// Support code for rustc's built in test runner generator. Currently, // none of this is meant for users. It is intended to support the // simplest interface possible for representing and running tests // while providing a base that other test frameworks may build off of. import sort = sort::ivector; import generic_os::getenv; export test_name; export test_fn; export test_desc; export test_main; export test_result; export test_opts; export tr_ok; export tr_failed; export tr_ignored; export run_tests_console; export run_tests_console_; export run_test; export filter_tests; export parse_opts; export test_to_task; export default_test_to_task; // The name of a test. By convention this follows the rules for rust // paths, i.e it should be a series of identifiers seperated by double // colons. This way if some test runner wants to arrange the tests // heirarchically it may. type test_name = str; // A function that runs a test. If the function returns successfully, // the test succeeds; if the function fails then the test fails. We // may need to come up with a more clever definition of test in order // to support isolation of tests into tasks. type test_fn = fn() ; // The definition of a single test. A test runner will run a list of // these. type test_desc = {name: test_name, fn: test_fn, ignore: bool}; // The default console test runner. It accepts the command line // arguments and a vector of test_descs (generated at compile time). fn test_main(args: &vec[str], tests: &test_desc[]) { let ivec_args = { let iargs = ~[]; for arg: str in args { iargs += ~[arg] } iargs }; check (ivec::is_not_empty(ivec_args)); let opts = alt parse_opts(ivec_args) { either::left(o) { o } either::right(m) { fail m } }; if !run_tests_console(opts, tests) { fail "Some tests failed"; } } type test_opts = {filter: option::t[str], run_ignored: bool}; type opt_res = either::t[test_opts, str]; // Parses command line arguments into test options fn parse_opts(args: &str[]) -> opt_res { // FIXME (#649): Shouldn't have to check here check (ivec::is_not_empty(args)); let args_ = ivec::tail(args); let opts = ~[getopts::optflag("ignored")]; let match = alt getopts::getopts_ivec(args_, opts) { getopts::success(m) { m } getopts::failure(f) { ret either::right(getopts::fail_str(f)) } }; let filter = if vec::len(match.free) > 0u { option::some(match.free.(0)) } else { option::none }; let run_ignored = getopts::opt_present(match, "ignored"); let test_opts = {filter: filter, run_ignored: run_ignored}; ret either::left(test_opts); } tag test_result { tr_ok; tr_failed; tr_ignored; } // To get isolation and concurrency tests have to be run in their own tasks. // In cases where test functions and closures it is not ok to just dump them // into a task and run them, so this transformation gives the caller a chance // to create the test task. type test_to_task = fn(&fn() ) -> task ; // A simple console test runner fn run_tests_console(opts: &test_opts, tests: &test_desc[]) -> bool { run_tests_console_(opts, tests, default_test_to_task) } fn run_tests_console_(opts: &test_opts, tests: &test_desc[], to_task: &test_to_task) -> bool { let filtered_tests = filter_tests(opts, tests); let out = io::stdout(); let total = ivec::len(filtered_tests); out.write_line(#fmt("running %u tests", total)); let futures = ~[]; let passed = 0u; let failed = 0u; let ignored = 0u; let failures = ~[]; // It's tempting to just spawn all the tests at once but that doesn't // provide a great user experience because you might sit waiting for the // result of a particular test for an unusually long amount of time. let concurrency = get_concurrency(); log #fmt("using %u test tasks", concurrency); let run_idx = 0u; let wait_idx = 0u; while wait_idx < total { while ivec::len(futures) < concurrency && run_idx < total { futures += ~[run_test(filtered_tests.(run_idx), to_task)]; run_idx += 1u; } let future = futures.