use super::{AnonymousLifetimeMode, ImplTraitContext, LoweringContext, ParamMode}; use super::{GenericArgsCtor, ParenthesizedGenericArgs}; use rustc::lint::builtin::ELIDED_LIFETIMES_IN_PATHS; use rustc::span_bug; use rustc_errors::{struct_span_err, Applicability}; use rustc_hir as hir; use rustc_hir::def::{DefKind, PartialRes, Res}; use rustc_hir::def_id::DefId; use rustc_hir::GenericArg; use rustc_session::lint::BuiltinLintDiagnostics; use rustc_span::Span; use syntax::ast::{self, *}; use log::debug; use smallvec::smallvec; impl<'a, 'hir> LoweringContext<'a, 'hir> { crate fn lower_qpath( &mut self, id: NodeId, qself: &Option, p: &Path, param_mode: ParamMode, mut itctx: ImplTraitContext<'_, 'hir>, ) -> hir::QPath<'hir> { let qself_position = qself.as_ref().map(|q| q.position); let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow())); let partial_res = self.resolver.get_partial_res(id).unwrap_or_else(|| PartialRes::new(Res::Err)); let proj_start = p.segments.len() - partial_res.unresolved_segments(); let path = self.arena.alloc(hir::Path { res: self.lower_res(partial_res.base_res()), segments: self.arena.alloc_from_iter(p.segments[..proj_start].iter().enumerate().map( |(i, segment)| { let param_mode = match (qself_position, param_mode) { (Some(j), ParamMode::Optional) if i < j => { // This segment is part of the trait path in a // qualified path - one of `a`, `b` or `Trait` // in `::T::U::method`. ParamMode::Explicit } _ => param_mode, }; // Figure out if this is a type/trait segment, // which may need lifetime elision performed. let parent_def_id = |this: &mut Self, def_id: DefId| DefId { krate: def_id.krate, index: this.resolver.def_key(def_id).parent.expect("missing parent"), }; let type_def_id = match partial_res.base_res() { Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => { Some(parent_def_id(self, def_id)) } Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => { Some(parent_def_id(self, def_id)) } Res::Def(DefKind::Struct, def_id) | Res::Def(DefKind::Union, def_id) | Res::Def(DefKind::Enum, def_id) | Res::Def(DefKind::TyAlias, def_id) | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start => { Some(def_id) } _ => None, }; let parenthesized_generic_args = match partial_res.base_res() { // `a::b::Trait(Args)` Res::Def(DefKind::Trait, _) if i + 1 == proj_start => { ParenthesizedGenericArgs::Ok } // `a::b::Trait(Args)::TraitItem` Res::Def(DefKind::Method, _) | Res::Def(DefKind::AssocConst, _) | Res::Def(DefKind::AssocTy, _) if i + 2 == proj_start => { ParenthesizedGenericArgs::Ok } // Avoid duplicated errors. Res::Err => ParenthesizedGenericArgs::Ok, // An error _ => ParenthesizedGenericArgs::Err, }; let num_lifetimes = type_def_id.map_or(0, |def_id| { if let Some(&n) = self.type_def_lifetime_params.get(&def_id) { return n; } assert!(!def_id.is_local()); let n = self.resolver.item_generics_num_lifetimes(def_id, self.sess); self.type_def_lifetime_params.insert(def_id, n); n }); self.lower_path_segment( p.span, segment, param_mode, num_lifetimes, parenthesized_generic_args, itctx.reborrow(), None, ) }, )), span: p.span, }); // Simple case, either no projections, or only fully-qualified. // E.g., `std::mem::size_of` or `::Item`. if partial_res.unresolved_segments() == 0 { return hir::QPath::Resolved(qself, path); } // Create the innermost type that we're projecting from. let mut ty = if path.segments.is_empty() { // If the base path is empty that means there exists a // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`. qself.expect("missing QSelf for ::...") } else { // Otherwise, the base path is an implicit `Self` type path, // e.g., `Vec` in `Vec::new` or `::Item` in // `::Item::default`. let new_id = self.next_id(); self.arena.alloc(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path))) }; // Anything after the base path are associated "extensions", // out of which all but the last one are associated types, // e.g., for `std::vec::Vec::::IntoIter::Item::clone`: // * base path is `std::vec::Vec` // * "extensions" are `IntoIter`, `Item` and `clone` // * type nodes are: // 1. `std::vec::Vec` (created above) // 2. `>::IntoIter` // 3. `<>::IntoIter>::Item` // * final path is `<<>::IntoIter>::Item>::clone` for (i, segment) in p.segments.iter().enumerate().skip(proj_start) { let segment = self.arena.alloc(self.lower_path_segment( p.span, segment, param_mode, 0, ParenthesizedGenericArgs::Err, itctx.reborrow(), None, )); let qpath = hir::QPath::TypeRelative(ty, segment); // It's finished, return the extension of the right node type. if i == p.segments.len() - 1 { return qpath; } // Wrap the associated extension in another type node. let new_id = self.next_id(); ty = self.arena.alloc(self.ty_path(new_id, p.span, qpath)); } // We should've returned in the for loop above. span_bug!( p.span, "lower_qpath: no final extension segment in {}..{}", proj_start, p.segments.len() ) } crate fn lower_path_extra( &mut self, res: Res, p: &Path, param_mode: ParamMode, explicit_owner: Option, ) -> &'hir hir::Path<'hir> { self.arena.alloc(hir::Path { res, segments: self.arena.alloc_from_iter(p.segments.iter().map(|segment| { self.lower_path_segment( p.span, segment, param_mode, 0, ParenthesizedGenericArgs::Err, ImplTraitContext::disallowed(), explicit_owner, ) })), span: p.span, }) } crate fn lower_path( &mut self, id: NodeId, p: &Path, param_mode: ParamMode, ) -> &'hir hir::Path<'hir> { let res = self.expect_full_res(id); let res = self.lower_res(res); self.lower_path_extra(res, p, param_mode, None) } crate fn lower_path_segment( &mut self, path_span: Span, segment: &PathSegment, param_mode: ParamMode, expected_lifetimes: usize, parenthesized_generic_args: ParenthesizedGenericArgs, itctx: ImplTraitContext<'_, 'hir>, explicit_owner: Option, ) -> hir::PathSegment<'hir> { let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args { let msg = "parenthesized type parameters may only be used with a `Fn` trait"; match **generic_args { GenericArgs::AngleBracketed(ref data) => { self.lower_angle_bracketed_parameter_data(data, param_mode, itctx) } GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args { ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data), ParenthesizedGenericArgs::Err => { let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg); err.span_label(data.span, "only `Fn` traits may use parentheses"); if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) { // Do not suggest going from `Trait()` to `Trait<>` if data.inputs.len() > 0 { if let Some(split) = snippet.find('(') { let trait_name = &snippet[0..split]; let args = &snippet[split + 1..snippet.len() - 1]; err.span_suggestion( data.span, "use angle brackets instead", format!("{}<{}>", trait_name, args), Applicability::MaybeIncorrect, ); } } }; err.emit(); ( self.lower_angle_bracketed_parameter_data( &data.as_angle_bracketed_args(), param_mode, itctx, ) .0, false, ) } }, } } else { self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx) }; let has_lifetimes = generic_args.args.iter().any(|arg| match arg { GenericArg::Lifetime(_) => true, _ => false, }); let first_generic_span = generic_args .args .iter() .map(|a| a.span()) .chain(generic_args.bindings.iter().map(|b| b.span)) .next(); if !generic_args.parenthesized && !has_lifetimes { generic_args.args = self .elided_path_lifetimes(path_span, expected_lifetimes) .map(|lt| GenericArg::Lifetime(lt)) .chain(generic_args.args.into_iter()) .collect(); if expected_lifetimes > 0 && param_mode == ParamMode::Explicit { let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", "); let no_non_lt_args = generic_args.args.len() == expected_lifetimes; let no_bindings = generic_args.bindings.is_empty(); let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings { // If there are no (non-implicit) generic args or associated type // bindings, our suggestion includes the angle brackets. (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion)) } else { // Otherwise (sorry, this is kind of gross) we need to infer the // place to splice in the `'_, ` from the generics that do exist. let first_generic_span = first_generic_span .expect("already checked that non-lifetime args or bindings exist"); (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion)) }; match self.anonymous_lifetime_mode { // In create-parameter mode we error here because we don't want to support // deprecated impl elision in new features like impl elision and `async fn`, // both of which work using the `CreateParameter` mode: // // impl Foo for std::cell::Ref // note lack of '_ // async fn foo(_: std::cell::Ref) { ... } AnonymousLifetimeMode::CreateParameter => { let mut err = struct_span_err!( self.sess, path_span, E0726, "implicit elided lifetime not allowed here" ); rustc::lint::add_elided_lifetime_in_path_suggestion( &self.sess, &mut err, expected_lifetimes, path_span, incl_angl_brckt, insertion_sp, suggestion, ); err.emit(); } AnonymousLifetimeMode::PassThrough | AnonymousLifetimeMode::ReportError => { self.resolver.lint_buffer().buffer_lint_with_diagnostic( ELIDED_LIFETIMES_IN_PATHS, CRATE_NODE_ID, path_span, "hidden lifetime parameters in types are deprecated", BuiltinLintDiagnostics::ElidedLifetimesInPaths( expected_lifetimes, path_span, incl_angl_brckt, insertion_sp, suggestion, ), ); } } } } let res = self.expect_full_res(segment.id); let id = if let Some(owner) = explicit_owner { self.lower_node_id_with_owner(segment.id, owner) } else { self.lower_node_id(segment.id) }; debug!( "lower_path_segment: ident={:?} original-id={:?} new-id={:?}", segment.ident, segment.id, id, ); hir::PathSegment { ident: segment.ident, hir_id: Some(id), res: Some(self.lower_res(res)), infer_args, args: if generic_args.is_empty() { None } else { Some(self.arena.alloc(generic_args.into_generic_args(self.arena))) }, } } fn lower_angle_bracketed_parameter_data( &mut self, data: &AngleBracketedArgs, param_mode: ParamMode, mut itctx: ImplTraitContext<'_, 'hir>, ) -> (GenericArgsCtor<'hir>, bool) { let &AngleBracketedArgs { ref args, ref constraints, .. } = data; let has_non_lt_args = args.iter().any(|arg| match arg { ast::GenericArg::Lifetime(_) => false, ast::GenericArg::Type(_) => true, ast::GenericArg::Const(_) => true, }); ( GenericArgsCtor { args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(), bindings: self.arena.alloc_from_iter( constraints.iter().map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow())), ), parenthesized: false, }, !has_non_lt_args && param_mode == ParamMode::Optional, ) } fn lower_parenthesized_parameter_data( &mut self, data: &ParenthesizedArgs, ) -> (GenericArgsCtor<'hir>, bool) { // Switch to `PassThrough` mode for anonymous lifetimes; this // means that we permit things like `&Ref`, where `Ref` has // a hidden lifetime parameter. This is needed for backwards // compatibility, even in contexts like an impl header where // we generally don't permit such things (see #51008). self.with_anonymous_lifetime_mode(AnonymousLifetimeMode::PassThrough, |this| { let &ParenthesizedArgs { ref inputs, ref output, span } = data; let inputs = this.arena.alloc_from_iter( inputs.iter().map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed())), ); let output_ty = match output { FnRetTy::Ty(ty) => this.lower_ty(&ty, ImplTraitContext::disallowed()), FnRetTy::Default(_) => this.arena.alloc(this.ty_tup(span, &[])), }; let args = smallvec![GenericArg::Type(this.ty_tup(span, inputs))]; let binding = this.output_ty_binding(output_ty.span, output_ty); ( GenericArgsCtor { args, bindings: arena_vec![this; binding], parenthesized: true }, false, ) }) } /// An associated type binding `Output = $ty`. crate fn output_ty_binding( &mut self, span: Span, ty: &'hir hir::Ty<'hir>, ) -> hir::TypeBinding<'hir> { let ident = Ident::with_dummy_span(hir::FN_OUTPUT_NAME); let kind = hir::TypeBindingKind::Equality { ty }; hir::TypeBinding { hir_id: self.next_id(), span, ident, kind } } }