// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm; use llvm::{ContextRef, ModuleRef, ValueRef, BuilderRef}; use middle::cstore::LinkMeta; use middle::def::ExportMap; use middle::def_id::DefId; use middle::traits; use rustc_mir::mir_map::MirMap; use trans::adt; use trans::base; use trans::builder::Builder; use trans::common::{ExternMap,BuilderRef_res}; use trans::debuginfo; use trans::declare; use trans::glue::DropGlueKind; use trans::monomorphize::MonoId; use trans::type_::{Type, TypeNames}; use middle::subst::Substs; use middle::ty::{self, Ty}; use session::config::NoDebugInfo; use session::Session; use util::sha2::Sha256; use util::nodemap::{NodeMap, NodeSet, DefIdMap, FnvHashMap, FnvHashSet}; use std::ffi::CString; use std::cell::{Cell, RefCell}; use std::ptr; use std::rc::Rc; use syntax::ast; use syntax::parse::token::InternedString; pub struct Stats { pub n_glues_created: Cell, pub n_null_glues: Cell, pub n_real_glues: Cell, pub n_fns: Cell, pub n_monos: Cell, pub n_inlines: Cell, pub n_closures: Cell, pub n_llvm_insns: Cell, pub llvm_insns: RefCell>, // (ident, llvm-instructions) pub fn_stats: RefCell >, } /// The shared portion of a `CrateContext`. There is one `SharedCrateContext` /// per crate. The data here is shared between all compilation units of the /// crate, so it must not contain references to any LLVM data structures /// (aside from metadata-related ones). pub struct SharedCrateContext<'a, 'tcx: 'a> { local_ccxs: Vec>, metadata_llmod: ModuleRef, metadata_llcx: ContextRef, export_map: ExportMap, reachable: NodeSet, item_symbols: RefCell>, link_meta: LinkMeta, symbol_hasher: RefCell, tcx: &'a ty::ctxt<'tcx>, stats: Stats, check_overflow: bool, check_drop_flag_for_sanity: bool, mir_map: &'a MirMap<'tcx>, available_drop_glues: RefCell, String>>, use_dll_storage_attrs: bool, } /// The local portion of a `CrateContext`. There is one `LocalCrateContext` /// per compilation unit. Each one has its own LLVM `ContextRef` so that /// several compilation units may be optimized in parallel. All other LLVM /// data structures in the `LocalCrateContext` are tied to that `ContextRef`. pub struct LocalCrateContext<'tcx> { llmod: ModuleRef, llcx: ContextRef, tn: TypeNames, externs: RefCell, item_vals: RefCell>, needs_unwind_cleanup_cache: RefCell, bool>>, fn_pointer_shims: RefCell, ValueRef>>, drop_glues: RefCell, ValueRef>>, /// Track mapping of external ids to local items imported for inlining external: RefCell>>, /// Backwards version of the `external` map (inlined items to where they /// came from) external_srcs: RefCell>, /// Cache instances of monomorphized functions monomorphized: RefCell, ValueRef>>, monomorphizing: RefCell>, available_monomorphizations: RefCell>, /// Cache generated vtables vtables: RefCell, ValueRef>>, /// Cache of constant strings, const_cstr_cache: RefCell>, /// Reverse-direction for const ptrs cast from globals. /// Key is a ValueRef holding a *T, /// Val is a ValueRef holding a *[T]. /// /// Needed because LLVM loses pointer->pointee association /// when we ptrcast, and we have to ptrcast during translation /// of a [T] const because we form a slice, a (*T,usize) pair, not /// a pointer to an LLVM array type. Similar for trait objects. const_unsized: RefCell>, /// Cache of emitted const globals (value -> global) const_globals: RefCell>, /// Cache of emitted const values const_values: RefCell), ValueRef>>, /// Cache of external const values extern_const_values: RefCell>, impl_method_cache: RefCell>, /// Cache of closure wrappers for bare fn's. closure_bare_wrapper_cache: RefCell>, /// List of globals for static variables which need to be passed to the /// LLVM function ReplaceAllUsesWith (RAUW) when translation is complete. /// (We have to make sure we don't invalidate any ValueRefs referring /// to constants.) statics_to_rauw: RefCell>, lltypes: RefCell, Type>>, llsizingtypes: RefCell, Type>>, adt_reprs: RefCell, Rc>>>, type_hashcodes: RefCell, String>>, int_type: Type, opaque_vec_type: Type, builder: BuilderRef_res, /// Holds the LLVM values for closure IDs. closure_vals: RefCell, ValueRef>>, dbg_cx: Option>, eh_personality: RefCell>, eh_unwind_resume: RefCell>, rust_try_fn: RefCell>, intrinsics: RefCell>, /// Number of LLVM instructions translated into this `LocalCrateContext`. /// This is used to perform some basic load-balancing to keep all LLVM /// contexts around the same size. n_llvm_insns: Cell, /// Depth of the current type-of computation - used to bail out type_of_depth: Cell, trait_cache: RefCell, traits::Vtable<'tcx, ()>>>, } pub struct CrateContext<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, local: &'a LocalCrateContext<'tcx>, /// The index of `local` in `shared.local_ccxs`. This is used in /// `maybe_iter(true)` to identify the original `LocalCrateContext`. index: usize, } pub struct CrateContextIterator<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, index: usize, } impl<'a, 'tcx> Iterator for CrateContextIterator<'a,'tcx> { type Item = CrateContext<'a, 'tcx>; fn next(&mut self) -> Option> { if self.index >= self.shared.local_ccxs.len() { return None; } let index = self.index; self.index += 1; Some(CrateContext { shared: self.shared, local: &self.shared.local_ccxs[index], index: index, }) } } /// The iterator produced by `CrateContext::maybe_iter`. pub struct CrateContextMaybeIterator<'a, 'tcx: 'a> { shared: &'a SharedCrateContext<'a, 'tcx>, index: usize, single: bool, origin: usize, } impl<'a, 'tcx> Iterator for CrateContextMaybeIterator<'a, 'tcx> { type Item = (CrateContext<'a, 'tcx>, bool); fn next(&mut self) -> Option<(CrateContext<'a, 'tcx>, bool)> { if self.index >= self.shared.local_ccxs.len() { return None; } let index = self.index; self.index += 1; if self.single { self.index = self.shared.local_ccxs.len(); } let ccx = CrateContext { shared: self.shared, local: &self.shared.local_ccxs[index], index: index, }; Some((ccx, index == self.origin)) } } unsafe fn create_context_and_module(sess: &Session, mod_name: &str) -> (ContextRef, ModuleRef) { let llcx = llvm::LLVMContextCreate(); let mod_name = CString::new(mod_name).unwrap(); let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx); if let Some(ref custom_data_layout) = sess.target.target.options.data_layout { let data_layout = CString::new(&custom_data_layout[..]).unwrap(); llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr()); } else { let tm = ::back::write::create_target_machine(sess); llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm); llvm::LLVMRustDisposeTargetMachine(tm); } let llvm_target = sess.target.target.llvm_target.as_bytes(); let llvm_target = CString::new(llvm_target).unwrap(); llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr()); (llcx, llmod) } impl<'b, 'tcx> SharedCrateContext<'b, 'tcx> { pub fn new(crate_name: &str, local_count: usize, tcx: &'b ty::ctxt<'tcx>, mir_map: &'b MirMap<'tcx>, export_map: ExportMap, symbol_hasher: Sha256, link_meta: LinkMeta, reachable: NodeSet, check_overflow: bool, check_drop_flag_for_sanity: bool) -> SharedCrateContext<'b, 'tcx> { let (metadata_llcx, metadata_llmod) = unsafe { create_context_and_module(&tcx.sess, "metadata") }; // An interesting part of Windows which MSVC forces our hand on (and // apparently MinGW didn't) is the usage of `dllimport` and `dllexport` // attributes in LLVM IR as well as native dependencies (in C these // correspond to `__declspec(dllimport)`). // // Whenever a dynamic library is built by MSVC it must have its public // interface specified by functions tagged with `dllexport` or otherwise // they're not available to be linked against. This poses a few problems // for the compiler, some of which are somewhat fundamental, but we use // the `use_dll_storage_attrs` variable below to attach the `dllexport` // attribute to all LLVM functions that are reachable (e.g. they're // already tagged with external linkage). This is suboptimal for a few // reasons: // // * If an object file will never be included