); }; } pub fn lane_type_and_count<'tcx>( fx: &FunctionCx<'_, 'tcx, impl Backend>, layout: TyLayout<'tcx>, intrinsic: &str, ) -> (TyLayout<'tcx>, u32) { assert!(layout.ty.is_simd()); let lane_count = match layout.fields { layout::FieldPlacement::Array { stride: _, count } => u32::try_from(count).unwrap(), _ => panic!("Non vector type {:?} passed to or returned from simd_* intrinsic {}", layout.ty, intrinsic), }; let lane_layout = layout.field(fx, 0); (lane_layout, lane_count) } pub fn simd_for_each_lane<'tcx, B: Backend>( fx: &mut FunctionCx<'_, 'tcx, B>, intrinsic: &str, x: CValue<'tcx>, y: CValue<'tcx>, ret: CPlace<'tcx>, f: impl Fn(&mut FunctionCx<'_, 'tcx, B>, TyLayout<'tcx>, TyLayout<'tcx>, Value, Value) -> CValue<'tcx>, ) { assert_eq!(x.layout(), y.layout()); let layout = x.layout(); let (lane_layout, lane_count) = lane_type_and_count(fx, layout, intrinsic); let (ret_lane_layout, ret_lane_count) = lane_type_and_count(fx, ret.layout(), intrinsic); assert_eq!(lane_count, ret_lane_count); for lane in 0..lane_count { let lane = mir::Field::new(lane.try_into().unwrap()); let x_lane = x.value_field(fx, lane).load_scalar(fx); let y_lane = y.value_field(fx, lane).load_scalar(fx); let res_lane = f(fx, lane_layout, ret_lane_layout, x_lane, y_lane); ret.place_field(fx, lane).write_cvalue(fx, res_lane); } } pub fn bool_to_zero_or_max_uint<'tcx>( fx: &mut FunctionCx<'_, 'tcx, impl Backend>, layout: TyLayout<'tcx>, val: Value, ) -> CValue<'tcx> { let ty = fx.clif_type(layout.ty).unwrap(); let int_ty = match ty { types::F32 => types::I32, types::F64 => types::I64, ty => ty, }; let zero = fx.bcx.ins().iconst(int_ty, 0); let max = fx.bcx.ins().iconst(int_ty, (u64::max_value() >> (64 - int_ty.bits())) as i64); let mut res = crate::common::codegen_select(&mut fx.bcx, val, max, zero); if ty.is_float() { res = fx.bcx.ins().bitcast(ty, res); } CValue::by_val(res, layout) } macro_rules! simd_cmp { ($fx:expr, $intrinsic:expr, $cc:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, res_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Uint(_) | ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc, x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane) }); }; ($fx:expr, $intrinsic:expr, $cc_u:ident|$cc_s:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, res_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Uint(_) => fx.bcx.ins().icmp(IntCC::$cc_u, x_lane, y_lane), ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc_s, x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane) }); }; } macro_rules! simd_int_binop { ($fx:expr, $intrinsic:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Uint(_) | ty::Int(_) => fx.bcx.ins().$op(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }); }; ($fx:expr, $intrinsic:expr, $op_u:ident|$op_s:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane), ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }); }; } macro_rules! simd_int_flt_binop { ($fx:expr, $intrinsic:expr, $op:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Uint(_) | ty::Int(_) => fx.bcx.ins().$op(x_lane, y_lane), ty::Float(_) => fx.bcx.ins().$op_f(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }); }; ($fx:expr, $intrinsic:expr, $op_u:ident|$op_s:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane), ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane), ty::Float(_) => fx.bcx.ins().$op_f(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }); }; } macro_rules! simd_flt_binop { ($fx:expr, $intrinsic:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) => { simd_for_each_lane($fx, $intrinsic, $x, $y, $ret, |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { let res_lane = match lane_layout.ty.sty { ty::Float(_) => fx.bcx.ins().