// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Handles translation of callees as well as other call-related //! things. Callees are a superset of normal rust values and sometimes //! have different representations. In particular, top-level fn items //! and methods are represented as just a fn ptr and not a full //! closure. pub use self::AutorefArg::*; pub use self::CalleeData::*; pub use self::CallArgs::*; use arena::TypedArena; use back::link; use session; use llvm::{ValueRef}; use llvm::get_param; use llvm; use metadata::csearch; use middle::def; use middle::subst; use middle::subst::{Subst, Substs}; use trans::adt; use trans::base; use trans::base::*; use trans::build::*; use trans::callee; use trans::cleanup; use trans::cleanup::CleanupMethods; use trans::closure; use trans::common::{self, Block, Result, NodeIdAndSpan, ExprId, CrateContext, ExprOrMethodCall, FunctionContext, MethodCallKey}; use trans::consts; use trans::datum::*; use trans::debuginfo::{DebugLoc, ToDebugLoc}; use trans::expr; use trans::glue; use trans::inline; use trans::foreign; use trans::intrinsic; use trans::meth; use trans::monomorphize; use trans::type_::Type; use trans::type_of; use middle::ty::{self, Ty}; use middle::ty::MethodCall; use util::ppaux::Repr; use util::ppaux::ty_to_string; use syntax::abi as synabi; use syntax::ast; use syntax::ast_map; use syntax::ptr::P; #[derive(Copy)] pub struct MethodData { pub llfn: ValueRef, pub llself: ValueRef, } pub enum CalleeData<'tcx> { // Constructor for enum variant/tuple-like-struct // i.e. Some, Ok NamedTupleConstructor(subst::Substs<'tcx>, ty::Disr), // Represents a (possibly monomorphized) top-level fn item or method // item. Note that this is just the fn-ptr and is not a Rust closure // value (which is a pair). Fn(/* llfn */ ValueRef), Intrinsic(ast::NodeId, subst::Substs<'tcx>), TraitItem(MethodData) } pub struct Callee<'blk, 'tcx: 'blk> { pub bcx: Block<'blk, 'tcx>, pub data: CalleeData<'tcx>, } fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr) -> Callee<'blk, 'tcx> { let _icx = push_ctxt("trans_callee"); debug!("callee::trans(expr={})", expr.repr(bcx.tcx())); // pick out special kinds of expressions that can be called: match expr.node { ast::ExprPath(_) | ast::ExprQPath(_) => { return trans_def(bcx, bcx.def(expr.id), expr); } _ => {} } // any other expressions are closures: return datum_callee(bcx, expr); fn datum_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, expr: &ast::Expr) -> Callee<'blk, 'tcx> { let DatumBlock { bcx, datum, .. } = expr::trans(bcx, expr); match datum.ty.sty { ty::ty_bare_fn(..) => { let llval = datum.to_llscalarish(bcx); return Callee { bcx: bcx, data: Fn(llval), }; } _ => { bcx.tcx().sess.span_bug( expr.span, &format!("type of callee is neither bare-fn nor closure: \ {}", bcx.ty_to_string(datum.ty))[]); } } } fn fn_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, llfn: ValueRef) -> Callee<'blk, 'tcx> { return Callee { bcx: bcx, data: Fn(llfn), }; } fn trans_def<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, def: def::Def, ref_expr: &ast::Expr) -> Callee<'blk, 'tcx> { debug!("trans_def(def={}, ref_expr={})", def.repr(bcx.tcx()), ref_expr.repr(bcx.tcx())); let expr_ty = common::node_id_type(bcx, ref_expr.id); match def { def::DefFn(did, _) if { let maybe_def_id = inline::get_local_instance(bcx.ccx(), did); let maybe_ast_node = maybe_def_id.and_then(|def_id| bcx.tcx().map .find(def_id.node)); match maybe_ast_node { Some(ast_map::NodeStructCtor(_)) => true, _ => false } } => { let substs = common::node_id_substs(bcx.ccx(), ExprId(ref_expr.id), bcx.fcx.param_substs); Callee { bcx: bcx, data: NamedTupleConstructor(substs, 0) } } def::DefFn(did, _) if match expr_ty.sty { ty::ty_bare_fn(_, ref f) => f.abi == synabi::RustIntrinsic, _ => false } => { let substs = common::node_id_substs(bcx.ccx(), ExprId(ref_expr.id), bcx.fcx.param_substs); let def_id = inline::maybe_instantiate_inline(bcx.ccx(), did); Callee { bcx: bcx, data: Intrinsic(def_id.node, substs) } } def::DefFn(did, _) | def::DefMethod(did, _, def::FromImpl(_)) | def::DefStaticMethod(did, def::FromImpl(_)) => { fn_callee(bcx, trans_fn_ref(bcx.ccx(), did, ExprId(ref_expr.id), bcx.fcx.param_substs).val) } def::DefStaticMethod(meth_did, def::FromTrait(trait_did)) | def::DefMethod(meth_did, _, def::FromTrait(trait_did)) => { fn_callee(bcx, meth::trans_static_method_callee(bcx.ccx(), meth_did, trait_did, ref_expr.id, bcx.fcx.param_substs).val) } def::DefVariant(tid, vid, _) => { let vinfo = ty::enum_variant_with_id(bcx.tcx(), tid, vid); let substs = common::node_id_substs(bcx.ccx(), ExprId(ref_expr.id), bcx.fcx.param_substs); // Nullary variants are not callable assert!(vinfo.args.len() > 0); Callee { bcx: bcx, data: NamedTupleConstructor(substs, vinfo.disr_val) } } def::DefStruct(_) => { let substs = common::node_id_substs(bcx.ccx(), ExprId(ref_expr.id), bcx.fcx.param_substs); Callee { bcx: bcx, data: NamedTupleConstructor(substs, 0) } } def::DefStatic(..) | def::DefConst(..) | def::DefLocal(..) | def::DefUpvar(..) => { datum_callee(bcx, ref_expr) } def::DefMod(..) | def::DefForeignMod(..) | def::DefTrait(..) | def::DefTy(..) | def::DefPrimTy(..) | def::DefAssociatedTy(..) | def::DefUse(..) | def::DefTyParamBinder(..) | def::DefRegion(..) | def::DefLabel(..) | def::DefTyParam(..) | def::DefSelfTy(..) | def::DefAssociatedPath(..) => { bcx.tcx().sess.span_bug( ref_expr.span, &format!("cannot translate def {:?} \ to a callable thing!", def)[]); } } } } /// Translates a reference (with id `ref_id`) to the fn/method with id `def_id` into a function /// pointer. This may require monomorphization or inlining. pub fn trans_fn_ref<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, def_id: ast::DefId, node: ExprOrMethodCall, param_substs: &subst::Substs<'tcx>) -> Datum<'tcx, Rvalue> { let _icx = push_ctxt("trans_fn_ref"); let substs = common::node_id_substs(ccx, node, param_substs); debug!("trans_fn_ref(def_id={}, node={:?}, substs={})", def_id.repr(ccx.tcx()), node, substs.repr(ccx.tcx())); trans_fn_ref_with_substs(ccx, def_id, node, param_substs, substs) } fn trans_fn_ref_with_substs_to_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, def_id: ast::DefId, ref_id: ast::NodeId, substs: subst::Substs<'tcx>) -> Callee<'blk, 'tcx> { Callee { bcx: bcx, data: Fn(trans_fn_ref_with_substs(bcx.ccx(), def_id, ExprId(ref_id), bcx.fcx.param_substs, substs).val), } } /// Translates an adapter that implements the `Fn` trait for a fn /// pointer. This is basically the equivalent of something like: /// /// ```rust /// impl<'a> Fn(&'a int) -> &'a int for fn(&int) -> &int { /// extern "rust-abi" fn call(&self, args: (&'a int,)) -> &'a int { /// (*self)(args.0) /// } /// } /// ``` /// /// but for the bare function type given. pub fn trans_fn_pointer_shim<'a, 'tcx>( ccx: &'a CrateContext<'a, 'tcx>, bare_fn_ty: Ty<'tcx>) -> ValueRef { let _icx = push_ctxt("trans_fn_pointer_shim"); let tcx = ccx.tcx(); let bare_fn_ty = common::erase_regions(tcx, &bare_fn_ty); match ccx.fn_pointer_shims().borrow().get(&bare_fn_ty) { Some(&llval) => { return llval; } None => { } } debug!("trans_fn_pointer_shim(bare_fn_ty={})", bare_fn_ty.repr(tcx)); // This is an impl of `Fn` trait, so receiver is `&self`. let bare_fn_ty_ref = ty::mk_imm_rptr(tcx, tcx.mk_region(ty::ReStatic), bare_fn_ty); // Construct the "tuply" version of `bare_fn_ty`. It takes two arguments: `self`, // which is the fn pointer, and `args`, which is the arguments tuple. let (opt_def_id, sig) = match bare_fn_ty.sty { ty::ty_bare_fn(opt_def_id, &ty::BareFnTy { unsafety: ast::Unsafety::Normal, abi: synabi::Rust, ref sig }) => { (opt_def_id, sig) } _ => { tcx.sess.bug(&format!("trans_fn_pointer_shim invoked on invalid type: {}", bare_fn_ty.repr(tcx))[]); } }; let sig = ty::erase_late_bound_regions(tcx, sig); let tuple_input_ty = ty::mk_tup(tcx, sig.inputs.to_vec()); let tuple_fn_ty = ty::mk_bare_fn(tcx, opt_def_id, tcx.mk_bare_fn(ty::BareFnTy { unsafety: ast::Unsafety::Normal, abi: synabi::RustCall, sig: ty::Binder(ty::FnSig { inputs: vec![bare_fn_ty_ref, tuple_input_ty], output: sig.output, variadic: false })})); debug!