in a dynamic library, // there's no need to attach the dllexport attribute. Most object // files in Rust are not destined to become part of a dll as binaries // are statically linked by default. // * If the compiler is emitting both an rlib and a dylib, the same // source object file is currently used but with MSVC this may be less // feasible. The compiler may be able to get around this, but it may // involve some invasive changes to deal with this. // // The flipside of this situation is that whenever you link to a dll and // you import a function from it, the import should be tagged with // `dllimport`. At this time, however, the compiler does not emit // `dllimport` for any declarations other than constants (where it is // required), which is again suboptimal for even more reasons! // // * Calling a function imported from another dll without using // `dllimport` causes the linker/compiler to have extra overhead (one // `jmp` instruction on x86) when calling the function. // * The same object file may be used in different circumstances, so a // function may be imported from a dll if the object is linked into a // dll, but it may be just linked against if linked into an rlib. // * The compiler has no knowledge about whether native functions should // be tagged dllimport or not. // // For now the compiler takes the perf hit (I do not have any numbers to // this effect) by marking very little as `dllimport` and praying the // linker will take care of everything. Fixing this problem will likely // require adding a few attributes to Rust itself (feature gated at the // start) and then strongly recommending static linkage on MSVC! let use_dll_storage_attrs = tcx.sess.target.target.options.is_like_msvc; let mut shared_ccx = SharedCrateContext { local_ccxs: Vec::with_capacity(local_count), metadata_llmod: metadata_llmod, metadata_llcx: metadata_llcx, export_map: export_map, reachable: reachable, item_symbols: RefCell::new(NodeMap()), link_meta: link_meta, symbol_hasher: RefCell::new(symbol_hasher), tcx: tcx, mir_map: mir_map, stats: Stats { n_glues_created: Cell::new(0), n_null_glues: Cell::new(0), n_real_glues: Cell::new(0), n_fns: Cell::new(0), n_monos: Cell::new(0), n_inlines: Cell::new(0), n_closures: Cell::new(0), n_llvm_insns: Cell::new(0), llvm_insns: RefCell::new(FnvHashMap()), fn_stats: RefCell::new(Vec::new()), }, check_overflow: check_overflow, check_drop_flag_for_sanity: check_drop_flag_for_sanity, available_drop_glues: RefCell::new(FnvHashMap()), use_dll_storage_attrs: use_dll_storage_attrs, }; for i in 0..local_count { // Append ".rs" to crate name as LLVM module identifier. // // LLVM code generator emits a ".file filename" directive // for ELF backends. Value of the "filename" is set as the // LLVM module identifier. Due to a LLVM MC bug[1], LLVM // crashes if the module identifier is same as other symbols // such as a function name in the module. // 1. http://llvm.org/bugs/show_bug.cgi?id=11479 let llmod_id = format!("{}.{}.rs", crate_name, i); let local_ccx = LocalCrateContext::new(&shared_ccx, &llmod_id[..]); shared_ccx.local_ccxs.push(local_ccx); } shared_ccx } pub fn iter<'a>(&'a self) -> CrateContextIterator<'a, 'tcx> { CrateContextIterator { shared: self, index: 0, } } pub fn get_ccx<'a>(&'a self, index: usize) -> CrateContext<'a, 'tcx> { CrateContext { shared: self, local: &self.local_ccxs[index], index: index, } } fn get_smallest_ccx<'a>(&'a self) -> CrateContext<'a, 'tcx> { let (local_ccx, index) = self.local_ccxs .iter() .zip(0..self.local_ccxs.len()) .min_by_key(|&(local_ccx, _idx)| local_ccx.n_llvm_insns.get()) .unwrap(); CrateContext { shared: self, local: local_ccx, index: index, } } pub fn metadata_llmod(&self) -> ModuleRef { self.metadata_llmod } pub fn metadata_llcx(&self) -> ContextRef { self.metadata_llcx } pub fn export_map<'a>(&'a self) -> &'a ExportMap { &self.export_map } pub fn reachable<'a>(&'a self) -> &'a NodeSet { &self.reachable } pub fn item_symbols<'a>(&'a self) -> &'a