use crate::utils::span_lint; use rustc::hir; use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; use rustc::{declare_tool_lint, lint_array}; use syntax::source_map::Span; /// **What it does:** Checks for plain integer arithmetic. /// /// **Why is this bad?** This is only checked against overflow in debug builds. /// In some applications one wants explicitly checked, wrapping or saturating /// arithmetic. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// a + 1 /// ``` declare_clippy_lint! { pub INTEGER_ARITHMETIC, restriction, "any integer arithmetic statement" } /// **What it does:** Checks for float arithmetic. /// /// **Why is this bad?** For some embedded systems or kernel development, it /// can be useful to rule out floating-point numbers. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// a + 1.0 /// ``` declare_clippy_lint! { pub FLOAT_ARITHMETIC, restriction, "any floating-point arithmetic statement" } #[derive(Copy, Clone, Default)] pub struct Arithmetic { expr_span: Option, /// This field is used to check whether expressions are constants, such as in enum discriminants /// and consts const_span: Option, } impl LintPass for Arithmetic { fn get_lints(&self) -> LintArray { lint_array!(INTEGER_ARITHMETIC, FLOAT_ARITHMETIC) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Arithmetic { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) { if self.expr_span.is_some() { return; } if let Some(span) = self.const_span { if span.contains(expr.span) { return; } } match &expr.node { hir::ExprKind::Binary(op, l, r) => { match op.node { hir::BinOpKind::And | hir::BinOpKind::Or | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr | hir::BinOpKind::BitXor | hir::BinOpKind::Shl | hir::BinOpKind::Shr | hir::BinOpKind::Eq | hir::BinOpKind::Lt | hir::BinOpKind::Le | hir::BinOpKind::Ne | hir::BinOpKind::Ge | hir::BinOpKind::Gt => return, _ => (), } let (l_ty, r_ty) = (cx.tables.expr_ty(l), cx.tables.expr_ty(r)); if l_ty.is_integral() && r_ty.is_integral() { span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected"); self.expr_span = Some(expr.span); } else if l_ty.is_floating_point() && r_ty.is_floating_point() { span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected"); self.expr_span = Some(expr.span); } }, hir::ExprKind::Unary(hir::UnOp::UnNeg, arg) => { let ty = cx.tables.expr_ty(arg); if ty.is_integral() { span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected"); self.expr_span = Some(expr.span); } else if ty.is_floating_point() { span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected"); self.expr_span = Some(expr.span); } }, _ => (), } } fn check_expr_post(&mut self, _: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) { if Some(expr.span) == self.expr_span { self.expr_span = None; } } fn check_body(&mut self, cx: &LateContext<'_, '_>, body: &hir::Body) { let body_owner = cx.tcx.hir().body_owner(body.id()); match cx.tcx.hir().body_owner_kind(body_owner) { hir::BodyOwnerKind::Static(_) | hir::BodyOwnerKind::Const => { let body_span = cx.tcx.hir().span(body_owner); if let Some(span) = self.const_span { if span.contains(body_span) { return; } } self.const_span = Some(body_span); }, hir::BodyOwnerKind::Fn => (), } } fn check_body_post(&mut self, cx: &LateContext<'_, '_>, body: &hir::Body) { let body_owner = cx.tcx.hir().body_owner(body.id()); let body_span = cx.tcx.hir().span(body_owner); if let Some(span) = self.const_span { if span.contains(body_span) { return; } } self.const_span = None; } }