$op(x_lane, y_lane), _ => unreachable!("{:?}", lane_layout.ty), }; CValue::by_val(res_lane, ret_lane_layout) }); } } pub fn codegen_intrinsic_call<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, def_id: DefId, substs: SubstsRef<'tcx>, args: &[mir::Operand<'tcx>], destination: Option<(CPlace<'tcx>, BasicBlock)>, ) { let intrinsic = fx.tcx.item_name(def_id).as_str(); let intrinsic = &intrinsic[..]; let ret = match destination { Some((place, _)) => place, None => { // Insert non returning intrinsics here match intrinsic { "abort" => { trap_panic(fx, "Called intrinsic::abort."); } "unreachable" => { trap_unreachable(fx, "[corruption] Called intrinsic::unreachable."); } _ => unimplemented!("unsupported instrinsic {}", intrinsic), } return; } }; let u64_layout = fx.layout_of(fx.tcx.types.u64); let usize_layout = fx.layout_of(fx.tcx.types.usize); call_intrinsic_match! { fx, intrinsic, substs, ret, destination, args, expf32(flt) -> f32 => expf, expf64(flt) -> f64 => exp, exp2f32(flt) -> f32 => exp2f, exp2f64(flt) -> f64 => exp2, sqrtf32(flt) -> f32 => sqrtf, sqrtf64(flt) -> f64 => sqrt, powif32(a, x) -> f32 => __powisf2, // compiler-builtins powif64(a, x) -> f64 => __powidf2, // compiler-builtins logf32(flt) -> f32 => logf, logf64(flt) -> f64 => log, fabsf32(flt) -> f32 => fabsf, fabsf64(flt) -> f64 => fabs, fmaf32(x, y, z) -> f32 => fmaf, fmaf64(x, y, z) -> f64 => fma, // rounding variants floorf32(flt) -> f32 => floorf, floorf64(flt) -> f64 => floor, ceilf32(flt) -> f32 => ceilf, ceilf64(flt) -> f64 => ceil, truncf32(flt) -> f32 => truncf, truncf64(flt) -> f64 => trunc, roundf32(flt) -> f32 => roundf, roundf64(flt) -> f64 => round, // trigonometry sinf32(flt) -> f32 => sinf, sinf64(flt) -> f64 => sin, cosf32(flt) -> f32 => cosf, cosf64(flt) -> f64 => cos, tanf32(flt) -> f32 => tanf, tanf64(flt) -> f64 => tan, } intrinsic_match! { fx, intrinsic, substs, args, _ => { unimpl!("unsupported intrinsic {}", intrinsic) }; assume, (c _a) {}; likely | unlikely, (c a) { ret.write_cvalue(fx, a); }; breakpoint, () { fx.bcx.ins().debugtrap(); }; copy | copy_nonoverlapping, (v src, v dst, v count) { let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); let elem_size = fx .bcx .ins() .iconst(fx.pointer_type, elem_size as i64); assert_eq!(args.len(), 3); let byte_amount = fx.bcx.ins().imul(count, elem_size); if intrinsic.ends_with("_nonoverlapping") { fx.bcx.call_memcpy(fx.module.target_config(), dst, src, byte_amount); } else { fx.bcx.call_memmove(fx.module.target_config(), dst, src, byte_amount); } }; discriminant_value, (c val) { let pointee_layout = fx.layout_of(val.layout().ty.builtin_deref(true).unwrap().ty); let place = CPlace::for_addr(val.load_scalar(fx), pointee_layout); let discr = crate::base::trans_get_discriminant(fx, place, ret.layout()); ret.write_cvalue(fx, discr); }; size_of, () { let size_of = fx.layout_of(T).size.bytes(); let size_of = CValue::const_val(fx, usize_layout.ty, size_of.into()); ret.write_cvalue(fx, size_of); }; size_of_val, (c ptr) { let layout = fx.layout_of(T); let size = if layout.is_unsized() { let (_ptr, info) = ptr.load_scalar_pair(fx); let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout.ty, info); size } else { fx .bcx .ins() .iconst(fx.pointer_type, layout.size.bytes() as i64) }; ret.write_cvalue(fx, CValue::by_val(size, usize_layout)); }; min_align_of, () { let min_align = fx.layout_of(T).align.abi.bytes(); let min_align = CValue::const_val(fx, usize_layout.ty, min_align.into()); ret.write_cvalue(fx, min_align); }; min_align_of_val, (c ptr) { let