(0); out.write_str(#fmt("running %s ... ", future.test.name)); let result = future.wait(); alt result { tr_ok. { passed += 1u; write_ok(out, concurrency); out.write_line(""); } tr_failed. { failed += 1u; write_failed(out, concurrency); out.write_line(""); failures += ~[future.test]; } tr_ignored. { ignored += 1u; write_ignored(out, concurrency); out.write_line(""); } } futures = ivec::slice(futures, 1u, ivec::len(futures)); wait_idx += 1u; } assert (passed + failed + ignored == total); let success = failed == 0u; if !success { out.write_line("\nfailures:"); for test: test_desc in failures { out.write_line(#fmt(" %s", test.name)); } } out.write_str(#fmt("\nresult: ")); if success { write_ok(out, concurrency); } else { write_failed(out, concurrency); } out.write_str(#fmt(". %u passed; %u failed; %u ignored\n\n", passed, failed, ignored)); ret success; fn write_ok(out: &io::writer, concurrency: uint) { write_pretty(out, "ok", term::color_green, concurrency); } fn write_failed(out: &io::writer, concurrency: uint) { write_pretty(out, "FAILED", term::color_red, concurrency); } fn write_ignored(out: &io::writer, concurrency: uint) { write_pretty(out, "ignored", term::color_yellow, concurrency); } fn write_pretty(out: &io::writer, word: &str, color: u8, concurrency: uint) { // In the presence of concurrency, outputing control characters // can cause some crazy artifacting if concurrency == 1u && term::color_supported() { term::fg(out.get_buf_writer(), color); } out.write_str(word); if concurrency == 1u && term::color_supported() { term::reset(out.get_buf_writer()); } } } fn get_concurrency() -> uint { alt getenv("RUST_THREADS") { option::some(t) { let threads = uint::parse_buf(str::bytes(t), 10u); threads > 0u ? threads : 1u } option::none. { 1u } } } fn filter_tests(opts: &test_opts, tests: &test_desc[]) -> test_desc[] { let filtered = tests; // Remove tests that don't match the test filter filtered = if option::is_none(opts.filter) { filtered } else { let filter_str = alt opts.filter { option::some(f) { f } option::none. { "" } }; let filter = bind fn (test: &test_desc, filter_str: str) -> option::t[test_desc] { if str::find(test.name, filter_str) >= 0 { ret option::some(test); } else { ret option::none; } }(_, filter_str); ivec::filter_map(filter, filtered) }; // Maybe pull out the ignored test and unignore them filtered = if !opts.run_ignored { filtered } else { let filter = fn (test: &test_desc) -> option::t[test_desc] { if test.ignore { ret option::some({name: test.name, fn: test.fn, ignore: false}); } else { ret option::none; } }; ivec::filter_map(filter, filtered) }; // Sort the tests alphabetically filtered = { fn lteq(t1: &test_desc, t2: &test_desc) -> bool { str::lteq(t1.name, t2.name) } sort::merge_sort(lteq, filtered) }; ret filtered; } type test_future = {test: test_desc, fnref: @fn() , wait: fn() -> test_result }; fn run_test(test: &test_desc, to_task: &test_to_task) -> test_future { // FIXME: Because of the unsafe way we're passing the test function // to the test task, we need to make sure we keep a reference to that // function around for longer than the lifetime of the task. To that end // we keep the function boxed in the test future. let fnref = @test.fn; if !test.ignore { let test_task = to_task(*fnref); ret {test: test, fnref: fnref, wait: bind fn (test_task: &task) -> test_result { alt task::join(test_task) { task::tr_success. { tr_ok } task::tr_failure. { tr_failed } } }(test_task)}; } else { ret {test: test, fnref: fnref, wait: fn () -> test_result { tr_ignored }}; } } native "rust" mod rustrt { fn hack_allow_leaks(); } // We need to run our tests in another task in order to trap test failures. // But, at least currently, functions can't be used as spawn arguments so // we've got to treat our test functions as unsafe pointers. This function // only works with functions that don't contain closures. fn default_test_to_task(f: &fn() ) -> task { fn run_task(fptr: *mutable fn() ) { // If this task fails we don't want that failure to propagate to the // test runner or else we couldn't keep running tests task::unsupervise(); // FIXME (236): Hack supreme - unwinding doesn't work yet so if this // task fails memory will not be freed correctly. This turns off the // sanity checks in the runtime's memory region for the task, so that // the test runner can continue. rustrt::hack_allow_leaks(); // Run the test (*fptr)() } let fptr = ptr::addr_of(f); ret spawn run_task(fptr); } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C .. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: