// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Buffering wrappers for I/O traits use cmp; use container::Container; use io::{Reader, Writer, Stream, Buffer, DEFAULT_BUF_SIZE, IoResult}; use iter::ExactSize; use ops::Drop; use option::{Some, None, Option}; use result::{Ok, Err}; use slice::{ImmutableVector, MutableVector}; use slice; use vec::Vec; /// Wraps a Reader and buffers input from it /// /// It can be excessively inefficient to work directly with a `Reader`. For /// example, every call to `read` on `TcpStream` results in a system call. A /// `BufferedReader` performs large, infrequent reads on the underlying /// `Reader` and maintains an in-memory buffer of the results. /// /// # Example /// /// ```rust /// use std::io::{BufferedReader, File}; /// /// let file = File::open(&Path::new("message.txt")); /// let mut reader = BufferedReader::new(file); /// /// let mut buf = [0, ..100]; /// match reader.read(buf) { /// Ok(nread) => println!("Read {} bytes", nread), /// Err(e) => println!("error reading: {}", e) /// } /// ``` pub struct BufferedReader { inner: R, buf: Vec, pos: uint, cap: uint, } impl BufferedReader { /// Creates a new `BufferedReader` with the specified buffer capacity pub fn with_capacity(cap: uint, inner: R) -> BufferedReader { // It's *much* faster to create an uninitialized buffer than it is to // fill everything in with 0. This buffer is entirely an implementation // detail and is never exposed, so we're safe to not initialize // everything up-front. This allows creation of BufferedReader instances // to be very cheap (large mallocs are not nearly as expensive as large // callocs). let mut buf = Vec::with_capacity(cap); unsafe { buf.set_len(cap); } BufferedReader { inner: inner, buf: buf, pos: 0, cap: 0, } } /// Creates a new `BufferedReader` with a default buffer capacity pub fn new(inner: R) -> BufferedReader { BufferedReader::with_capacity(DEFAULT_BUF_SIZE, inner) } /// Gets a reference to the underlying reader. /// /// This type does not expose the ability to get a mutable reference to the /// underlying reader because that could possibly corrupt the buffer. pub fn get_ref<'a>(&'a self) -> &'a R { &self.inner } /// Unwraps this `BufferedReader`, returning the underlying reader. /// /// Note that any leftover data in the internal buffer is lost. pub fn unwrap(self) -> R { self.inner } } impl Buffer for BufferedReader { fn fill_buf<'a>(&'a mut self) -> IoResult<&'a [u8]> { if self.pos == self.cap { self.cap = try!(self.inner.read(self.buf.as_mut_slice())); self.pos = 0; } Ok(self.buf.slice(self.pos, self.cap)) } fn consume(&mut self, amt: uint) { self.pos += amt; assert!(self.pos <= self.cap); } } impl Reader for BufferedReader { fn read(&mut self, buf: &mut [u8]) -> IoResult { let nread = { let available = try!(self.fill_buf()); let nread = cmp::min(available.len(), buf.len()); slice::bytes::copy_memory(buf, available.slice_to(nread)); nread }; self.pos += nread; Ok(nread) } } /// Wraps a Writer and buffers output to it /// /// It can be excessively inefficient to work directly with a `Writer`. For /// example, every call to `write` on `TcpStream` results in a system call. A /// `BufferedWriter` keeps an in memory buffer of data and writes it to the /// underlying `Writer` in large, infrequent batches. /// /// This writer will be flushed when it is dropped. /// /// # Example /// /// ```rust /// # #![allow(unused_must_use)] /// use std::io::{BufferedWriter, File}; /// /// let file = File::open(&Path::new("message.txt")); /// let mut writer = BufferedWriter::new(file); /// /// writer.write_str("hello, world"); /// writer.flush(); /// ``` pub struct BufferedWriter { inner: Option, buf: Vec, pos: uint } impl BufferedWriter { /// Creates a new `BufferedWriter` with the specified buffer capacity pub fn with_capacity(cap: uint, inner: W) -> BufferedWriter { // See comments in BufferedReader for why this uses unsafe code. let mut buf = Vec::with_capacity(cap); unsafe { buf.set_len(cap); } BufferedWriter { inner: Some(inner), buf: buf, pos: 0 } } /// Creates a new `BufferedWriter` with a default buffer capacity pub fn new(inner: W) -> BufferedWriter { BufferedWriter::with_capacity(DEFAULT_BUF_SIZE, inner) } fn flush_buf(&mut self) -> IoResult<()> { if self.pos != 0 { let ret = self.inner.get_mut_ref().write(self.buf.slice_to(self.pos)); self.pos = 0; ret } else { Ok(()) } } /// Gets a reference to the underlying writer. /// /// This type does not expose the ability to get a mutable reference to the /// underlying reader because that could possibly corrupt the buffer. pub fn get_ref<'a>(&'a self) -> &'a W { self.inner.get_ref() } /// Unwraps this `BufferedWriter`, returning the underlying writer. /// /// The buffer is flushed before returning the writer. pub fn unwrap(mut self) -> W { // FIXME(#12628): is failing the right thing to do if flushing fails? self.flush_buf().unwrap(); self.inner.take_unwrap() } } impl Writer for BufferedWriter { fn write(&mut self, buf: &[u8]) -> IoResult<()> { if self.pos + buf.len() > self.buf.len() { try!(self.flush_buf()); } if buf.len() > self.buf.len() { self.inner.get_mut_ref().write(buf) } else { let dst = self.buf.mut_slice_from(self.pos); slice::bytes::copy_memory(dst, buf); self.pos += buf.len(); Ok(()) } } fn flush(&mut self) -> IoResult<()> { self.flush_buf().and_then(|()| self.inner.get_mut_ref().flush()) } } #[unsafe_destructor] impl Drop for BufferedWriter { fn drop(&mut self) { if self.inner.is_some() { // dtors should not fail, so we ignore a failed flush let _ = self.flush_buf(); } } } /// Wraps a Writer and buffers output to it, flushing whenever a newline (`0x0a`, /// `'\n'`) is detected. /// /// This writer will be flushed when it is dropped. pub struct LineBufferedWriter { inner: BufferedWriter, } impl LineBufferedWriter { /// Creates a new `LineBufferedWriter` pub fn new(inner: W) -> LineBufferedWriter { // Lines typically aren't that long, don't use a giant buffer LineBufferedWriter { inner: BufferedWriter::with_capacity(1024, inner) } } /// Gets a reference to the underlying writer. /// /// This type does not expose the ability to get a mutable reference to the /// underlying reader because that could possibly corrupt the buffer. pub fn get_ref<'a>(&'a self) -> &'a W { self.inner.get_ref() } /// Unwraps this `LineBufferedWriter`, returning the underlying writer. /// /// The internal buffer is flushed before returning the writer. pub fn unwrap(self) -> W { self.inner.unwrap() } } impl Writer for LineBufferedWriter { fn write(&mut self, buf: &[u8]) -> IoResult<()> { match buf.iter().rposition(|&b| b == '\n' as u8) { Some(i) => { try!(self.inner.write(buf.slice_to(i + 1))); try!(self.inner.flush()); try!(self.inner.write(buf.slice_from(i + 1))); Ok(()) } None => self.inner.write(buf), } } fn flush(&mut self) -> IoResult<()> { self.inner.flush() } } struct InternalBufferedWriter(BufferedWriter); impl InternalBufferedWriter { fn get_mut_ref<'a>(&'a mut self) -> &'a mut BufferedWriter { let InternalBufferedWriter(ref mut w) = *self; return w; } } impl Reader for InternalBufferedWriter { fn read(&mut self, buf: &mut [u8]) -> IoResult { self.get_mut_ref().inner.get_mut_ref().read(buf) } } /// Wraps a Stream and buffers input and output to and from it. /// /// It can be excessively inefficient to work directly with a `Stream`. For /// example, every call to `read` or `write` on `TcpStream` results in a system /// call. A `BufferedStream` keeps in memory buffers of data, making large, /// infrequent calls to `read` and `write` on the underlying `Stream`. /// /// The output half will be flushed when this stream is dropped. /// /// # Example /// /// ```rust /// # #![allow(unused_must_use)] /// use std::io::{BufferedStream, File}; /// /// let file = File::open(&Path::new("message.txt")); /// let mut stream = BufferedStream::new(file); /// /// stream.write("hello, world".as_bytes()); /// stream.flush(); /// /// let mut buf = [0, ..100]; /// match stream.read(buf) { /// Ok(nread) => println!("Read {} bytes", nread), /// Err(e) => println!("error reading: {}", e) /// } /// ``` pub struct BufferedStream { inner: BufferedReader> } impl BufferedStream { /// Creates a new buffered stream with explicitly listed capacities for the /// reader/writer buffer. pub fn with_capacities(reader_cap: uint, writer_cap: uint, inner: S) -> BufferedStream { let writer = BufferedWriter::with_capacity(writer_cap, inner); let internal_writer = InternalBufferedWriter(writer); let reader = BufferedReader::with_capacity(reader_cap, internal_writer); BufferedStream { inner: reader } } /// Creates a new buffered stream with the default reader/writer buffer /// capacities. pub fn new(inner: S) -> BufferedStream { BufferedStream::with_capacities(DEFAULT_BUF_SIZE, DEFAULT_BUF_SIZE, inner) } /// Gets a reference to the underlying stream. /// /// This type does not expose the ability to get a mutable reference to the /// underlying reader because that could possibly corrupt the buffer. pub fn get_ref<'a>(&'a self) -> &'a S { let InternalBufferedWriter(ref w) = self.inner.inner; w.get_ref() } /// Unwraps this `BufferedStream`, returning the underlying stream. /// /// The internal buffer is flushed before returning the stream. Any leftover /// data in the read buffer is lost. pub fn unwrap(self) -> S { let InternalBufferedWriter(w) = self.inner.inner; w.unwrap() } } impl Buffer for BufferedStream { fn fill_buf<'a>(&'a mut self) -> IoResult<&'a [u8]> { self.inner.fill_buf() } fn consume(&mut self, amt: uint) { self.inner.consume(amt) } } impl Reader for BufferedStream { fn read(&mut self, buf: &mut [u8]) -> IoResult { self.inner.read(buf) } } impl Writer for BufferedStream { fn write(&mut self, buf: &[u8]) -> IoResult<()> { self.inner.inner.get_mut_ref().write(buf) } fn flush(&mut self) -> IoResult<()> { self.inner.inner.get_mut_ref().flush() } } #[cfg(test)] mod test { extern crate test; use io; use prelude::*; use super::*; use super::super::{IoResult, EndOfFile}; use super::super::mem::{MemReader, MemWriter, BufReader}; use self::test::Bencher; use str::StrSlice; /// A type, free to create, primarily intended for benchmarking creation of /// wrappers that, just for construction, don't need a Reader/Writer that /// does anything useful. Is equivalent to `/dev/null` in semantics. #[deriving(Clone,Eq,Ord)] pub struct NullStream; impl Reader for NullStream { fn read(&mut self, _: &mut [u8]) -> io::IoResult { Err(io::standard_error(io::EndOfFile)) } } impl Writer for NullStream { fn write(&mut self, _: &[u8]) -> io::IoResult<()> { Ok(()) } } /// A dummy reader intended at testing short-reads propagation. pub struct ShortReader { lengths: Vec, } impl Reader for ShortReader { fn read(&mut self, _: &mut [u8]) -> io::IoResult { match self.lengths.shift() { Some(i) => Ok(i), None => Err(io::standard_error(io::EndOfFile)) } } } #[test] fn test_buffered_reader() { let inner = MemReader::new(vec!(0, 1, 2, 3, 4)); let mut reader = BufferedReader::with_capacity(2, inner); let mut buf = [0, 0, 0]; let nread = reader.read(buf); assert_eq!(Ok(2), nread); assert_eq!(buf.as_slice(), &[0, 1, 0]); let mut buf = [0]; let nread = reader.read(buf); assert_eq!(Ok(1), nread); assert_eq!(buf.as_slice(), &[2]); let mut buf = [0, 0, 0]; let nread = reader.read(buf); assert_eq!(Ok(1), nread); assert_eq!(buf.as_slice(), &[3, 0, 0]); let nread = reader.read(buf); assert_eq!(Ok(1), nread); assert_eq!(buf.as_slice(), &[4, 0, 0]); assert!(reader.read(buf).is_err()); } #[test] fn test_buffered_writer() { let inner = MemWriter::new(); let mut writer = BufferedWriter::with_capacity(2, inner); writer.write([0, 1]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[]); writer.write([2]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[0, 1]); writer.write([3]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[0, 1]); writer.flush().unwrap(); assert_eq!(&[0, 1, 2, 3], writer.get_ref().get_ref()); writer.write([4]).unwrap(); writer.write([5]).unwrap(); assert_eq!(&[0, 1, 2, 3], writer.get_ref().get_ref()); writer.write([6]).unwrap(); assert_eq!(&[0, 1, 2, 3, 4, 5], writer.get_ref().get_ref()); writer.write([7, 8]).unwrap(); assert_eq!(&[0, 1, 2, 3, 4, 5, 6], writer.get_ref().get_ref()); writer.write([9, 10, 11]).unwrap(); assert_eq!(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], writer.get_ref().get_ref()); writer.flush().unwrap(); assert_eq!(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], writer.get_ref().get_ref()); } #[test] fn test_buffered_writer_inner_flushes() { let mut w = BufferedWriter::with_capacity(3, MemWriter::new()); w.write([0, 1]).unwrap(); assert_eq!(&[], w.get_ref().get_ref()); let w = w.unwrap(); assert_eq!(&[0, 1], w.get_ref()); } // This is just here to make sure that we don't infinite loop in the // newtype struct autoderef weirdness #[test] fn test_buffered_stream() { struct S; impl io::Writer for S { fn write(&mut self, _: &[u8]) -> io::IoResult<()> { Ok(()) } } impl io::Reader for S { fn read(&mut self, _: &mut [u8]) -> io::IoResult { Err(io::standard_error(io::EndOfFile)) } } let mut stream = BufferedStream::new(S); let mut buf = []; assert!(stream.read(buf).is_err()); stream.write(buf).unwrap(); stream.flush().unwrap(); } #[test] fn test_read_until() { let inner = MemReader::new(vec!(0, 1, 2, 1, 0)); let mut reader = BufferedReader::with_capacity(2, inner); assert_eq!(reader.read_until(0), Ok(vec!(0))); assert_eq!(reader.read_until(2), Ok(vec!(1, 2))); assert_eq!(reader.read_until(1), Ok(vec!(1))); assert_eq!(reader.read_until(8), Ok(vec!(0))); assert!(reader.read_until(9).is_err()); } #[test] fn test_line_buffer() { let mut writer = LineBufferedWriter::new(MemWriter::new()); writer.write([0]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[]); writer.write([1]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[]); writer.flush().unwrap(); assert_eq!(writer.get_ref().get_ref(), &[0, 1]); writer.write([0, '\n' as u8, 1, '\n' as u8, 2]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[0, 1, 0, '\n' as u8, 1, '\n' as u8]); writer.flush().unwrap(); assert_eq!(writer.get_ref().get_ref(), &[0, 1, 0, '\n' as u8, 1, '\n' as u8, 2]); writer.write([3, '\n' as u8]).unwrap(); assert_eq!(writer.get_ref().get_ref(), &[0, 1, 0, '\n' as u8, 1, '\n' as u8, 2, 3, '\n' as u8]); } #[test] fn test_read_line() { let in_buf = MemReader::new(Vec::from_slice(bytes!("a\nb\nc"))); let mut reader = BufferedReader::with_capacity(2, in_buf); assert_eq!(reader.read_line(), Ok("a\n".to_owned())); assert_eq!(reader.read_line(), Ok("b\n".to_owned())); assert_eq!(reader.read_line(), Ok("c".to_owned())); assert!(reader.read_line().is_err()); } #[test] fn test_lines() { let in_buf = MemReader::new(Vec::from_slice(bytes!("a\nb\nc"))); let mut reader = BufferedReader::with_capacity(2, in_buf); let mut it = reader.lines(); assert_eq!(it.next(), Some(Ok("a\n".to_owned()))); assert_eq!(it.next(), Some(Ok("b\n".to_owned()))); assert_eq!(it.next(), Some(Ok("c".to_owned()))); assert_eq!(it.next(), None); } #[test] fn test_short_reads() { let inner = ShortReader{lengths: vec![0, 1, 2, 0, 1, 0]}; let mut reader = BufferedReader::new(inner); let mut buf = [0, 0]; assert_eq!(reader.read(buf), Ok(0)); assert_eq!(reader.read(buf), Ok(1)); assert_eq!(reader.read(buf), Ok(2)); assert_eq!(reader.read(buf), Ok(0)); assert_eq!(reader.read(buf), Ok(1)); assert_eq!(reader.read(buf), Ok(0)); assert!(reader.read(buf).is_err()); } #[test] fn read_char_buffered() { let buf = [195u8, 159u8]; let mut reader = BufferedReader::with_capacity(1, BufReader::new(buf)); assert_eq!(reader.read_char(), Ok('ß')); } #[test] fn test_chars() { let buf = [195u8, 159u8, 'a' as u8]; let mut reader = BufferedReader::with_capacity(1, BufReader::new(buf)); let mut it = reader.chars(); assert_eq!(it.next(), Some(Ok('ß'))); assert_eq!(it.next(), Some(Ok('a'))); assert_eq!(it.next(), None); } #[test] #[should_fail] fn dont_fail_in_drop_on_failed_flush() { struct FailFlushWriter; impl Writer for FailFlushWriter { fn write(&mut self, _buf: &[u8]) -> IoResult<()> { Ok(()) } fn flush(&mut self) -> IoResult<()> { Err(io::standard_error(EndOfFile)) } } let writer = FailFlushWriter; let _writer = BufferedWriter::new(writer); // Trigger failure. If writer fails *again* due to the flush // error then the process will abort. fail!(); } #[bench] fn bench_buffered_reader(b: &mut Bencher) { b.iter(|| { BufferedReader::new(NullStream) }); } #[bench] fn bench_buffered_writer(b: &mut Bencher) { b.iter(|| { BufferedWriter::new(NullStream) }); } #[bench] fn bench_buffered_stream(b: &mut Bencher) { b.iter(|| { BufferedStream::new(NullStream); }); } }