layout = fx.layout_of(T); let align = if layout.is_unsized() { let (_ptr, info) = ptr.load_scalar_pair(fx); let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout.ty, info); align } else { fx .bcx .ins() .iconst(fx.pointer_type, layout.align.abi.bytes() as i64) }; ret.write_cvalue(fx, CValue::by_val(align, usize_layout)); }; pref_align_of, () { let pref_align = fx.layout_of(T).align.pref.bytes(); let pref_align = CValue::const_val(fx, usize_layout.ty, pref_align.into()); ret.write_cvalue(fx, pref_align); }; type_id, () { let type_id = fx.tcx.type_id_hash(T); let type_id = CValue::const_val(fx, u64_layout.ty, type_id.into()); ret.write_cvalue(fx, type_id); }; type_name, () { let type_name = fx.tcx.type_name(T); let type_name = crate::constant::trans_const_value(fx, type_name); ret.write_cvalue(fx, type_name); }; _ if intrinsic.starts_with("unchecked_") || intrinsic == "exact_div", (c x, c y) { // FIXME trap on overflow let bin_op = match intrinsic { "unchecked_sub" => BinOp::Sub, "unchecked_div" | "exact_div" => BinOp::Div, "unchecked_rem" => BinOp::Rem, "unchecked_shl" => BinOp::Shl, "unchecked_shr" => BinOp::Shr, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match ret.layout().ty.sty { ty::Uint(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, false, ), ty::Int(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); }; _ if intrinsic.ends_with("_with_overflow"), (c x, c y) { assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "add_with_overflow" => BinOp::Add, "sub_with_overflow" => BinOp::Sub, "mul_with_overflow" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let signed = match T.sty { ty::Uint(_) => false, ty::Int(_) => true, _ => unimplemented!("{} for {:?}", intrinsic, T), }; let res = crate::base::trans_checked_int_binop( fx, bin_op, x, y, ret.layout().ty, signed, ); ret.write_cvalue(fx, res); }; _ if intrinsic.starts_with("overflowing_"), (c x, c y) { assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "overflowing_add" => BinOp::Add, "overflowing_sub" => BinOp::Sub, "overflowing_mul" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match T.sty { ty::Uint(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, false, ), ty::Int(_) => crate::base::trans_int_binop( fx, bin_op, x, y, ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); }; _ if intrinsic.starts_with("saturating_"), (c x, c y) { // FIXME implement saturating behavior assert_eq!(x.layout().ty, y.layout().ty); let bin_op = match intrinsic { "saturating_add" => BinOp::Add, "saturating_sub" => BinOp::Sub, _ => unimplemented!("intrinsic {}", intrinsic), }; let signed = match T.sty { ty::Uint(_) => false, ty::Int(_) => true, _ => unimplemented!("{} for {:?}", intrinsic, T), }; let checked_res = crate::base::trans_checked_int_binop( fx, bin_op, x, y, fx.tcx.mk_tup([T, fx.tcx.types.bool].into_iter()), signed, ); let (val, has_overflow) = checked_res.load_scalar_pair(fx); let clif_ty = fx.clif_type(T).unwrap(); // `select.i8` is not implemented by Cranelift. let has_overflow = fx.bcx.ins().uextend(types::I32, has_overflow); let (min, max) = type_min_max_value(fx.tcx, T); let min = fx.bcx.ins().iconst(clif_ty, min); let max = fx.bcx.ins().iconst(clif_ty, max); let val = match (intrinsic, signed) { ("saturating_add", false) => fx.bcx.ins().select(has_overflow, max, val), ("saturating_sub", false) => fx.bcx.ins().select(has_overflow, min, val), ("saturating_add", true) => unimplemented!(), ("saturating_sub", true) => unimplemented!(), _ => unreachable!(), }; let res = CValue::by_val(val, fx.layout_of(T)); ret.write_cvalue(fx, res); }; rotate_left, (v x, v y) { let layout = fx.layout_of(T); let res = fx.bcx.ins().rotl(x, y); ret.write_cvalue(fx, CValue::by_val(res, layout)); }; rotate_right, (v x, v y) { let layout = fx.layout_of(T); let res = fx.bcx.ins().rotr(x, y); ret.write_cvalue(fx, CValue::by_val(res, layout)); }; // The only difference between offset and arith_offset is regarding UB. Because Cranelift // doesn't have UB both are codegen'ed the same way offset | arith_offset, (c base, v offset) { let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let ptr_diff = fx.bcx.ins().imul_imm(offset, pointee_size as i64); let base_val = base.load_scalar(fx); let res = fx.bcx.ins().iadd(base_val, ptr_diff); ret.write_cvalue(fx, CValue::by_val(res, base.layout())); }; transmute, (c from) { assert_eq!(from.layout().ty, src_ty); let addr = from.force_stack(fx); let dst_layout = fx.layout_of(dst_ty); ret.write_cvalue(fx, CValue::by_ref(addr, dst_layout)) }; init, () { if ret.layout().abi == Abi::Uninhabited { crate::trap::trap_panic(fx, "[panic] Called intrinsic::init for uninhabited type."); return; } match ret { CPlace::NoPlace(_layout) => {} CPlace::Var(var, layout) => { let clif_ty = fx.clif_type(layout.ty).unwrap(); let val = match clif_ty { types::I8 | types::I16 | types::I32 | types::I64 => fx.bcx.ins().iconst(clif_ty, 0), types::F32 => { let zero = fx.bcx.ins().iconst(types::I32, 0); fx.bcx.ins().bitcast(types::F32, zero) } types::F64 => { let zero = fx.bcx.ins().iconst(types::I64, 0); fx.bcx.ins().bitcast(types::F64, zero) } _ => panic!("clif_type returned {}", clif_ty), }; fx.bcx.def_var(mir_var(var), val); } _ => { let addr = ret.to_addr(fx); let layout = ret.layout(); fx.bcx.emit_small_memset(fx.module.target_config(), addr, 0, layout.size.bytes(), 1); } } }; write_bytes, (c dst, v val, v count) { let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty; let pointee_size = fx.layout_of(pointee_ty).size.bytes(); let count = fx.bcx.ins().imul_imm(count, pointee_size as i64); let dst_ptr = dst.load_scalar(fx); fx.bcx.call_memset(fx.module.target_config(), dst_ptr, val, count); }; ctlz | ctlz_nonzero, (v arg) { let res = if T == fx.tcx.types.u128 || T == fx.tcx.types.i128 { // FIXME verify this algorithm is correct let (lsb, msb) = fx.bcx.ins().isplit(arg); let lsb_lz = fx.bcx.ins().clz(lsb); let msb_lz = fx.bcx.ins().clz(msb); let msb_is_zero = fx.bcx.ins().icmp_imm(IntCC::Equal, msb, 0); let lsb_lz_plus_64 = fx.bcx.ins().iadd_imm(lsb_lz, 64); fx.bcx.ins().select(msb_is_zero, lsb_lz_plus_64, msb_lz) } else { fx.bcx.ins().clz(arg) }; let res = CValue::by_val(res, fx.layout_of(T)); ret.write_cvalue(fx, res); }; cttz | cttz_nonzero, (v arg) { let res = if T == fx.tcx.types.u128 || T == fx.tcx.types.i128 { // FIXME verify this algorithm is correct let (lsb, msb) = fx.bcx.ins().isplit(arg); let lsb_tz = fx.bcx.ins().ctz(lsb); let msb_tz = fx.bcx.ins().ctz(msb); let lsb_is_zero = fx.bcx.ins().icmp_imm(IntCC::Equal, lsb, 0); let msb_tz_plus_64 = fx.bcx.ins().iadd_imm(msb_tz, 64); fx.bcx.ins().select(lsb_is_zero, msb_tz_plus_64, lsb_tz) } else { fx.bcx.ins().ctz(arg) }; let res = CValue::by_val(res, fx.layout_of(T)); ret.write_cvalue(fx, res); }; ctpop, (v arg) { let res = CValue::by_val(fx.bcx.ins().popcnt(arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; bitreverse, (v arg) { let res = CValue::by_val(fx.bcx.ins().bitrev(arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; bswap, (v arg) { // FIXME(CraneStation/cranelift#794) add bswap instruction to cranelift fn swap(bcx: &mut FunctionBuilder, v: Value) -> Value { match bcx.func.dfg.value_type(v) { types::I8 => v, // https://code.woboq.org/gcc/include/bits/byteswap.h.html types::I16 => { let tmp1 = bcx.ins().ishl_imm(v, 8); let n1 = bcx.ins().band_imm(tmp1, 0xFF00); let tmp2 = bcx.ins().ushr_imm(v, 8); let n2 = bcx.ins().band_imm(tmp2, 0x00FF); bcx.ins().bor(n1, n2) } types::I32 => { let tmp1 = bcx.ins().ishl_imm(v, 24); let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000); let tmp2 = bcx.ins().ishl_imm(v, 8); let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000); let tmp3 = bcx.ins().ushr_imm(v, 8); let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00); let tmp4 = bcx.ins().ushr_imm(v, 24); let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF); let or_tmp1 = bcx.ins().bor(n1, n2); let or_tmp2 = bcx.ins().bor(n3, n4); bcx.ins().bor(or_tmp1, or_tmp2) } types::I64 => { let tmp1 = bcx.ins().ishl_imm(v, 56); let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000_0000_0000u64 as i64); let tmp2 = bcx.ins().ishl_imm(v, 40); let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000_0000_0000u64 as i64); let tmp3 = bcx.ins().ishl_imm(v, 24); let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00_0000_0000u64 as i64); let tmp4 = bcx.ins().ishl_imm(v, 8); let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF_0000_0000u64 as i64); let tmp5 = bcx.ins().ushr_imm(v, 8); let n5 = bcx.ins().band_imm(tmp5, 0x0000_0000_FF00_0000u64 as i64); let tmp6 = bcx.ins().ushr_imm(v, 24); let n6 = bcx.ins().band_imm(tmp6, 0x0000_0000_00FF_0000u64 as i64); let tmp7 = bcx.ins().ushr_imm(v, 40); let n7 = bcx.ins().band_imm(tmp7, 0x0000_0000_0000_FF00u64 as i64); let tmp8 = bcx.ins().ushr_imm(v, 56); let n8 = bcx.ins().band_imm(tmp8, 0x0000_0000_0000_00FFu64 as i64); let or_tmp1 = bcx.ins().bor(n1, n2); let or_tmp2 = bcx.ins().bor(n3, n4); let or_tmp3 = bcx.ins().bor(n5, n6); let or_tmp4 = bcx.ins().bor(n7, n8); let or_tmp5 = bcx.ins().bor(or_tmp1, or_tmp2); let or_tmp6 = bcx.ins().bor(or_tmp3, or_tmp4); bcx.ins().bor(or_tmp5, or_tmp6) } types::I128 => { let (lo, hi) = bcx.ins().isplit(v); let lo = swap(bcx, lo); let hi = swap(bcx, hi); bcx.ins().iconcat(hi, lo) } ty => unimplemented!("bswap {}", ty), } }; let res = CValue::by_val(swap(&mut fx.bcx, arg), fx.layout_of(T)); ret.write_cvalue(fx, res); }; needs_drop, () { let needs_drop = if T.needs_drop(fx.tcx, ParamEnv::reveal_all()) { 1 } else { 0 }; let needs_drop = CValue::const_val(fx, fx.tcx.types.bool, needs_drop); ret.write_cvalue(fx, needs_drop); }; panic_if_uninhabited, () { if fx.layout_of(T).abi.is_uninhabited() { crate::trap::trap_panic(fx, "[panic] Called intrinsic::panic_if_uninhabited for uninhabited type."); return; } }; volatile_load, (c ptr) { // Cranelift treats loads as volatile by default let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); let val = CValue::by_ref(ptr.load_scalar(fx), inner_layout); ret.write_cvalue(fx, val); }; volatile_store, (v ptr, c val) { // Cranelift treats stores as volatile by default let dest = CPlace::for_addr(ptr, val.layout()); dest.write_cvalue(fx, val); }; _ if intrinsic.starts_with("atomic_fence"), () {}; _ if intrinsic.starts_with("atomic_singlethreadfence"), () {}; _ if intrinsic.starts_with("atomic_load"), (c ptr) { let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); let val = CValue::by_ref(ptr.load_scalar(fx), inner_layout); ret.write_cvalue(fx, val); }; _ if intrinsic.starts_with("atomic_store"), (v ptr, c val) { let dest = CPlace::for_addr(ptr, val.layout()); dest.write_cvalue(fx, val); }; _ if intrinsic.starts_with("atomic_xchg"), (v ptr, c src) { // Read old let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); ret.write_cvalue(fx, CValue::by_val(old, fx.layout_of(T))); // Write new let dest = CPlace::for_addr(ptr, src.layout()); dest.write_cvalue(fx, src); }; _ if intrinsic.starts_with("atomic_cxchg"), (v ptr, v test_old, v new) { // both atomic_cxchg_* and atomic_cxchgweak_* // Read old let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); // Compare let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old); let new = crate::common::codegen_select(&mut fx.bcx, is_eq, new, old); // Keep old if not equal to test_old // Write new fx.bcx.ins().store(MemFlags::new(), new, ptr, 0); let ret_val = CValue::by_val_pair(old, fx.bcx.ins().bint(types::I8, is_eq), ret.layout()); ret.write_cvalue(fx, ret_val); }; _ if intrinsic.starts_with("atomic_xadd"), (v ptr, v amount) { atomic_binop_return_old! (fx, iadd(ptr, amount) -> ret); }; _ if intrinsic.starts_with("atomic_xsub"), (v ptr, v amount) { atomic_binop_return_old! (fx, isub(ptr, amount) -> ret); }; _ if intrinsic.starts_with("atomic_and"), (v ptr, v src) { atomic_binop_return_old! (fx, band(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_nand"), (v ptr, v src) { let clif_ty = fx.clif_type(T).unwrap(); let old = fx.bcx.ins().load(clif_ty, MemFlags::new(), ptr, 0); let and = fx.bcx.ins().band(old, src); let new = fx.bcx.ins().bnot(and); fx.bcx.ins().store(MemFlags::new(), new, ptr, 0); ret.write_cvalue(fx, CValue::by_val(old, fx.layout_of(T))); }; _ if intrinsic.starts_with("atomic_or"), (v ptr, v src) { atomic_binop_return_old! (fx, bor(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_xor"), (v ptr, v src) { atomic_binop_return_old! (fx, bxor(ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_max"), (v ptr, v src) { atomic_minmax!(fx, IntCC::SignedGreaterThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_umax"), (v ptr, v src) { atomic_minmax!(fx, IntCC::UnsignedGreaterThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_min"), (v ptr, v src) { atomic_minmax!(fx, IntCC::SignedLessThan, (ptr, src) -> ret); }; _ if intrinsic.starts_with("atomic_umin"), (v ptr, v src) { atomic_minmax!(fx, IntCC::UnsignedLessThan, (ptr, src) -> ret); }; minnumf32, (v a, v b) { let val = fx.bcx.ins().fmin(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); ret.write_cvalue(fx, val); }; minnumf64, (v a, v b) { let val = fx.bcx.ins().fmin(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); ret.write_cvalue(fx, val); }; maxnumf32, (v a, v b) { let val = fx.bcx.ins().fmax(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); ret.write_cvalue(fx, val); }; maxnumf64, (v a, v b) { let val = fx.bcx.ins().fmax(a, b); let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); ret.write_cvalue(fx, val); }; simd_cast, (c a) { let (lane_layout, lane_count) = lane_type_and_count(fx, a.layout(), intrinsic); let (ret_lane_layout, ret_lane_count) = lane_type_and_count(fx, ret.layout(), intrinsic); assert_eq!(lane_count, ret_lane_count); let ret_lane_ty = fx.clif_type(ret_lane_layout.ty).unwrap(); let signed = match lane_layout.ty.sty { ty::Uint(..) => false, ty::Int(..) => true, ty::Float(..) => false, // `signed` is unused for floats _ => panic!("{}", lane_layout.ty), }; for lane in 0..lane_count { let lane = mir::Field::new(lane.try_into().unwrap()); let a_lane = a.value_field(fx, lane).load_scalar(fx); let res = clif_int_or_float_cast(fx, a_lane, ret_lane_ty, signed); ret.place_field(fx, lane).write_cvalue(fx, CValue::by_val(res, ret_lane_layout)); } }; simd_eq, (c x, c y) { simd_cmp!(fx, intrinsic, Equal(x, y) -> ret); }; simd_ne, (c x, c y) { simd_cmp!(fx, intrinsic, NotEqual(x, y) -> ret); }; simd_lt, (c x, c y) { simd_cmp!(fx, intrinsic, UnsignedLessThan|SignedLessThan(x, y) -> ret); }; simd_le, (c x, c y) { simd_cmp!