// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Trait Resolution. See the Book for more. pub use self::SelectionError::*; pub use self::FulfillmentErrorCode::*; pub use self::Vtable::*; pub use self::ObligationCauseCode::*; use middle::free_region::FreeRegionMap; use middle::subst; use middle::ty::{self, HasProjectionTypes, Ty}; use middle::ty_fold::TypeFoldable; use middle::infer::{self, fixup_err_to_string, InferCtxt}; use std::rc::Rc; use syntax::ast; use syntax::codemap::{Span, DUMMY_SP}; use util::ppaux::Repr; pub use self::error_reporting::report_fulfillment_errors; pub use self::error_reporting::report_overflow_error; pub use self::error_reporting::report_selection_error; pub use self::error_reporting::suggest_new_overflow_limit; pub use self::coherence::orphan_check; pub use self::coherence::overlapping_impls; pub use self::coherence::OrphanCheckErr; pub use self::fulfill::{FulfillmentContext, FulfilledPredicates, RegionObligation}; pub use self::project::MismatchedProjectionTypes; pub use self::project::normalize; pub use self::project::Normalized; pub use self::object_safety::is_object_safe; pub use self::object_safety::object_safety_violations; pub use self::object_safety::ObjectSafetyViolation; pub use self::object_safety::MethodViolationCode; pub use self::object_safety::is_vtable_safe_method; pub use self::select::SelectionContext; pub use self::select::SelectionCache; pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch}; pub use self::select::{MethodMatchedData}; // intentionally don't export variants pub use self::util::elaborate_predicates; pub use self::util::get_vtable_index_of_object_method; pub use self::util::trait_ref_for_builtin_bound; pub use self::util::predicate_for_trait_def; pub use self::util::supertraits; pub use self::util::Supertraits; pub use self::util::supertrait_def_ids; pub use self::util::SupertraitDefIds; pub use self::util::transitive_bounds; pub use self::util::upcast; mod coherence; mod error_reporting; mod fulfill; mod project; mod object_safety; mod select; mod util; /// An `Obligation` represents some trait reference (e.g. `int:Eq`) for /// which the vtable must be found. The process of finding a vtable is /// called "resolving" the `Obligation`. This process consists of /// either identifying an `impl` (e.g., `impl Eq for int`) that /// provides the required vtable, or else finding a bound that is in /// scope. The eventual result is usually a `Selection` (defined below). #[derive(Clone, PartialEq, Eq)] pub struct Obligation<'tcx, T> { pub cause: ObligationCause<'tcx>, pub recursion_depth: usize, pub predicate: T, } pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>; pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>; /// Why did we incur this obligation? Used for error reporting. #[derive(Clone, PartialEq, Eq)] pub struct ObligationCause<'tcx> { pub span: Span, // The id of the fn body that triggered this obligation. This is // used for region obligations to determine the precise // environment in which the region obligation should be evaluated // (in particular, closures can add new assumptions). See the // field `region_obligations` of the `FulfillmentContext` for more // information. pub body_id: ast::NodeId, pub code: ObligationCauseCode<'tcx> } #[derive(Clone, PartialEq, Eq)] pub enum ObligationCauseCode<'tcx> { /// Not well classified or should be obvious from span. MiscObligation, /// In an impl of trait X for type Y, type Y must /// also implement all supertraits of X. ItemObligation(ast::DefId), /// Obligation incurred due to an object cast. ObjectCastObligation(/* Object type */ Ty<'tcx>), /// Various cases where expressions must be sized/copy/etc: AssignmentLhsSized, // L = X implies that L is Sized StructInitializerSized, // S { ... } must be Sized VariableType(ast::NodeId), // Type of each variable must be Sized ReturnType, // Return type must be Sized RepeatVec, // [T,..n] --> T must be Copy // Captures of variable the given id by a closure (span is the // span of the closure) ClosureCapture(ast::NodeId, Span, ty::BuiltinBound), // Types of fields (other than the last) in a struct must be sized. FieldSized, // static items must have `Sync` type SharedStatic, BuiltinDerivedObligation(DerivedObligationCause<'tcx>), ImplDerivedObligation(DerivedObligationCause<'tcx>), CompareImplMethodObligation, } #[derive(Clone, PartialEq, Eq)] pub struct