// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. pub use errors::emitter::ColorConfig; use self::Level::*; use self::RenderSpan::*; use codemap::{self, CodeMap, MultiSpan, NO_EXPANSION, Span}; use diagnostics; use errors::emitter::{Emitter, EmitterWriter}; use std::cell::{RefCell, Cell}; use std::{error, fmt}; use std::rc::Rc; use std::thread::panicking; use term; pub mod emitter; pub mod json; pub mod snippet; #[derive(Clone)] pub enum RenderSpan { /// A FullSpan renders with both with an initial line for the /// message, prefixed by file:linenum, followed by a summary of /// the source code covered by the span. FullSpan(MultiSpan), /// A suggestion renders with both with an initial line for the /// message, prefixed by file:linenum, followed by a summary /// of hypothetical source code, where each `String` is spliced /// into the lines in place of the code covered by each span. Suggestion(CodeSuggestion), } #[derive(Clone)] pub struct CodeSuggestion { msp: MultiSpan, substitutes: Vec, } impl RenderSpan { fn span(&self) -> &MultiSpan { match *self { FullSpan(ref msp) | Suggestion(CodeSuggestion { ref msp, .. }) => msp } } } impl CodeSuggestion { /// Returns the assembled code suggestion. pub fn splice_lines(&self, cm: &CodeMap) -> String { use codemap::{CharPos, Loc, Pos}; fn push_trailing(buf: &mut String, line_opt: Option<&str>, lo: &Loc, hi_opt: Option<&Loc>) { let (lo, hi_opt) = (lo.col.to_usize(), hi_opt.map(|hi|hi.col.to_usize())); if let Some(line) = line_opt { if line.len() > lo { buf.push_str(match hi_opt { Some(hi) => &line[lo..hi], None => &line[lo..], }); } if let None = hi_opt { buf.push('\n'); } } } let mut primary_spans = self.msp.primary_spans().to_owned(); assert_eq!(primary_spans.len(), self.substitutes.len()); if primary_spans.is_empty() { return format!(""); } // Assumption: all spans are in the same file, and all spans // are disjoint. Sort in ascending order. primary_spans.sort_by_key(|sp| sp.lo); // Find the bounding span. let lo = primary_spans.iter().map(|sp| sp.lo).min().unwrap(); let hi = primary_spans.iter().map(|sp| sp.hi).min().unwrap(); let bounding_span = Span { lo: lo, hi: hi, expn_id: NO_EXPANSION }; let lines = cm.span_to_lines(bounding_span).unwrap(); assert!(!lines.lines.is_empty()); // To build up the result, we do this for each span: // - push the line segment trailing the previous span // (at the beginning a "phantom" span pointing at the start of the line) // - push lines between the previous and current span (if any) // - if the previous and current span are not on the same line // push the line segment leading up to the current span // - splice in the span substitution // // Finally push the trailing line segment of the last span let fm = &lines.file; let mut prev_hi = cm.lookup_char_pos(bounding_span.lo); prev_hi.col = CharPos::from_usize(0); let mut prev_line = fm.get_line(lines.lines[0].line_index); let mut buf = String::new(); for (sp, substitute) in primary_spans.iter().zip(self.substitutes.iter()) { let cur_lo = cm.lookup_char_pos(sp.lo); if prev_hi.line == cur_lo.line { push_trailing(&mut buf, prev_line, &prev_hi, Some(&cur_lo)); } else { push_trailing(&mut buf, prev_line, &prev_hi, None); // push lines between the previous and current span (if any) for idx in prev_hi.line..(cur_lo.line - 1) { if let Some(line) = fm.get_line(idx) { buf.push_str(line); buf.push('\n'); } } if let Some(cur_line) = fm.get_line(cur_lo.line - 1) { buf.push_str(&cur_line[.. cur_lo.col.to_usize()]); } } buf.push_str(substitute); prev_hi = cm.lookup_char_pos(sp.hi); prev_line = fm.get_line(prev_hi.line - 1); } push_trailing(&mut buf, prev_line, &prev_hi, None); // remove trailing newline buf.pop(); buf } } /// Used as a return value to signify a fatal error occurred. (It is also /// used as the argument to panic at the moment, but that will eventually /// not be true.) #[derive(Copy, Clone, Debug)] #[must_use] pub struct FatalError; impl fmt::Display for FatalError { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "parser fatal error") } } impl error::Error for FatalError { fn description(&self) -> &str { "The parser has encountered a fatal error" } } /// Signifies that the compiler died with an explicit call to `.bug` /// or `.span_bug` rather than a failed assertion, etc. #[derive(Copy, Clone, Debug)] pub