/// This module takes a (parsed) definition of `macro_rules` invocation, a /// `tt::TokenTree` representing an argument of macro invocation, and produces a /// `tt::TokenTree` for the result of the expansion. use rustc_hash::FxHashMap; use ra_syntax::SmolStr; use tt::TokenId; use crate::{MacroRulesError, Result}; use crate::tt_cursor::TtCursor; pub(crate) fn expand(rules: &crate::MacroRules, input: &tt::Subtree) -> Result { rules .rules .iter() .find_map(|it| expand_rule(it, input).ok()) .ok_or(MacroRulesError::NoMatchingRule) } fn expand_rule(rule: &crate::Rule, input: &tt::Subtree) -> Result { let mut input = TtCursor::new(input); let bindings = match_lhs(&rule.lhs, &mut input)?; if !input.is_eof() { return Err(MacroRulesError::UnexpectedToken); } expand_subtree(&rule.rhs, &bindings, &mut Vec::new()) } /// The actual algorithm for expansion is not too hard, but is pretty tricky. /// `Bindings` structure is the key to understanding what we are doing here. /// /// On the high level, it stores mapping from meta variables to the bits of /// syntax it should be substituted with. For example, if `$e:expr` is matched /// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`. /// /// The tricky bit is dealing with repetitions (`$()*`). Consider this example: /// /// ```not_rust /// macro_rules! foo { /// ($($ i:ident $($ e:expr),*);*) => { /// $(fn $ i() { $($ e);*; })* /// } /// } /// foo! { foo 1,2,3; bar 4,5,6 } /// ``` /// /// Here, the `$i` meta variable is matched first with `foo` and then with /// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`. /// /// To represent such "multi-mappings", we use a recursive structures: we map /// variables not to values, but to *lists* of values or other lists (that is, /// to the trees). /// /// For the above example, the bindings would store /// /// ```not_rust /// i -> [foo, bar] /// e -> [[1, 2, 3], [4, 5, 6]] /// ``` /// /// We construct `Bindings` in the `match_lhs`. The interesting case is /// `TokenTree::Repeat`, where we use `push_nested` to create the desired /// nesting structure. /// /// The other side of the puzzle is `expand_subtree`, where we use the bindings /// to substitute meta variables in the output template. When expanding, we /// maintain a `nesting` stack of indices which tells us which occurrence from /// the `Bindings` we should take. We push to the stack when we enter a /// repetition. /// /// In other words, `Bindings` is a *multi* mapping from `SmolStr` to /// `tt::TokenTree`, where the index to select a particular `TokenTree` among /// many is not a plain `usize`, but an `&[usize]`. #[derive(Debug, Default)] struct Bindings { inner: FxHashMap, } #[derive(Debug)] enum Binding { Simple(tt::TokenTree), Nested(Vec), } impl Bindings { fn get(&self, name: &SmolStr, nesting: &[usize]) -> Result<&tt::TokenTree> { let mut b = self .inner .get(name) .ok_or(MacroRulesError::BindingError(format!("could not find binding {}", name)))?; for &idx in nesting.iter() { b = match b { Binding::Simple(_) => break, Binding::Nested(bs) => bs.get(idx).ok_or(MacroRulesError::BindingError( format!("could not find nested binding {}", name), ))?, }; } match b { Binding::Simple(it) => Ok(it), Binding::Nested(_) => Err(MacroRulesError::BindingError(format!( "expected simple binding, found nested binding {}", name ))), } } fn push_nested(&mut self, nested: Bindings) -> Result<()> { for (key, value) in nested.inner { if !self.inner.contains_key(&key) { self.inner.insert(key.clone(), Binding::Nested(Vec::new())); } match self.inner.get_mut(&key) { Some(Binding::Nested(it)) => it.push(value), _ => { return Err(MacroRulesError::BindingError(format!( "nested binding for {} not found", key ))) } } } Ok(()) } } fn match_lhs(pattern: &crate::Subtree, input: &mut TtCursor) -> Result { let mut res = Bindings::default(); for pat in pattern.token_trees.iter() { match pat { crate::TokenTree::Leaf(leaf) => match leaf { crate::Leaf::Var(crate::Var { text, kind }) => { let kind = kind.clone().ok_or(MacroRulesError::ParseError)?; match kind.as_str() { "ident" => { let ident = input.eat_ident()?.clone(); res.inner.insert( text.clone(), Binding::Simple(tt::Leaf::from(ident).into()), ); } _ => return Err(MacroRulesError::UnexpectedToken), } } crate::Leaf::Punct(punct) => { if input.eat_punct()? != punct { return Err(MacroRulesError::UnexpectedToken); } } crate::Leaf::Ident(ident) => { if input.eat_ident()?.text != ident.text { return Err(MacroRulesError::UnexpectedToken); } } _ => return Err(MacroRulesError::UnexpectedToken), }, crate::TokenTree::Repeat(crate::Repeat { subtree, kind: _, separator }) => { while let Ok(nested) = match_lhs(subtree, input) { res.push_nested(nested)?; if let Some(separator) = *separator { if !input.is_eof() { if input.eat_punct()?.char != separator { return Err(MacroRulesError::UnexpectedToken); } } } } } _ => {} } } Ok(res) } fn expand_subtree( template: &crate::Subtree, bindings: &Bindings, nesting: &mut Vec, ) -> Result { let token_trees = template .token_trees .iter() .map(|it| expand_tt(it, bindings, nesting)) .collect::>>()?; Ok(tt::Subtree { token_trees, delimiter: template.delimiter }) } fn expand_tt( template: &crate::TokenTree, bindings: &Bindings, nesting: &mut Vec, ) -> Result { let res: tt::TokenTree = match template { crate::TokenTree::Subtree(subtree) => expand_subtree(subtree, bindings, nesting)?.into(), crate::TokenTree::Repeat(repeat) => { let mut token_trees = Vec::new(); nesting.push(0); while let Ok(t) = expand_subtree(&repeat.subtree, bindings, nesting) { let idx = nesting.pop().unwrap(); nesting.push(idx + 1); token_trees.push(t.into()) } nesting.pop().unwrap(); tt::Subtree { token_trees, delimiter: tt::Delimiter::None }.into() } crate::TokenTree::Leaf(leaf) => match leaf { crate::Leaf::Ident(ident) => { tt::Leaf::from(tt::Ident { text: ident.text.clone(), id: TokenId::unspecified() }) .into() } crate::Leaf::Punct(punct) => tt::Leaf::from(punct.clone()).into(), crate::Leaf::Var(v) => bindings.get(&v.text, nesting)?.clone(), crate::Leaf::Literal(l) => tt::Leaf::from(tt::Literal { text: l.text.clone() }).into(), }, }; Ok(res) }