iface iterable {
fn iter(blk: fn(A));
}
impl of iterable for fn@(fn(A)) {
fn iter(blk: fn(A)) {
self(blk);
}
}
// accomodate the fact that int/uint are passed by value by default:
impl of iterable for fn@(fn(int)) {
fn iter(blk: fn(&&int)) {
self {|i| blk(i)}
}
}
impl of iterable for fn@(fn(uint)) {
fn iter(blk: fn(&&uint)) {
self {|i| blk(i)}
}
}
impl of iterable for [A] {
fn iter(blk: fn(A)) {
vec::iter(self, blk)
}
}
impl of iterable for option {
fn iter(blk: fn(A)) {
option::may(self, blk)
}
}
impl of iterable for str {
fn iter(blk: fn(&&char)) {
str::chars_iter(self) { |ch| blk(ch) }
}
}
fn enumerate>(self: IA, blk: fn(uint, A)) {
let i = 0u;
self.iter {|a|
blk(i, a);
i += 1u;
}
}
// Here: we have to use fn@ for predicates and map functions, because
// we will be binding them up into a closure. Disappointing. A true
// region type system might be able to do better than this.
fn filter>(self: IA, prd: fn@(A) -> bool, blk: fn(A)) {
self.iter {|a|
if prd(a) { blk(a) }
}
}
fn map>(self: IA, cnv: fn@(A) -> B, blk: fn(B)) {
self.iter {|a|
let b = cnv(a);
blk(b);
}
}
fn flat_map,IB:iterable>(
self: IA, cnv: fn@(A) -> IB, blk: fn(B)) {
self.iter {|a|
cnv(a).iter(blk)
}
}
fn foldl>(self: IA, +b0: B, blk: fn(-B, A) -> B) -> B {
let b <- b0;
self.iter {|a|
b = blk(b, a);
}
ret b;
}
fn foldr>(
self: IA, +b0: B, blk: fn(A, -B) -> B) -> B {
let b <- b0;
reversed(self) {|a|
b = blk(a, b);
}
ret b;
}
fn to_list>(self: IA) -> [A] {
foldl::(self, [], {|r, a| r + [a]})
}
// FIXME: This could be made more efficient with an riterable interface
fn reversed>(self: IA, blk: fn(A)) {
vec::riter(to_list(self), blk)
}
fn count>(self: IA, x: A) -> uint {
foldl(self, 0u) {|count, value|
if value == x {
count + 1u
} else {
count
}
}
}
fn repeat(times: uint, blk: fn()) {
let i = 0u;
while i < times {
blk();
i += 1u;
}
}
fn min>(self: IA) -> A {
alt foldl::,IA>(self, none) {|a, b|
alt a {
some(a_) if a_ < b {
// FIXME: Not sure if this is successfully optimized to a move
a
}
_ { some(b) }
}
} {
some(val) { val }
none { fail "min called on empty iterator" }
}
}
fn max>(self: IA) -> A {
alt foldl::,IA>(self, none) {|a, b|
alt a {
some(a_) if a_ > b {
// FIXME: Not sure if this is successfully optimized to a move
a
}
_ { some(b) }
}
} {
some(val) { val }
none { fail "max called on empty iterator" }
}
}
#[test]
fn test_enumerate() {
enumerate(["0", "1", "2"]) {|i,j|
assert #fmt["%u",i] == j;
}
}
#[test]
fn test_map_and_to_list() {
let a = bind vec::iter([0, 1, 2], _);
let b = bind map(a, {|i| i*2}, _);
let c = to_list(b);
assert c == [0, 2, 4];
}
#[test]
fn test_map_directly_on_vec() {
let b = bind map([0, 1, 2], {|i| i*2}, _);
let c = to_list(b);
assert c == [0, 2, 4];
}
#[test]
fn test_filter_on_int_range() {
fn is_even(&&i: int) -> bool {
ret (i % 2) == 0;
}
let l = to_list(bind filter(bind int::range(0, 10, _), is_even, _));
assert l == [0, 2, 4, 6, 8];
}
#[test]
fn test_filter_on_uint_range() {
fn is_even(&&i: uint) -> bool {
ret (i % 2u) == 0u;
}
let l = to_list(bind filter(bind uint::range(0u, 10u, _), is_even, _));
assert l == [0u, 2u, 4u, 6u, 8u];
}
#[test]
fn test_flat_map_with_option() {
fn if_even(&&i: int) -> option {
if (i % 2) == 0 { some(i) }
else { none }
}
let a = bind vec::iter([0, 1, 2], _);
let b = bind flat_map(a, if_even, _);
let c = to_list(b);
assert c == [0, 2];
}
#[test]
fn test_flat_map_with_list() {
fn repeat(&&i: int) -> [int] {
let r = [];
int::range(0, i) {|_j| r += [i]; }
r
}
let a = bind vec::iter([0, 1, 2, 3], _);
let b = bind flat_map(a, repeat, _);
let c = to_list(b);
#debug["c = %?", c];
assert c == [1, 2, 2, 3, 3, 3];
}
#[test]
fn test_repeat() {
let c = [],
i = 0u;
repeat(5u) {||
c += [(i * i)];
i += 1u;
};
#debug["c = %?", c];
assert c == [0u, 1u, 4u, 9u, 16u];
}
#[test]
fn test_min() {
assert min([5, 4, 1, 2, 3]) == 1;
}
#[test]
#[should_fail]
#[ignore(cfg(target_os = "win32"))]
fn test_min_empty() {
min::([]);
}
#[test]
fn test_max() {
assert max([1, 2, 4, 2, 3]) == 4;
}
#[test]
#[should_fail]
#[ignore(cfg(target_os = "win32"))]
fn test_max_empty() {
max::([]);
}
#[test]
fn test_reversed() {
assert to_list(bind reversed([1, 2, 3], _)) == [3, 2, 1];
}
#[test]
fn test_count() {
assert count([1, 2, 1, 2, 1], 1) == 3u;
}
#[test]
fn test_foldr() {
fn sub(&&a: int, -b: int) -> int {
a - b
}
let sum = foldr([1, 2, 3, 4], 0, sub);
assert sum == -2;
}