struct ExplicitBug; impl fmt::Display for ExplicitBug { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "parser internal bug") } } impl error::Error for ExplicitBug { fn description(&self) -> &str { "The parser has encountered an internal bug" } } /// Used for emitting structured error messages and other diagnostic information. #[must_use] #[derive(Clone)] pub struct DiagnosticBuilder<'a> { emitter: &'a RefCell>, level: Level, message: String, code: Option, span: MultiSpan, children: Vec, } /// For example a note attached to an error. #[derive(Clone)] struct SubDiagnostic { level: Level, message: String, span: MultiSpan, render_span: Option, } impl<'a> DiagnosticBuilder<'a> { /// Emit the diagnostic. pub fn emit(&mut self) { if self.cancelled() { return; } self.emitter.borrow_mut().emit_struct(&self); self.cancel(); // if self.is_fatal() { // panic!(FatalError); // } } /// Cancel the diagnostic (a structured diagnostic must either be emitted or /// cancelled or it will panic when dropped). /// BEWARE: if this DiagnosticBuilder is an error, then creating it will /// bump the error count on the Handler and cancelling it won't undo that. /// If you want to decrement the error count you should use `Handler::cancel`. pub fn cancel(&mut self) { self.level = Level::Cancelled; } pub fn cancelled(&self) -> bool { self.level == Level::Cancelled } pub fn is_fatal(&self) -> bool { self.level == Level::Fatal } /// Add a span/label to be included in the resulting snippet. /// This is pushed onto the `MultiSpan` that was created when the /// diagnostic was first built. If you don't call this function at /// all, and you just supplied a `Span` to create the diagnostic, /// then the snippet will just include that `Span`, which is /// called the primary span. pub fn span_label(&mut self, span: Span, label: &fmt::Display) -> &mut DiagnosticBuilder<'a> { self.span.push_span_label(span, format!("{}", label)); self } pub fn note_expected_found(&mut self, label: &fmt::Display, expected: &fmt::Display, found: &fmt::Display) -> &mut DiagnosticBuilder<'a> { // For now, just attach these as notes self.note(&format!("expected {} `{}`", label, expected)); self.note(&format!(" found {} `{}`", label, found)); self } pub fn note(&mut self, msg: &str) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Note, msg, MultiSpan::new(), None); self } pub fn span_note>(&mut self, sp: S, msg: &str) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Note, msg, sp.into(), None); self } pub fn warn(&mut self, msg: &str) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Warning, msg, MultiSpan::new(), None); self } pub fn span_warn>(&mut self, sp: S, msg: &str) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Warning, msg, sp.into(), None); self } pub fn help(&mut self , msg: &str) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Help, msg, MultiSpan::new(), None); self } pub fn span_help>(&mut self, sp: S, msg: &str) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Help, msg, sp.into(), None); self } /// Prints out a message with a suggested edit of the code. /// /// See `diagnostic::RenderSpan::Suggestion` for more information. pub fn span_suggestion>(&mut self, sp: S, msg: &str, suggestion: String) -> &mut DiagnosticBuilder<'a> { self.sub(Level::Help, msg, MultiSpan::new(), Some(Suggestion(CodeSuggestion { msp: sp.into(), substitutes: vec![suggestion], }))); self } pub fn set_span>(&mut self, sp: S) -> &mut Self { self.span = sp.into(); self } pub fn code(&mut self, s: String) -> &mut Self { self.code = Some(s); self } pub fn message(&self) -> &str { &self.message } pub fn level(&self) -> Level { self.level } /// Convenience function for internal use, clients should use one of the /// struct_* methods on Handler. fn new(emitter: &'a RefCell>, level: Level, message: &str) -> DiagnosticBuilder<'a> { DiagnosticBuilder { emitter: emitter, level: level, message: message.to_owned(), code: None, span: MultiSpan::new(), children: vec![], } } /// Convenience function for internal use, clients should use one of the /// public methods above. fn sub(&mut self, level: Level, message: &str, span: MultiSpan, render_span: Option) { let sub = SubDiagnostic { level: level, message: message.to_owned(), span: span, render_span: render_span, }; self.children.push(sub); } } impl<'a> fmt::Debug for DiagnosticBuilder<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.message.fmt(f) } } /// Destructor bomb - a DiagnosticBuilder must be either emitted or cancelled or /// we emit a bug. impl<'a> Drop for DiagnosticBuilder<'a> { fn drop(&mut self) { if !panicking() && !self.cancelled() { self.emitter.borrow_mut().emit(&MultiSpan::new(), "Error constructed but not emitted", None, Bug); panic!