RefCell> { &self.item_symbols } pub fn link_meta<'a>(&'a self) -> &'a LinkMeta { &self.link_meta } pub fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx> { self.tcx } pub fn sess<'a>(&'a self) -> &'a Session { &self.tcx.sess } pub fn stats<'a>(&'a self) -> &'a Stats { &self.stats } pub fn use_dll_storage_attrs(&self) -> bool { self.use_dll_storage_attrs } } impl<'tcx> LocalCrateContext<'tcx> { fn new<'a>(shared: &SharedCrateContext<'a, 'tcx>, name: &str) -> LocalCrateContext<'tcx> { unsafe { let (llcx, llmod) = create_context_and_module(&shared.tcx.sess, name); let dbg_cx = if shared.tcx.sess.opts.debuginfo != NoDebugInfo { Some(debuginfo::CrateDebugContext::new(llmod)) } else { None }; let mut local_ccx = LocalCrateContext { llmod: llmod, llcx: llcx, tn: TypeNames::new(), externs: RefCell::new(FnvHashMap()), item_vals: RefCell::new(NodeMap()), needs_unwind_cleanup_cache: RefCell::new(FnvHashMap()), fn_pointer_shims: RefCell::new(FnvHashMap()), drop_glues: RefCell::new(FnvHashMap()), external: RefCell::new(DefIdMap()), external_srcs: RefCell::new(NodeMap()), monomorphized: RefCell::new(FnvHashMap()), monomorphizing: RefCell::new(DefIdMap()), available_monomorphizations: RefCell::new(FnvHashSet()), vtables: RefCell::new(FnvHashMap()), const_cstr_cache: RefCell::new(FnvHashMap()), const_unsized: RefCell::new(FnvHashMap()), const_globals: RefCell::new(FnvHashMap()), const_values: RefCell::new(FnvHashMap()), extern_const_values: RefCell::new(DefIdMap()), impl_method_cache: RefCell::new(FnvHashMap()), closure_bare_wrapper_cache: RefCell::new(FnvHashMap()), statics_to_rauw: RefCell::new(Vec::new()), lltypes: RefCell::new(FnvHashMap()), llsizingtypes: RefCell::new(FnvHashMap()), adt_reprs: RefCell::new(FnvHashMap()), type_hashcodes: RefCell::new(FnvHashMap()), int_type: Type::from_ref(ptr::null_mut()), opaque_vec_type: Type::from_ref(ptr::null_mut()), builder: BuilderRef_res(llvm::LLVMCreateBuilderInContext(llcx)), closure_vals: RefCell::new(FnvHashMap()), dbg_cx: dbg_cx, eh_personality: RefCell::new(None), eh_unwind_resume: RefCell::new(None), rust_try_fn: RefCell::new(None), intrinsics: RefCell::new(FnvHashMap()), n_llvm_insns: Cell::new(0), type_of_depth: Cell::new(0), trait_cache: RefCell::new(FnvHashMap()), }; local_ccx.int_type = Type::int(&local_ccx.dummy_ccx(shared)); local_ccx.opaque_vec_type = Type::opaque_vec(&local_ccx.dummy_ccx(shared)); // Done mutating local_ccx directly. (The rest of the // initialization goes through RefCell.) { let ccx = local_ccx.dummy_ccx(shared); let mut str_slice_ty = Type::named_struct(&ccx, "str_slice"); str_slice_ty.set_struct_body(&[Type::i8p(&ccx), ccx.int_type()], false); ccx.tn().associate_type("str_slice", &str_slice_ty); if ccx.sess().count_llvm_insns() { base::init_insn_ctxt() } } local_ccx } } /// Create a dummy `CrateContext` from `self` and the provided /// `SharedCrateContext`. This is somewhat dangerous because `self` may /// not actually be an element of `shared.local_ccxs`, which can cause some /// operations to panic unexpectedly. /// /// This is used in the `LocalCrateContext` constructor to allow calling /// functions that expect a complete `CrateContext`, even before the local /// portion is fully initialized and attached to the `SharedCrateContext`. fn dummy_ccx<'a>(&'a self, shared: &'a SharedCrateContext<'a, 'tcx>) -> CrateContext<'a, 'tcx> { CrateContext { shared: shared, local: self, index: !0 as usize, } } } impl<'b, 'tcx> CrateContext<'b, 'tcx> { pub fn shared(&self) -> &'b SharedCrateContext<'b, 'tcx> { self.shared } pub fn local(&self) -> &'b LocalCrateContext<'tcx> { self.local } /// Get a (possibly) different `CrateContext` from the same /// `SharedCrateContext`. pub fn rotate(&self) -> CrateContext<'b, 'tcx> { self.shared.get_smallest_ccx() } /// Either iterate over only `self`, or iterate over all `CrateContext`s in /// the `SharedCrateContext`. The iterator produces `(ccx, is_origin)` /// pairs, where `is_origin` is `true` if `ccx` is `self` and `false` /// otherwise. This method is useful for avoiding code duplication in /// cases where it may or may not be necessary to translate code into every /// context. pub fn maybe_iter(&self, iter_all: bool) -> CrateContextMaybeIterator<'b, 'tcx> { CrateContextMaybeIterator { shared: self.shared, index: if iter_all { 0 } else { self.index }, single: !iter_all, origin: self.index, } } pub fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx> { self.shared.tcx } pub fn sess<'a>(&'a self) -> &'a Session { &self.shared.tcx.sess } pub fn builder<'a>(&'a self) -> Builder<'a, 'tcx> { Builder::new(self) } pub fn raw_builder<'a>(&'a self) -> BuilderRef { self.local.builder.b } pub fn get_intrinsic(&self, key: &str) -> ValueRef { if let Some(v) = self.intrinsics().borrow().get(key).cloned() { return v; } match declare_intrinsic(self, key) { Some(v) => return v, None => panic!("unknown intrinsic '{}'", key) } } pub fn llmod(&self) -> ModuleRef { self.local.llmod } pub fn llcx(&self) -> ContextRef { self.local.llcx } pub fn td(&self) -> llvm::TargetDataRef { unsafe { llvm::LLVMRustGetModuleDataLayout(self.llmod()) } } pub fn tn<'a>(&'a self) -> &'a TypeNames { &self.local.tn } pub fn externs<'a>(&'a self) -> &'a RefCell { &self.local.externs } pub fn item_vals<'a>(&'a self) -> &'a RefCell> { &self.local.item_vals } pub fn export_map<'a>(&'a self) -> &'a ExportMap { &self.shared.export_map } pub fn reachable<'a>(&'a self) -> &'a NodeSet { &self.shared.reachable } pub fn item_symbols<'a>(&'a self) -> &'a RefCell> { &self.shared.item_symbols } pub fn link_meta<'a>(&'a self) -> &'a LinkMeta { &self.shared.link_meta } pub fn needs_unwind_cleanup_cache(&self) -> &RefCell, bool>> { &self.local.needs_unwind_cleanup_cache } pub fn fn_pointer_shims(&self) -> &RefCell, ValueRef>> { &self.local.fn_pointer_shims } pub fn drop_glues<'a>(&'a self) -> &'a RefCell, ValueRef>> { &self.local.drop_glues } pub fn external<'a>(&'a self) -> &'a RefCell>> { &self.local.external } pub fn external_srcs<'a>(&'a self) -> &'a RefCell> { &self.local.external_srcs } pub fn monomorphized<'a>(&'a self) -> &'a RefCell, ValueRef>> { &self.local.monomorphized } pub fn monomorphizing<'a>(&'a self) -> &'a RefCell> { &self.local.monomorphizing } pub fn vtables<'a>(&'a self) -> &'a RefCell, ValueRef>> { &self.local.vtables } pub fn const_cstr_cache<'a>(&'a self) -> &'a RefCell> { &self.local.const_cstr_cache } pub fn const_unsized<'a>(&'a self) -> &'a RefCell> { &self.local.const_unsized } pub fn const_globals<'a>(&'a self) -> &'a RefCell> { &self.local.const_globals } pub fn const_values<'a>(&'a self) -> &'a RefCell), ValueRef>> { &self.local.const_values } pub fn extern_const_values<'a>(&'a self) -> &'a RefCell> { &self.local.extern_const_values } pub fn impl_method_cache<'a>(&'a self) -> &'a RefCell> { &self.local.impl_method_cache } pub fn closure_bare_wrapper_cache<'a>(&'a self) -> &'a RefCell> { &self.local.closure_bare_wrapper_cache } pub fn statics_to_rauw<'a>(&'a self) -> &'a RefCell> { &self.local.statics_to_rauw } pub fn lltypes<'a>(&'a self) -> &'a RefCell, Type>> { &self.local.lltypes } pub fn llsizingtypes<'a>(&'a self) -> &'a RefCell, Type>> { &self.local.llsizingtypes } pub fn adt_reprs<'a>(&'a self) -> &'a RefCell, Rc>>> { &self.local.adt_reprs } pub fn symbol_hasher<'a>(&'a self) -> &'a RefCell { &self.shared.symbol_hasher } pub fn type_hashcodes<'a>(&'a self) -> &'a RefCell, String>> { &self.local.type_hashcodes } pub fn stats<'a>(&'a self) -> &'a Stats { &self.shared.stats } pub fn available_monomorphizations<'a>(&'a self) -> &'a RefCell> { &self.local.available_monomorphizations } pub fn available_drop_glues(&self) -> &RefCell, String>> { &self.shared.available_drop_glues } pub fn int_type(&self) -> Type { self.local.int_type } pub fn opaque_vec_type(&self) -> Type { self.local.opaque_vec_type } pub fn closure_vals<'a>(&'a self) -> &'a RefCell, ValueRef>> { &self.local.closure_vals } pub fn dbg_cx<'a>(&'a self) -> &'a Option> { &self.local.dbg_cx } pub fn eh_personality<'a>(&'a self) -> &'a RefCell> { &self.local.eh_personality } pub fn eh_unwind_resume<'a>(&'a self) -> &'a RefCell> { &self.local.eh_unwind_resume } pub fn rust_try_fn<'a>(&'a self) -> &'a RefCell> { &self.local.rust_try_fn } fn intrinsics<'a>(&'a self) -> &'a RefCell> { &self.local.intrinsics } pub fn count_llvm_insn(&self) { self.local.n_llvm_insns.set(self.local.n_llvm_insns.get() + 1); } pub fn trait_cache(&self) -> &RefCell, traits::Vtable<'tcx, ()>>> { &self.local.trait_cache } /// Return exclusive upper bound on object size. /// /// The theoretical maximum object size is defined as the maximum positive `int` value. This /// ensures that the `offset` semantics remain well-defined by allowing it to correctly index /// every address within an object along with one byte past the end, along with allowing `int` /// to store the difference between any two pointers into an object. /// /// The upper bound on 64-bit currently needs to be lower because LLVM uses a 64-bit integer to /// represent object size in bits. It would need to be 1 << 61 to account for this, but is /// currently conservatively bounded to 1 << 47 as that is enough to cover the current usable /// address space on 64-bit ARMv8 and x86_64. pub fn obj_size_bound(&self) -> u64 { match &self.sess().target.target.target_pointer_width[..] { "32" => 1 << 31, "64" => 1 << 47, _ => unreachable!() // error handled by config::build_target_config } } pub fn report_overbig_object(&self, obj: Ty<'tcx>) -> ! { self.sess().fatal( &format!("the type `{:?}` is too big for the current architecture", obj)) } pub fn enter_type_of(&self, ty: Ty<'tcx>) -> TypeOfDepthLock<'b, 'tcx> { let current_depth = self.local.type_of_depth.get(); debug!("enter_type_of({:?}) at depth {:?}", ty, current_depth); if current_depth > self.sess().recursion_limit.get() { self.sess().fatal( &format!("overflow representing the type `{}`", ty)) } self.local.type_of_depth.set(current_depth + 1); TypeOfDepthLock(self.local) } pub fn check_overflow(&self) -> bool { self.shared.check_overflow } pub fn check_drop_flag_for_sanity(&self) -> bool { // This controls whether we emit a conditional llvm.debugtrap // guarded on whether the dropflag is one of its (two) valid // values. self.shared.check_drop_flag_for_sanity } pub fn use_dll_storage_attrs(&self) -> bool { self.shared.use_dll_storage_attrs() } pub fn mir_map(&self) -> &'b MirMap<'tcx> { self.shared.mir_map } } pub struct TypeOfDepthLock<'a, 'tcx: 'a>(&'a LocalCrateContext<'tcx>); impl<'a, 'tcx> Drop for TypeOfDepthLock<'a, 'tcx> { fn drop(&mut self) { self.0.type_of_depth.set(self.0.type_of_depth.get() - 1); } } /// Declare any llvm intrinsics that you might need fn declare_intrinsic(ccx: &CrateContext, key: &str) -> Option { macro_rules! ifn { ($name:expr, fn() -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(ccx, $name, Type::func(&[], &$ret), ccx.tcx().mk_nil()); llvm::SetUnnamedAddr(f, false); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ); ($name:expr, fn($($arg:expr),*) -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(ccx, $name, Type::func(&[$($arg),*], &$ret), ccx.tcx().mk_nil()); llvm::SetUnnamedAddr(f, false); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ) } macro_rules! mk_struct { ($($field_ty:expr),*) => (Type::struct_(ccx, &[$($field_ty),*], false)) } let i8p = Type::i8p(ccx); let void = Type::void(ccx); let i1 = Type::i1(ccx); let t_i8 = Type::i8(ccx); let t_i16 = Type::i16(ccx); let t_i32 = Type::i32(ccx); let t_i64 = Type::i64(ccx); let t_f32 = Type::f32(ccx); let t_f64 = Type::f64(ccx); ifn!("llvm.memcpy.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void); ifn!("llvm.memcpy.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void); ifn!("llvm.memcpy.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i16", fn(i8p, t_i8, t_i16, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i32", fn(i8p, t_i8, t_i32, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i64", fn(i8p, t_i8, t_i64, t_i32, i1) -> void); ifn!