DerivedObligationCause<'tcx> { /// The trait reference of the parent obligation that led to the /// current obligation. Note that only trait obligations lead to /// derived obligations, so we just store the trait reference here /// directly. parent_trait_ref: ty::PolyTraitRef<'tcx>, /// The parent trait had this cause parent_code: Rc> } pub type Obligations<'tcx, O> = Vec>; pub type PredicateObligations<'tcx> = Vec>; pub type TraitObligations<'tcx> = Vec>; pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>; #[derive(Clone,Debug)] pub enum SelectionError<'tcx> { Unimplemented, OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>, ty::PolyTraitRef<'tcx>, ty::type_err<'tcx>), TraitNotObjectSafe(ast::DefId), } pub struct FulfillmentError<'tcx> { pub obligation: PredicateObligation<'tcx>, pub code: FulfillmentErrorCode<'tcx> } #[derive(Clone)] pub enum FulfillmentErrorCode<'tcx> { CodeSelectionError(SelectionError<'tcx>), CodeProjectionError(MismatchedProjectionTypes<'tcx>), CodeAmbiguity, } /// When performing resolution, it is typically the case that there /// can be one of three outcomes: /// /// - `Ok(Some(r))`: success occurred with result `r` /// - `Ok(None)`: could not definitely determine anything, usually due /// to inconclusive type inference. /// - `Err(e)`: error `e` occurred pub type SelectionResult<'tcx, T> = Result, SelectionError<'tcx>>; /// Given the successful resolution of an obligation, the `Vtable` /// indicates where the vtable comes from. Note that while we call this /// a "vtable", it does not necessarily indicate dynamic dispatch at /// runtime. `Vtable` instances just tell the compiler where to find /// methods, but in generic code those methods are typically statically /// dispatched -- only when an object is constructed is a `Vtable` /// instance reified into an actual vtable. /// /// For example, the vtable may be tied to a specific impl (case A), /// or it may be relative to some bound that is in scope (case B). /// /// /// ``` /// impl Clone for Option { ... } // Impl_1 /// impl Clone for Box { ... } // Impl_2 /// impl Clone for int { ... } // Impl_3 /// /// fn foo(concrete: Option>, /// param: T, /// mixed: Option) { /// /// // Case A: Vtable points at a specific impl. Only possible when /// // type is concretely known. If the impl itself has bounded /// // type parameters, Vtable will carry resolutions for those as well: /// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])]) /// /// // Case B: Vtable must be provided by caller. This applies when /// // type is a type parameter. /// param.clone(); // VtableParam /// /// // Case C: A mix of cases A and B. /// mixed.clone(); // Vtable(Impl_1, [VtableParam]) /// } /// ``` /// /// ### The type parameter `N` /// /// See explanation on `VtableImplData`. #[derive(Clone)] pub enum Vtable<'tcx, N> { /// Vtable identifying a particular impl. VtableImpl(VtableImplData<'tcx, N>), /// Vtable for default trait implementations /// This carries the information and nested obligations with regards /// to a default implementation for a trait `Trait`. The nested obligations /// ensure the trait implementation holds for all the constituent types. VtableDefaultImpl(VtableDefaultImplData), /// Successful resolution to an obligation provided by the caller /// for some type parameter. The `Vec` represents the /// obligations incurred from normalizing the where-clause (if /// any). VtableParam(Vec), /// Virtual calls through an object VtableObject(VtableObjectData<'tcx>), /// Successful resolution for a builtin trait. VtableBuiltin(VtableBuiltinData), /// Vtable automatically generated for a closure. The def ID is the ID /// of the closure expression. This is a `VtableImpl` in spirit, but the /// impl is generated by the compiler and does not appear in the source. VtableClosure(VtableClosureData<'tcx, N>), /// Same as above, but for a fn pointer type with the given signature. VtableFnPointer(ty::Ty<'tcx>), } /// Identifies a particular impl in the source, along with a set of /// substitutions from the impl's type/lifetime parameters. The /// `nested` vector corresponds to the nested obligations attached to /// the impl's type parameters. /// /// The type parameter `N` indicates the type used for "nested /// obligations" that are required by the impl. During type check, this /// is `Obligation`, as one might expect. During trans, however, this /// is `()`, because