(); } } } /// A handler deals with errors; certain errors /// (fatal, bug, unimpl) may cause immediate exit, /// others log errors for later reporting. pub struct Handler { err_count: Cell, emit: RefCell>, pub can_emit_warnings: bool, treat_err_as_bug: bool, continue_after_error: Cell, delayed_span_bug: RefCell>, } impl Handler { pub fn with_tty_emitter(color_config: ColorConfig, registry: Option, can_emit_warnings: bool, treat_err_as_bug: bool, cm: Rc) -> Handler { let emitter = Box::new(EmitterWriter::stderr(color_config, registry, cm)); Handler::with_emitter(can_emit_warnings, treat_err_as_bug, emitter) } pub fn with_emitter(can_emit_warnings: bool, treat_err_as_bug: bool, e: Box) -> Handler { Handler { err_count: Cell::new(0), emit: RefCell::new(e), can_emit_warnings: can_emit_warnings, treat_err_as_bug: treat_err_as_bug, continue_after_error: Cell::new(true), delayed_span_bug: RefCell::new(None), } } pub fn set_continue_after_error(&self, continue_after_error: bool) { self.continue_after_error.set(continue_after_error); } pub fn struct_dummy<'a>(&'a self) -> DiagnosticBuilder<'a> { DiagnosticBuilder::new(&self.emit, Level::Cancelled, "") } pub fn struct_span_warn<'a, S: Into>(&'a self, sp: S, msg: &str) -> DiagnosticBuilder<'a> { let mut result = DiagnosticBuilder::new(&self.emit, Level::Warning, msg); result.set_span(sp); if !self.can_emit_warnings { result.cancel(); } result } pub fn struct_span_warn_with_code<'a, S: Into>(&'a self, sp: S, msg: &str, code: &str) -> DiagnosticBuilder<'a> { let mut result = DiagnosticBuilder::new(&self.emit, Level::Warning, msg); result.set_span(sp); result.code(code.to_owned()); if !self.can_emit_warnings { result.cancel(); } result } pub fn struct_warn<'a>(&'a self, msg: &str) -> DiagnosticBuilder<'a> { let mut result = DiagnosticBuilder::new(&self.emit, Level::Warning, msg); if !self.can_emit_warnings { result.cancel(); } result } pub fn struct_span_err<'a, S: Into>(&'a self, sp: S, msg: &str) -> DiagnosticBuilder<'a> { self.bump_err_count(); let mut result = DiagnosticBuilder::new(&self.emit, Level::Error, msg); result.set_span(sp); result } pub fn struct_span_err_with_code<'a, S: Into>(&'a self, sp: S, msg: &str, code: &str) -> DiagnosticBuilder<'a> { self.bump_err_count(); let mut result = DiagnosticBuilder::new(&self.emit, Level::Error, msg); result.set_span(sp); result.code(code.to_owned()); result } pub fn struct_err<'a>(&'a self, msg: &str) -> DiagnosticBuilder<'a> { self.bump_err_count(); DiagnosticBuilder::new(&self.emit, Level::Error, msg) } pub fn struct_span_fatal<'a, S: Into>(&'a self, sp: S, msg: &str) -> DiagnosticBuilder<'a> { self.bump_err_count(); let mut result = DiagnosticBuilder::new(&self.emit, Level::Fatal, msg); result.set_span(sp); result } pub fn struct_span_fatal_with_code<'a, S: Into>(&'a self, sp: S, msg: &str, code: &str) -> DiagnosticBuilder<'a> { self.bump_err_count(); let mut result = DiagnosticBuilder::new(&self.emit, Level::Fatal, msg); result.set_span(sp); result.code(code.to_owned()); result } pub fn struct_fatal<'a>(&'a self, msg: &str) -> DiagnosticBuilder<'a> { self.bump_err_count(); DiagnosticBuilder::new(&self.emit, Level::Fatal, msg) } pub fn cancel(&mut self, err: &mut DiagnosticBuilder) { if err.level == Level::Error || err.level == Level::Fatal { assert!(self.has_errors()); self.err_count.set(self.err_count.get() + 1); } err.cancel(); } pub fn span_fatal>(&self, sp: S, msg: &str) -> FatalError { if self.treat_err_as_bug { self.span_bug(sp, msg); } self.emit(&sp.into(), msg, Fatal); self.bump_err_count(); return FatalError; } pub fn span_fatal_with_code>(&self, sp: S, msg: &str, code: &str) -> FatalError { if self.treat_err_as_bug { self.span_bug(sp, msg); } self.emit_with_code(&sp.into(), msg, code, Fatal); self.bump_err_count(); return FatalError; } pub fn span_err>(&self, sp: S, msg: &str) { if self.treat_err_as_bug { self.span_bug(sp, msg); } self.emit(&sp.into(), msg, Error); self.bump_err_count(); } pub fn span_err_with_code>(&self, sp: S, msg: &str, code: &str) { if self.treat_err_as_bug { self.span_bug(sp, msg); } self.emit_with_code(&sp.into(), msg, code, Error); self.bump_err_count(); } pub fn span_warn>(&self, sp: S, msg: &str) { self.emit(&sp.into(), msg, Warning); } pub fn span_warn_with_code>(&self, sp: S, msg: &str, code: &str) { self.emit_with_code(&sp.into(), msg, code, Warning); } pub fn span_bug>(&self, sp: S, msg: &str) -> ! { self.emit(&sp.into(), msg, Bug); panic!