("llvm.trap", fn() -> void); ifn!("llvm.debugtrap", fn() -> void); ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32); ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64); ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32); ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64); ifn!("llvm.sin.f32", fn(t_f32) -> t_f32); ifn!("llvm.sin.f64", fn(t_f64) -> t_f64); ifn!("llvm.cos.f32", fn(t_f32) -> t_f32); ifn!("llvm.cos.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64); ifn!("llvm.log.f32", fn(t_f32) -> t_f32); ifn!("llvm.log.f64", fn(t_f64) -> t_f64); ifn!("llvm.log10.f32", fn(t_f32) -> t_f32); ifn!("llvm.log10.f64", fn(t_f64) -> t_f64); ifn!("llvm.log2.f32", fn(t_f32) -> t_f32); ifn!("llvm.log2.f64", fn(t_f64) -> t_f64); ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32); ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64); ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32); ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64); ifn!("llvm.floor.f32", fn(t_f32) -> t_f32); ifn!("llvm.floor.f64", fn(t_f64) -> t_f64); ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32); ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64); ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32); ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64); ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.round.f32", fn(t_f32) -> t_f32); ifn!("llvm.round.f64", fn(t_f64) -> t_f64); ifn!("llvm.rint.f32", fn(t_f32) -> t_f32); ifn!("llvm.rint.f64", fn(t_f64) -> t_f64); ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32); ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64); ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8); ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16); ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32); ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64); ifn!("llvm.ctlz.i8", fn(t_i8 , i1) -> t_i8); ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.cttz.i8", fn(t_i8 , i1) -> t_i8); ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16); ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32); ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64); ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.lifetime.start", fn(t_i64,i8p) -> void); ifn!("llvm.lifetime.end", fn(t_i64, i8p) -> void); ifn!("llvm.expect.i1", fn(i1, i1) -> i1); ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32); // Some intrinsics were introduced in later versions of LLVM, but they have // fallbacks in libc or libm and such. macro_rules! compatible_ifn { ($name:expr, noop($cname:ident ($($arg:expr),*) -> void), $llvm_version:expr) => ( if unsafe { llvm::LLVMVersionMinor() >= $llvm_version } { // The `if key == $name` is already in ifn! ifn!($name, fn($($arg),*) -> void); } else if key == $name { let f = declare::declare_cfn(ccx, stringify!($cname), Type::func(&[$($arg),*], &void), ccx.tcx().mk_nil()); llvm::SetLinkage(f, llvm::InternalLinkage); let bld = ccx.builder(); let llbb = unsafe { llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), f, "entry-block\0".as_ptr() as *const _) }; bld.position_at_end(llbb); bld.ret_void(); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ); ($name:expr, $cname:ident ($($arg:expr),*) -> $ret:expr, $llvm_version:expr) => ( if unsafe { llvm::LLVMVersionMinor() >= $llvm_version } { // The `if key == $name` is already in ifn! ifn!($name, fn($($arg),*) -> $ret); } else if key == $name { let f = declare::declare_cfn(ccx, stringify!($cname), Type::func(&[$($arg),*], &$ret), ccx.tcx().mk_nil()); ccx.intrinsics().borrow_mut().insert($name, f.clone()); return Some(f); } ) } compatible_ifn!("llvm.assume", noop(llvmcompat_assume(i1) -> void), 6); if ccx.sess().opts.debuginfo != NoDebugInfo { ifn!("llvm.dbg.declare", fn(Type::metadata(ccx), Type::metadata(ccx)) -> void); ifn!("llvm.dbg.value", fn(Type::metadata(ccx), t_i64, Type::metadata(ccx)) -> void); } return None; }