(fx, intrinsic, UnsignedLessThanOrEqual|SignedLessThanOrEqual(x, y) -> ret); }; simd_gt, (c x, c y) { simd_cmp!(fx, intrinsic, UnsignedGreaterThan|SignedGreaterThan(x, y) -> ret); }; simd_ge, (c x, c y) { simd_cmp!(fx, intrinsic, UnsignedGreaterThanOrEqual|SignedGreaterThanOrEqual(x, y) -> ret); }; // simd_shuffle32(x: T, y: T, idx: [u32; 32]) -> U _ if intrinsic.starts_with("simd_shuffle"), (c x, c y, o idx) { let n: u32 = intrinsic["simd_shuffle".len()..].parse().unwrap(); assert_eq!(x.layout(), y.layout()); let layout = x.layout(); let (lane_type, lane_count) = lane_type_and_count(fx, layout, intrinsic); let (ret_lane_type, ret_lane_count) = lane_type_and_count(fx, ret.layout(), intrinsic); assert_eq!(lane_type, ret_lane_type); assert_eq!(n, ret_lane_count); let total_len = lane_count * 2; let indexes = { use rustc::mir::interpret::*; let idx_const = crate::constant::mir_operand_get_const_val(fx, idx).expect("simd_shuffle* idx not const"); let idx_bytes = match idx_const.val { ConstValue::ByRef { alloc, offset } => { let ptr = Pointer::new(AllocId(0 /* dummy */), offset); let size = Size::from_bytes(4 * u64::from(ret_lane_count) /* size_of([u32; ret_lane_count]) */); alloc.get_bytes(fx, ptr, size).unwrap() } _ => unreachable!("{:?}", idx_const), }; (0..ret_lane_count).map(|i| { let i = usize::try_from(i).unwrap(); let idx = rustc::mir::interpret::read_target_uint( fx.tcx.data_layout.endian, &idx_bytes[4*i.. 4*i + 4], ).expect("read_target_uint"); u32::try_from(idx).expect("try_from u32") }).collect::>() }; for &idx in &indexes { assert!(idx < total_len, "idx {} out of range 0..{}", idx, total_len); } for (out_idx, in_idx) in indexes.into_iter().enumerate() { let in_lane = if in_idx < lane_count { x.value_field(fx, mir::Field::new(in_idx.try_into().unwrap())) } else { y.value_field(fx, mir::Field::new((in_idx - lane_count).try_into().unwrap())) }; let out_lane = ret.place_field(fx, mir::Field::new(out_idx)); out_lane.write_cvalue(fx, in_lane); } }; simd_extract, (c v, o idx) { let idx_const = crate::constant::mir_operand_get_const_val(fx, idx).expect("simd_extract* idx not const"); let idx = idx_const.val.try_to_bits(Size::from_bytes(4 /* u32*/)).expect(&format!("kind not scalar: {:?}", idx_const)); let (_lane_type, lane_count) = lane_type_and_count(fx, v.layout(), intrinsic); if idx >= lane_count.into() { fx.tcx.sess.span_fatal(fx.mir.span, &format!("[simd_extract] idx {} >= lane_count {}", idx, lane_count)); } let ret_lane = v.value_field(fx, mir::Field::new(idx.try_into().unwrap())); ret.write_cvalue(fx, ret_lane); }; simd_add, (c x, c y) { simd_int_flt_binop!(fx, intrinsic, iadd|fadd(x, y) -> ret); }; simd_sub, (c x, c y) { simd_int_flt_binop!(fx, intrinsic, isub|fsub(x, y) -> ret); }; simd_mul, (c x, c y) { simd_int_flt_binop!(fx, intrinsic, imul|fmul(x, y) -> ret); }; simd_div, (c x, c y) { simd_int_flt_binop!(fx, intrinsic, udiv|sdiv|fdiv(x, y) -> ret); }; simd_shl, (c x, c y) { simd_int_binop!(fx, intrinsic, ishl(x, y) -> ret); }; simd_shr, (c x, c y) { simd_int_binop!(fx, intrinsic, ushr|sshr(x, y) -> ret); }; simd_and, (c x, c y) { simd_int_binop!(fx, intrinsic, band(x, y) -> ret); }; simd_or, (c x, c y) { simd_int_binop!(fx, intrinsic, bor(x, y) -> ret); }; simd_xor, (c x, c y) { simd_int_binop!(fx, intrinsic, bxor(x, y) -> ret); }; simd_fmin, (c x, c y) { simd_flt_binop!(fx, intrinsic, fmin(x, y) -> ret); }; simd_fmax, (c x, c y) { simd_flt_binop!(fx, intrinsic, fmax(x, y) -> ret); }; } if let Some((_, dest)) = destination { let ret_ebb = fx.get_ebb(dest); fx.bcx.ins().jump(ret_ebb, &[]); } else { trap_unreachable(fx, "[corruption] Diverging intrinsic returned."); } }