(ExplicitBug); } pub fn delay_span_bug>(&self, sp: S, msg: &str) { let mut delayed = self.delayed_span_bug.borrow_mut(); *delayed = Some((sp.into(), msg.to_string())); } pub fn span_bug_no_panic>(&self, sp: S, msg: &str) { self.emit(&sp.into(), msg, Bug); self.bump_err_count(); } pub fn span_note_without_error>(&self, sp: S, msg: &str) { self.emit.borrow_mut().emit(&sp.into(), msg, None, Note); } pub fn span_unimpl>(&self, sp: S, msg: &str) -> ! { self.span_bug(sp, &format!("unimplemented {}", msg)); } pub fn fatal(&self, msg: &str) -> FatalError { if self.treat_err_as_bug { self.bug(msg); } self.emit.borrow_mut().emit(&MultiSpan::new(), msg, None, Fatal); self.bump_err_count(); FatalError } pub fn err(&self, msg: &str) { if self.treat_err_as_bug { self.bug(msg); } self.emit.borrow_mut().emit(&MultiSpan::new(), msg, None, Error); self.bump_err_count(); } pub fn warn(&self, msg: &str) { self.emit.borrow_mut().emit(&MultiSpan::new(), msg, None, Warning); } pub fn note_without_error(&self, msg: &str) { self.emit.borrow_mut().emit(&MultiSpan::new(), msg, None, Note); } pub fn bug(&self, msg: &str) -> ! { self.emit.borrow_mut().emit(&MultiSpan::new(), msg, None, Bug); panic!(ExplicitBug); } pub fn unimpl(&self, msg: &str) -> ! { self.bug(&format!("unimplemented {}", msg)); } pub fn bump_err_count(&self) { self.err_count.set(self.err_count.get() + 1); } pub fn err_count(&self) -> usize { self.err_count.get() } pub fn has_errors(&self) -> bool { self.err_count.get() > 0 } pub fn abort_if_errors(&self) { let s; match self.err_count.get() { 0 => { let delayed_bug = self.delayed_span_bug.borrow(); match *delayed_bug { Some((ref span, ref errmsg)) => { self.span_bug(span.clone(), errmsg); }, _ => {} } return; } 1 => s = "aborting due to previous error".to_string(), _ => { s = format!("aborting due to {} previous errors", self.err_count.get()); } } panic!(self.fatal(&s)); } pub fn emit(&self, msp: &MultiSpan, msg: &str, lvl: Level) { if lvl == Warning && !self.can_emit_warnings { return } self.emit.borrow_mut().emit(&msp, msg, None, lvl); if !self.continue_after_error.get() { self.abort_if_errors(); } } pub fn emit_with_code(&self, msp: &MultiSpan, msg: &str, code: &str, lvl: Level) { if lvl == Warning && !self.can_emit_warnings { return } self.emit.borrow_mut().emit(&msp, msg, Some(code), lvl); if !self.continue_after_error.get() { self.abort_if_errors(); } } } #[derive(Copy, PartialEq, Clone, Debug)] pub enum Level { Bug, Fatal, // An error which while not immediately fatal, should stop the compiler // progressing beyond the current phase. PhaseFatal, Error, Warning, Note, Help, Cancelled, } impl fmt::Display for Level { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.to_str().fmt(f) } } impl Level { fn color(self) -> term::color::Color { match self { Bug | Fatal | PhaseFatal | Error => term::color::BRIGHT_RED, Warning => term::color::YELLOW, Note => term::color::BRIGHT_GREEN, Help => term::color::BRIGHT_CYAN, Cancelled => unreachable!(), } } fn to_str(self) -> &'static str { match self { Bug => "error: internal compiler error", Fatal | PhaseFatal | Error => "error", Warning => "warning", Note => "note", Help => "help", Cancelled => panic!("Shouldn't call on cancelled error"), } } } pub fn expect(diag: &Handler, opt: Option, msg: M) -> T where M: FnOnce() -> String, { match opt { Some(t) => t, None => diag.bug(&msg()), } } /// True if we should use the old-skool error format style. This is /// the default setting until the new errors are deemed stable enough /// for general use. /// /// FIXME(#33240) #[cfg(not(test))] fn check_old_skool() -> bool { use std::env; env::var("RUST_NEW_ERROR_FORMAT").is_err() } /// For unit tests, use the new format. #[cfg(test)] fn check_old_skool() -> bool { false }