trans only requires a shallow resolution of an /// impl, and nested obligations are satisfied later. #[derive(Clone, PartialEq, Eq)] pub struct VtableImplData<'tcx, N> { pub impl_def_id: ast::DefId, pub substs: subst::Substs<'tcx>, pub nested: Vec } #[derive(Clone, PartialEq, Eq)] pub struct VtableClosureData<'tcx, N> { pub closure_def_id: ast::DefId, pub substs: subst::Substs<'tcx>, /// Nested obligations. This can be non-empty if the closure /// signature contains associated types. pub nested: Vec } #[derive(Clone)] pub struct VtableDefaultImplData { pub trait_def_id: ast::DefId, pub nested: Vec } #[derive(Clone)] pub struct VtableBuiltinData { pub nested: Vec } /// A vtable for some object-safe trait `Foo` automatically derived /// for the object type `Foo`. #[derive(PartialEq,Eq,Clone)] pub struct VtableObjectData<'tcx> { /// the object type `Foo`. pub object_ty: Ty<'tcx>, /// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`. pub upcast_trait_ref: ty::PolyTraitRef<'tcx>, } /// Creates predicate obligations from the generic bounds. pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>, generic_bounds: &ty::InstantiatedPredicates<'tcx>) -> PredicateObligations<'tcx> { util::predicates_for_generics(cause, 0, generic_bounds) } /// Determines whether the type `ty` is known to meet `bound` and /// returns true if so. Returns false if `ty` either does not meet /// `bound` or is not known to meet bound (note that this is /// conservative towards *no impl*, which is the opposite of the /// `evaluate` methods). pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>, typer: &ty::ClosureTyper<'tcx>, ty: Ty<'tcx>, bound: ty::BuiltinBound, span: Span) -> bool { debug!("type_known_to_meet_builtin_bound(ty={}, bound={:?})", ty.repr(), bound); let mut fulfill_cx = FulfillmentContext::new(false); // We can use a dummy node-id here because we won't pay any mind // to region obligations that arise (there shouldn't really be any // anyhow). let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID); fulfill_cx.register_builtin_bound(infcx, ty, bound, cause); // Note: we only assume something is `Copy` if we can // *definitively* show that it implements `Copy`. Otherwise, // assume it is move; linear is always ok. match fulfill_cx.select_all_or_error(infcx, typer) { Ok(()) => { debug!("type_known_to_meet_builtin_bound: ty={} bound={:?} success", ty.repr(), bound); true } Err(e) => { debug!("type_known_to_meet_builtin_bound: ty={} bound={:?} errors={}", ty.repr(), bound, e.repr()); false } } } /// Normalizes the parameter environment, reporting errors if they occur. pub fn normalize_param_env_or_error<'a,'tcx>(unnormalized_env: ty::ParameterEnvironment<'a,'tcx>, cause: ObligationCause<'tcx>) -> ty::ParameterEnvironment<'a,'tcx> { // I'm not wild about reporting errors here; I'd prefer to // have the errors get reported at a defined place (e.g., // during typeck). Instead I have all parameter // environments, in effect, going through this function // and hence potentially reporting errors. This ensurse of // course that we never forget to normalize (the // alternative seemed like it would involve a lot of // manual invocations of this fn -- and then we'd have to // deal with the errors at each of those sites). // // In any case, in practice, typeck constructs all the // parameter environments once for every fn as it goes, // and errors will get reported then; so after typeck we // can be sure that no errors should occur. let tcx = unnormalized_env.tcx; let span = cause.span; let body_id = cause.body_id; debug!("normalize_param_env_or_error(unnormalized_env={})", unnormalized_env.repr()); let predicates: Vec<_> = util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.clone()) .filter(|p| !p.is_global()) // (*) .collect(); // (*) Any predicate like `i32: Trait` or whatever doesn't // need to be in the *environment* to be proven, so screen those // out. This is important for the soundness of inter-fn // caching. Note though that we should probably check that these // predicates hold at the point where the environment is // constructed, but I am not currently doing so out of laziness. // -nmatsakis debug!