// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use json; use sha1; use serialize::{Encoder, Encodable, Decoder, Decodable}; use core::either::{Either, Left, Right}; use core::io; use core::option; use core::pipes::{recv, oneshot, PortOne, send_one}; use core::result; use core::send_map::linear::LinearMap; use core::task; use core::to_bytes; /** * * This is a loose clone of the fbuild build system, made a touch more * generic (not wired to special cases on files) and much less metaprogram-y * due to rust's comparative weakness there, relative to python. * * It's based around _imperative bulids_ that happen to have some function * calls cached. That is, it's _just_ a mechanism for describing cached * functions. This makes it much simpler and smaller than a "build system" * that produces an IR and evaluates it. The evaluation order is normal * function calls. Some of them just return really quickly. * * A cached function consumes and produces a set of _works_. A work has a * name, a kind (that determines how the value is to be checked for * freshness) and a value. Works must also be (de)serializable. Some * examples of works: * * kind name value * ------------------------ * cfg os linux * file foo.c * url foo.com * * Works are conceptually single units, but we store them most of the time * in maps of the form (type,name) => value. These are WorkMaps. * * A cached function divides the works it's interested up into inputs and * outputs, and subdivides those into declared (input and output) works and * discovered (input and output) works. * * A _declared_ input or output is one that is given to the workcache before * any work actually happens, in the "prep" phase. Even when a function's * work-doing part (the "exec" phase) never gets called, it has declared * inputs and outputs, which can be checked for freshness (and potentially * used to determine that the function can be skipped). * * The workcache checks _all_ works for freshness, but uses the set of * discovered outputs from the _previous_ exec (which it will re-discover * and re-record each time the exec phase runs). * * Therefore the discovered works cached in the db might be a * mis-approximation of the current discoverable works, but this is ok for * the following reason: we assume that if an artifact A changed from * depending on B,C,D to depending on B,C,D,E, then A itself changed (as * part of the change-in-dependencies), so we will be ok. * * Each function has a single discriminated output work called its _result_. * This is only different from other works in that it is returned, by value, * from a call to the cacheable function; the other output works are used in * passing to invalidate dependencies elsewhere in the cache, but do not * otherwise escape from a function invocation. Most functions only have one * output work anyways. * * A database (the central store of a workcache) stores a mappings: * * (fn_name,{declared_input}) => ({declared_output},{discovered_input}, * {discovered_output},result) * */ #[deriving_eq] struct WorkKey { kind: ~str, name: ~str } impl WorkKey: to_bytes::IterBytes { #[inline(always)] pure fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { let mut flag = true; self.kind.iter_bytes(lsb0, |bytes| {flag = f(bytes); flag}); if !flag { return; } self.name.iter_bytes(lsb0, f); } } impl WorkKey { static fn new(kind: &str, name: &str) -> WorkKey { WorkKey { kind: kind.to_owned(), name: name.to_owned() } } } type WorkMap = LinearMap; struct Database { // XXX: Fill in. a: () } impl Database { pure fn prepare(_fn_name: &str, _declared_inputs: &const WorkMap, _declared_outputs: &const WorkMap) -> Option<(WorkMap, WorkMap, ~str)> { // XXX: load None } pure fn cache(_fn_name: &str, _declared_inputs: &WorkMap, _declared_outputs: &WorkMap, _discovered_inputs: &WorkMap, _discovered_outputs: &WorkMap, _result: &str) { // XXX: store } } struct Logger { // XXX: Fill in a: () } impl Logger { pure fn info(i: &str) { unsafe { io::println(~"workcache: " + i.to_owned()); } } } struct Context { db: @Database, logger: @Logger, cfg: @json::Object, freshness: LinearMap<~str,@pure fn(&str,&str)->bool> } struct Prep { ctxt: @Context, fn_name: ~str, declared_inputs: WorkMap, declared_outputs: WorkMap } struct Exec { discovered_inputs: WorkMap, discovered_outputs: WorkMap } struct Work { prep: @mut Prep, res: Option>> } fn digest Decodable>(t: &T) -> ~str { let sha = sha1::sha1(); let s = do io::with_str_writer |wr| { // XXX: sha1 should be a writer itself, shouldn't // go via strings. t.encode(&json::Encoder(wr)); }; sha.input_str(s); sha.result_str() } fn digest_file(path: &Path) -> ~str { let sha = sha1::sha1(); let s = io::read_whole_file_str(path); sha.input_str(*s.get_ref()); sha.result_str() } impl Context { static fn new(db: @Database, lg: @Logger, cfg: @json::Object) -> Context { Context {db: db, logger: lg, cfg: cfg, freshness: LinearMap()} } fn prep Decodable>( @self, fn_name:&str, blk: fn((@mut Prep))->Work) -> Work { let p = @mut Prep {ctxt: self, fn_name: fn_name.to_owned(), declared_inputs: LinearMap(), declared_outputs: LinearMap()}; blk(p) } } impl Prep { fn declare_input(&mut self, kind:&str, name:&str, val:&str) { self.declared_inputs.insert(WorkKey::new(kind, name), val.to_owned()); } fn declare_output(&mut self, kind:&str, name:&str, val:&str) { self.declared_outputs.insert(WorkKey::new(kind, name), val.to_owned()); } pure fn is_fresh(cat: &str, kind: &str, name: &str, val: &str) -> bool { let k = kind.to_owned(); let f = (self.ctxt.freshness.get(&k))(name, val); if f { self.ctxt.logger.info(fmt!("%s %s:%s is fresh", cat, kind, name)); } else { self.ctxt.logger.info(fmt!("%s %s:%s is not fresh", cat, kind, name)) } return f; } pure fn all_fresh(cat: &str, map: WorkMap) -> bool { for map.each |k,v| { if ! self.is_fresh(cat, k.kind, k.name, *v) { return false; } } return true; } fn exec Decodable>( @mut self, blk: ~fn(&Exec) -> T) -> Work { let cached = self.ctxt.db.prepare(self.fn_name, &self.declared_inputs, &self.declared_outputs); match move cached { None => (), Some((move disc_in, move disc_out, move res)) => { if self.all_fresh("declared input", self.declared_inputs) && self.all_fresh("declared output", self.declared_outputs) && self.all_fresh("discovered input", disc_in) && self.all_fresh("discovered output", disc_out) { let v : T = do io::with_str_reader(res) |rdr| { let j = result::unwrap(json::from_reader(rdr)); Decodable::decode(&json::Decoder(move j)) }; return Work::new(self, move Left(move v)); } } } let (chan, port) = oneshot::init(); let chan = ~mut Some(move chan); do task::spawn |move blk, move chan| { let exe = Exec { discovered_inputs: LinearMap(), discovered_outputs: LinearMap() }; let chan = option::swap_unwrap(&mut *chan); let v = blk(&exe); send_one(move chan, (move exe, move v)); } Work::new(self, move Right(move port)) } } impl Decodable> Work { static fn new(p: @mut Prep, e: Either>) -> Work { move Work { prep: p, res: Some(move e) } } } // FIXME (#3724): movable self. This should be in impl Work. fn unwrap Decodable>(w: Work) -> T { let mut ww = move w; let mut s = None; ww.res <-> s; match move s { None => fail, Some(Left(move v)) => move v, Some(Right(move port)) => { let (exe, v) = match recv(move port) { oneshot::send(move data) => move data }; let s = do io::with_str_writer |wr| { v.encode(&json::Encoder(wr)); }; ww.prep.ctxt.db.cache(ww.prep.fn_name, &ww.prep.declared_inputs, &ww.prep.declared_outputs, &exe.discovered_inputs, &exe.discovered_outputs, s); move v } } } #[test] fn test() { use io::WriterUtil; let db = @Database { a: () }; let lg = @Logger { a: () }; let cfg = @LinearMap(); let cx = @Context::new(db, lg, cfg); let w:Work<~str> = do cx.prep("test1") |prep| { let pth = Path("foo.c"); { let file = io::file_writer(&pth, [io::Create]).get(); file.write_str("int main() { return 0; }"); } prep.declare_input("file", pth.to_str(), digest_file(&pth)); do prep.exec |_exe| { let out = Path("foo.o"); run::run_program("gcc", [~"foo.c", ~"-o", out.to_str()]); move out.to_str() } }; let s = unwrap(move w); io::println(s); }