("tuple_fn_ty: {}", tuple_fn_ty.repr(tcx)); // let function_name = link::mangle_internal_name_by_type_and_seq(ccx, bare_fn_ty, "fn_pointer_shim"); let llfn = decl_internal_rust_fn(ccx, tuple_fn_ty, &function_name[]); // let empty_substs = Substs::trans_empty(); let (block_arena, fcx): (TypedArena<_>, FunctionContext); block_arena = TypedArena::new(); fcx = new_fn_ctxt(ccx, llfn, ast::DUMMY_NODE_ID, false, sig.output, &empty_substs, None, &block_arena); let mut bcx = init_function(&fcx, false, sig.output); // the first argument (`self`) will be ptr to the the fn pointer let llfnpointer = Load(bcx, get_param(fcx.llfn, fcx.arg_pos(0) as u32)); // the remaining arguments will be the untupled values let llargs: Vec<_> = sig.inputs.iter() .enumerate() .map(|(i, _)| get_param(fcx.llfn, fcx.arg_pos(i+1) as u32)) .collect(); assert!(!fcx.needs_ret_allocas); let dest = fcx.llretslotptr.get().map(|_| expr::SaveIn(fcx.get_ret_slot(bcx, sig.output, "ret_slot")) ); bcx = trans_call_inner(bcx, DebugLoc::None, bare_fn_ty, |bcx, _| Callee { bcx: bcx, data: Fn(llfnpointer) }, ArgVals(&llargs[]), dest).bcx; finish_fn(&fcx, bcx, sig.output, DebugLoc::None); ccx.fn_pointer_shims().borrow_mut().insert(bare_fn_ty, llfn); llfn } /// Translates a reference to a fn/method item, monomorphizing and /// inlining as it goes. /// /// # Parameters /// /// - `ccx`: the crate context /// - `def_id`: def id of the fn or method item being referenced /// - `node`: node id of the reference to the fn/method, if applicable. /// This parameter may be zero; but, if so, the resulting value may not /// have the right type, so it must be cast before being used. /// - `param_substs`: if the `node` is in a polymorphic function, these /// are the substitutions required to monomorphize its type /// - `substs`: values for each of the fn/method's parameters pub fn trans_fn_ref_with_substs<'a, 'tcx>( ccx: &CrateContext<'a, 'tcx>, def_id: ast::DefId, node: ExprOrMethodCall, param_substs: &subst::Substs<'tcx>, substs: subst::Substs<'tcx>) -> Datum<'tcx, Rvalue> { let _icx = push_ctxt("trans_fn_ref_with_substs"); let tcx = ccx.tcx(); debug!("trans_fn_ref_with_substs(def_id={}, node={:?}, \ param_substs={}, substs={})", def_id.repr(tcx), node, param_substs.repr(tcx), substs.repr(tcx)); assert!(substs.types.all(|t| !ty::type_needs_infer(*t))); assert!(substs.types.all(|t| !ty::type_has_escaping_regions(*t))); let substs = substs.erase_regions(); // Load the info for the appropriate trait if necessary. match ty::trait_of_item(tcx, def_id) { None => {} Some(trait_id) => { ty::populate_implementations_for_trait_if_necessary(tcx, trait_id) } } // We need to do a bunch of special handling for default methods. // We need to modify the def_id and our substs in order to monomorphize // the function. let (is_default, def_id, substs) = match ty::provided_source(tcx, def_id) { None => (false, def_id, substs), Some(source_id) => { // There are two relevant substitutions when compiling // default methods. First, there is the substitution for // the type parameters of the impl we are using and the // method we are calling. This substitution is the substs // argument we already have. // In order to compile a default method, though, we need // to consider another substitution: the substitution for // the type parameters on trait; the impl we are using // implements the trait at some particular type // parameters, and we need to substitute for those first. // So, what we need to do is find this substitution and // compose it with the one we already have. let impl_id = ty::impl_or_trait_item(tcx, def_id).container() .id(); let impl_or_trait_item = ty::impl_or_trait_item(tcx, source_id); match impl_or_trait_item { ty::MethodTraitItem(method) => { let trait_ref = ty::impl_trait_ref(tcx, impl_id).unwrap(); // Compute the first substitution let first_subst = ty::make_substs_for_receiver_types(tcx, &*trait_ref, &*method) .erase_regions(); // And compose them let new_substs = first_subst.subst(tcx, &substs); debug!