use rustc::mir; use error::{EvalError, EvalResult}; use memory::Pointer; use value::{ PrimVal, PrimValKind, bits_to_f32, bits_to_f64, f32_to_bits, f64_to_bits, bits_to_bool, }; macro_rules! overflow { ($op:ident, $l:expr, $r:expr) => ({ let (val, overflowed) = $l.$op($r); let primval = PrimVal::new(val as u64); Ok((primval, overflowed)) }) } macro_rules! int_arithmetic { ($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({ let l = $l; let r = $r; match $kind { I8 => overflow!($int_op, l as i8, r as i8), I16 => overflow!($int_op, l as i16, r as i16), I32 => overflow!($int_op, l as i32, r as i32), I64 => overflow!($int_op, l as i64, r as i64), U8 => overflow!($int_op, l as u8, r as u8), U16 => overflow!($int_op, l as u16, r as u16), U32 => overflow!($int_op, l as u32, r as u32), U64 => overflow!($int_op, l as u64, r as u64), _ => bug!("int_arithmetic should only be called on int primvals"), } }) } macro_rules! int_shift { ($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({ let l = $l; let r = $r; match $kind { I8 => overflow!($int_op, l as i8, r), I16 => overflow!($int_op, l as i16, r), I32 => overflow!($int_op, l as i32, r), I64 => overflow!($int_op, l as i64, r), U8 => overflow!($int_op, l as u8, r), U16 => overflow!($int_op, l as u16, r), U32 => overflow!($int_op, l as u32, r), U64 => overflow!($int_op, l as u64, r), _ => bug!("int_shift should only be called on int primvals"), } }) } macro_rules! float_arithmetic { ($from_bits:ident, $to_bits:ident, $float_op:tt, $l:expr, $r:expr) => ({ let l = $from_bits($l); let r = $from_bits($r); let bits = $to_bits(l $float_op r); PrimVal::new(bits) }) } macro_rules! f32_arithmetic { ($float_op:tt, $l:expr, $r:expr) => ( float_arithmetic!(bits_to_f32, f32_to_bits, $float_op, $l, $r) ) } macro_rules! f64_arithmetic { ($float_op:tt, $l:expr, $r:expr) => ( float_arithmetic!(bits_to_f64, f64_to_bits, $float_op, $l, $r) ) } /// Returns the result of the specified operation and whether it overflowed. pub fn binary_op<'tcx>( bin_op: mir::BinOp, left: PrimVal, left_kind: PrimValKind, right: PrimVal, right_kind: PrimValKind, ) -> EvalResult<'tcx, (PrimVal, bool)> { use rustc::mir::BinOp::*; use value::PrimValKind::*; // If the pointers are into the same allocation, fall through to the more general match // later, which will do comparisons on the `bits` fields, which are the pointer offsets // in this case. let left_ptr = left.to_ptr(); let right_ptr = right.to_ptr(); if left_ptr.alloc_id != right_ptr.alloc_id { return Ok((unrelated_ptr_ops(bin_op, left_ptr, right_ptr)?, false)); } let (l, r) = (left.bits, right.bits); // These ops can have an RHS with a different numeric type. if bin_op == Shl || bin_op == Shr { // These are the maximum values a bitshift RHS could possibly have. For example, u16 // can be bitshifted by 0..16, so masking with 0b1111 (16 - 1) will ensure we are in // that range. let type_bits: u32 = match left_kind { I8 | U8 => 8, I16 | U16 => 16, I32 | U32 => 32, I64 | U64 => 64, _ => bug!("bad MIR: bitshift lhs is not integral"), }; // Cast to `u32` because `overflowing_sh{l,r}` only take `u32`, then apply the bitmask // to ensure it's within the valid shift value range. let r = (right.bits as u32) & (type_bits - 1); return match bin_op { Shl => int_shift!(left_kind, overflowing_shl, l, r), Shr => int_shift!(left_kind, overflowing_shr, l, r), _ => bug!