("normalize_param_env_or_error: elaborated-predicates={}", predicates.repr()); let elaborated_env = unnormalized_env.with_caller_bounds(predicates); let infcx = infer::new_infer_ctxt(tcx); let predicates = match fully_normalize(&infcx, &elaborated_env, cause, &elaborated_env.caller_bounds) { Ok(predicates) => predicates, Err(errors) => { report_fulfillment_errors(&infcx, &errors); return unnormalized_env; // an unnormalized env is better than nothing } }; let free_regions = FreeRegionMap::new(); infcx.resolve_regions_and_report_errors(&free_regions, body_id); let predicates = match infcx.fully_resolve(&predicates) { Ok(predicates) => predicates, Err(fixup_err) => { // If we encounter a fixup error, it means that some type // variable wound up unconstrained. I actually don't know // if this can happen, and I certainly don't expect it to // happen often, but if it did happen it probably // represents a legitimate failure due to some kind of // unconstrained variable, and it seems better not to ICE, // all things considered. let err_msg = fixup_err_to_string(fixup_err); tcx.sess.span_err(span, &err_msg); return elaborated_env; // an unnormalized env is better than nothing } }; elaborated_env.with_caller_bounds(predicates) } pub fn fully_normalize<'a,'tcx,T>(infcx: &InferCtxt<'a,'tcx>, closure_typer: &ty::ClosureTyper<'tcx>, cause: ObligationCause<'tcx>, value: &T) -> Result>> where T : TypeFoldable<'tcx> + HasProjectionTypes { debug!("normalize_param_env(value={})", value.repr()); let mut selcx = &mut SelectionContext::new(infcx, closure_typer); let mut fulfill_cx = FulfillmentContext::new(false); let Normalized { value: normalized_value, obligations } = project::normalize(selcx, cause, value); debug!("normalize_param_env: normalized_value={} obligations={}", normalized_value.repr(), obligations.repr()); for obligation in obligations { fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation); } try!(fulfill_cx.select_all_or_error(infcx, closure_typer)); let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value); debug!("normalize_param_env: resolved_value={}", resolved_value.repr()); Ok(resolved_value) } impl<'tcx,O> Obligation<'tcx,O> { pub fn new(cause: ObligationCause<'tcx>, trait_ref: O) -> Obligation<'tcx, O> { Obligation { cause: cause, recursion_depth: 0, predicate: trait_ref } } fn with_depth(cause: ObligationCause<'tcx>, recursion_depth: usize, trait_ref: O) -> Obligation<'tcx, O> { Obligation { cause: cause, recursion_depth: recursion_depth, predicate: trait_ref } } pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> { Obligation::new(ObligationCause::misc(span, body_id), trait_ref) } pub fn with

(&self, value: P) -> Obligation<'tcx,P> { Obligation { cause: self.cause.clone(), recursion_depth: self.recursion_depth, predicate: value } } } impl<'tcx> ObligationCause<'tcx> { pub fn new(span: Span, body_id: ast::NodeId, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> { ObligationCause { span: span, body_id: body_id, code: code } } pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> { ObligationCause { span: span, body_id: body_id, code: MiscObligation } } pub fn dummy() -> ObligationCause<'tcx> { ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation } } } impl<'tcx, N> Vtable<'tcx, N> { pub fn nested_obligations(self) -> Vec { match self { VtableImpl(i) => i.nested, VtableParam(n) => n, VtableBuiltin(i) => i.nested, VtableDefaultImpl(d) => d.nested, VtableClosure(c) => c.nested, VtableObject(_) | VtableFnPointer(..) => vec![] } } pub fn map(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M { match self { VtableImpl(i) => VtableImpl(VtableImplData { impl_def_id: i.impl_def_id, substs: i.substs, nested: i.nested.into_iter().map(f).collect() }), VtableParam(n) => VtableParam(n.into_iter().map(f).collect()), VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData { nested: i.nested.into_iter().map(f).collect() }), VtableObject(o) => VtableObject(o), VtableDefaultImpl(d) => VtableDefaultImpl(VtableDefaultImplData { trait_def_id: d.trait_def_id, nested: d.nested.into_iter().map(f).collect() }), VtableFnPointer(f) => VtableFnPointer(f), VtableClosure(c) => VtableClosure(VtableClosureData { closure_def_id: c.closure_def_id, substs: c.substs, nested: c.nested.into_iter().map(f).collect() }) } } } impl<'tcx> FulfillmentError<'tcx> { fn new(obligation: PredicateObligation<'tcx>, code: FulfillmentErrorCode<'tcx>) -> FulfillmentError<'tcx> { FulfillmentError { obligation: obligation, code: code } } } impl<'tcx> TraitObligation<'tcx> { fn self_ty(&self) -> ty::Binder> { ty::Binder(self.predicate.skip_binder().self_ty()) } }