("trans_fn_with_vtables - default method: \ substs = {}, trait_subst = {}, \ first_subst = {}, new_subst = {}", substs.repr(tcx), trait_ref.substs.repr(tcx), first_subst.repr(tcx), new_substs.repr(tcx)); (true, source_id, new_substs) } ty::TypeTraitItem(_) => { tcx.sess.bug("trans_fn_ref_with_vtables() tried \ to translate an associated type?!") } } } }; // If this is a closure, redirect to it. match closure::get_or_create_declaration_if_closure(ccx, def_id, &substs) { None => {} Some(llfn) => return llfn, } // Check whether this fn has an inlined copy and, if so, redirect // def_id to the local id of the inlined copy. let def_id = inline::maybe_instantiate_inline(ccx, def_id); // We must monomorphise if the fn has type parameters, is a default method, // or is a named tuple constructor. let must_monomorphise = if !substs.types.is_empty() || is_default { true } else if def_id.krate == ast::LOCAL_CRATE { let map_node = session::expect( ccx.sess(), tcx.map.find(def_id.node), || "local item should be in ast map".to_string()); match map_node { ast_map::NodeVariant(v) => match v.node.kind { ast::TupleVariantKind(ref args) => args.len() > 0, _ => false }, ast_map::NodeStructCtor(_) => true, _ => false } } else { false }; // Create a monomorphic version of generic functions if must_monomorphise { // Should be either intra-crate or inlined. assert_eq!(def_id.krate, ast::LOCAL_CRATE); let opt_ref_id = match node { ExprId(id) => if id != 0 { Some(id) } else { None }, MethodCallKey(_) => None, }; let (val, fn_ty, must_cast) = monomorphize::monomorphic_fn(ccx, def_id, &substs, opt_ref_id); if must_cast && node != ExprId(0) { // Monotype of the REFERENCE to the function (type params // are subst'd) let ref_ty = match node { ExprId(id) => ty::node_id_to_type(tcx, id), MethodCallKey(method_call) => { (*tcx.method_map.borrow())[method_call].ty } }; let ref_ty = monomorphize::apply_param_substs(tcx, param_substs, &ref_ty); let llptrty = type_of::type_of_fn_from_ty(ccx, ref_ty).ptr_to(); if llptrty != common::val_ty(val) { let val = consts::ptrcast(val, llptrty); return Datum::new(val, ref_ty, Rvalue::new(ByValue)); } } return Datum::new(val, fn_ty, Rvalue::new(ByValue)); } // Type scheme of the function item (may have type params) let fn_type_scheme = ty::lookup_item_type(tcx, def_id); let fn_type = monomorphize::normalize_associated_type(tcx, &fn_type_scheme.ty); // Find the actual function pointer. let mut val = { if def_id.krate == ast::LOCAL_CRATE { // Internal reference. get_item_val(ccx, def_id.node) } else { // External reference. trans_external_path(ccx, def_id, fn_type) } }; // This is subtle and surprising, but sometimes we have to bitcast // the resulting fn pointer. The reason has to do with external // functions. If you have two crates that both bind the same C // library, they may not use precisely the same types: for // example, they will probably each declare their own structs, // which are distinct types from LLVM's point of view (nominal // types). // // Now, if those two crates are linked into an application, and // they contain inlined code, you can wind up with a situation // where both of those functions wind up being loaded into this // application simultaneously. In that case, the same function // (from LLVM's point of view) requires two types. But of course // LLVM won't allow one function to have two types. // // What we currently do, therefore, is declare the function with // one of the two types (whichever happens to come first) and then // bitcast as needed when the function is referenced to make sure // it has the type we expect. // // This can occur on either a crate-local or crate-external // reference. It also occurs when testing libcore and in some // other weird situations. Annoying. let llty = type_of::type_of_fn_from_ty(ccx, fn_type); let llptrty = llty.ptr_to(); if common::val_ty(val) != llptrty { debug!("trans_fn_ref_with_vtables(): casting pointer!"); val = consts::ptrcast(val, llptrty); } else { debug!