("it has already been checked that this is a shift op"), }; } if left_kind != right_kind { let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op); return Err(EvalError::Unimplemented(msg)); } let val = match (bin_op, left_kind) { (Eq, F32) => PrimVal::from_bool(bits_to_f32(l) == bits_to_f32(r)), (Ne, F32) => PrimVal::from_bool(bits_to_f32(l) != bits_to_f32(r)), (Lt, F32) => PrimVal::from_bool(bits_to_f32(l) < bits_to_f32(r)), (Le, F32) => PrimVal::from_bool(bits_to_f32(l) <= bits_to_f32(r)), (Gt, F32) => PrimVal::from_bool(bits_to_f32(l) > bits_to_f32(r)), (Ge, F32) => PrimVal::from_bool(bits_to_f32(l) >= bits_to_f32(r)), (Eq, F64) => PrimVal::from_bool(bits_to_f64(l) == bits_to_f64(r)), (Ne, F64) => PrimVal::from_bool(bits_to_f64(l) != bits_to_f64(r)), (Lt, F64) => PrimVal::from_bool(bits_to_f64(l) < bits_to_f64(r)), (Le, F64) => PrimVal::from_bool(bits_to_f64(l) <= bits_to_f64(r)), (Gt, F64) => PrimVal::from_bool(bits_to_f64(l) > bits_to_f64(r)), (Ge, F64) => PrimVal::from_bool(bits_to_f64(l) >= bits_to_f64(r)), (Add, F32) => f32_arithmetic!(+, l, r), (Sub, F32) => f32_arithmetic!(-, l, r), (Mul, F32) => f32_arithmetic!(*, l, r), (Div, F32) => f32_arithmetic!(/, l, r), (Rem, F32) => f32_arithmetic!(%, l, r), (Add, F64) => f64_arithmetic!(+, l, r), (Sub, F64) => f64_arithmetic!(-, l, r), (Mul, F64) => f64_arithmetic!(*, l, r), (Div, F64) => f64_arithmetic!(/, l, r), (Rem, F64) => f64_arithmetic!(%, l, r), (Eq, _) => PrimVal::from_bool(l == r), (Ne, _) => PrimVal::from_bool(l != r), (Lt, _) => PrimVal::from_bool(l < r), (Le, _) => PrimVal::from_bool(l <= r), (Gt, _) => PrimVal::from_bool(l > r), (Ge, _) => PrimVal::from_bool(l >= r), (BitOr, _) => PrimVal::new(l | r), (BitAnd, _) => PrimVal::new(l & r), (BitXor, _) => PrimVal::new(l ^ r), (Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r), (Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r), (Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r), (Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r), (Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r), _ => { let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op); return Err(EvalError::Unimplemented(msg)); } }; Ok((val, false)) } fn unrelated_ptr_ops<'tcx>(bin_op: mir::BinOp, left: Pointer, right: Pointer) -> EvalResult<'tcx, PrimVal> { use rustc::mir::BinOp::*; match bin_op { Eq => Ok(PrimVal::from_bool(false)), Ne => Ok(PrimVal::from_bool(true)), Lt | Le | Gt | Ge => Err(EvalError::InvalidPointerMath), _ if left.to_int().is_ok() ^ right.to_int().is_ok() => { Err(EvalError::ReadPointerAsBytes) }, _ => bug!(), } } pub fn unary_op<'tcx>( un_op: mir::UnOp, val: PrimVal, val_kind: PrimValKind, ) -> EvalResult<'tcx, PrimVal> { use rustc::mir::UnOp::*; use value::PrimValKind::*; let bits = match (un_op, val_kind) { (Not, Bool) => !bits_to_bool(val.bits) as u64, (Not, U8) => !(val.bits as u8) as u64, (Not, U16) => !(val.bits as u16) as u64, (Not, U32) => !(val.bits as u32) as u64, (Not, U64) => !val.bits, (Not, I8) => !(val.bits as i8) as u64, (Not, I16) => !(val.bits as i16) as u64, (Not, I32) => !(val.bits as i32) as u64, (Not, I64) => !(val.bits as i64) as u64, (Neg, I8) => -(val.bits as i8) as u64, (Neg, I16) => -(val.bits as i16) as u64, (Neg, I32) => -(val.bits as i32) as u64, (Neg, I64) => -(val.bits as i64) as u64, (Neg, F32) => f32_to_bits(-bits_to_f32(val.bits)), (Neg, F64) => f64_to_bits(-bits_to_f64(val.bits)), _ => { let msg = format!("unimplemented unary op: {:?}, {:?}", un_op, val); return Err(EvalError::Unimplemented(msg)); } }; Ok(PrimVal::new(bits)) }