("trans_fn_ref_with_vtables(): not casting pointer!"); } Datum::new(val, fn_type, Rvalue::new(ByValue)) } // ______________________________________________________________________ // Translating calls pub fn trans_call<'a, 'blk, 'tcx>(in_cx: Block<'blk, 'tcx>, call_expr: &ast::Expr, f: &ast::Expr, args: CallArgs<'a, 'tcx>, dest: expr::Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_call"); trans_call_inner(in_cx, call_expr.debug_loc(), common::expr_ty_adjusted(in_cx, f), |cx, _| trans(cx, f), args, Some(dest)).bcx } pub fn trans_method_call<'a, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>, call_expr: &ast::Expr, rcvr: &ast::Expr, args: CallArgs<'a, 'tcx>, dest: expr::Dest) -> Block<'blk, 'tcx> { let _icx = push_ctxt("trans_method_call"); debug!("trans_method_call(call_expr={})", call_expr.repr(bcx.tcx())); let method_call = MethodCall::expr(call_expr.id); let method_ty = (*bcx.tcx().method_map.borrow())[method_call].ty; trans_call_inner( bcx, call_expr.debug_loc(), common::monomorphize_type(bcx, method_ty), |cx, arg_cleanup_scope| { meth::trans_method_callee(cx, method_call, Some(rcvr), arg_cleanup_scope) }, args, Some(dest)).bcx } pub fn trans_lang_call<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, did: ast::DefId, args: &[ValueRef], dest: Option, debug_loc: DebugLoc) -> Result<'blk, 'tcx> { let fty = if did.krate == ast::LOCAL_CRATE { ty::node_id_to_type(bcx.tcx(), did.node) } else { csearch::get_type(bcx.tcx(), did).ty }; callee::trans_call_inner(bcx, debug_loc, fty, |bcx, _| { trans_fn_ref_with_substs_to_callee(bcx, did, 0, subst::Substs::trans_empty()) }, ArgVals(args), dest) } /// This behemoth of a function translates function calls. Unfortunately, in order to generate more /// efficient LLVM output at -O0, it has quite a complex signature (refactoring this into two /// functions seems like a good idea). /// /// In particular, for lang items, it is invoked with a dest of None, and in that case the return /// value contains the result of the fn. The lang item must not return a structural type or else /// all heck breaks loose. /// /// For non-lang items, `dest` is always Some, and hence the result is written into memory /// somewhere. Nonetheless we return the actual return value of the function. pub fn trans_call_inner<'a, 'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>, debug_loc: DebugLoc, callee_ty: Ty<'tcx>, get_callee: F, args: CallArgs<'a, 'tcx>, dest: Option) -> Result<'blk, 'tcx> where F: FnOnce(Block<'blk, 'tcx>, cleanup::ScopeId) -> Callee<'blk, 'tcx>, { // Introduce a temporary cleanup scope that will contain cleanups // for the arguments while they are being evaluated. The purpose // this cleanup is to ensure that, should a panic occur while // evaluating argument N, the values for arguments 0...N-1 are all // cleaned up. If no panic occurs, the values are handed off to // the callee, and hence none of the cleanups in this temporary // scope will ever execute. let fcx = bcx.fcx; let ccx = fcx.ccx; let arg_cleanup_scope = fcx.push_custom_cleanup_scope(); let callee = get_callee(bcx, cleanup::CustomScope(arg_cleanup_scope)); let mut bcx = callee.bcx; let (abi, ret_ty) = match callee_ty.sty { ty::ty_bare_fn(_, ref f) => { let output = ty::erase_late_bound_regions(bcx.tcx(), &f.sig.output()); (f.abi, output) } _ => panic!("expected bare rust fn or closure in trans_call_inner") }; let (llfn, llenv, llself) = match callee.data { Fn(llfn) => { (llfn, None, None) } TraitItem(d) => { (d.llfn, None, Some(d.llself)) } Intrinsic(node, substs) => { assert!(abi == synabi::RustIntrinsic); assert!(dest.is_some()); let call_info = match debug_loc { DebugLoc::At(id, span) => NodeIdAndSpan { id: id, span: span }, DebugLoc::None => { bcx.sess().bug("No call info for intrinsic call?") } }; return intrinsic::trans_intrinsic_call(bcx, node, callee_ty, arg_cleanup_scope, args, dest.unwrap(), substs, call_info); } NamedTupleConstructor(substs, disr) => { assert!(dest.is_some()); fcx.pop_custom_cleanup_scope(arg_cleanup_scope); let ctor_ty = callee_ty.subst(bcx.tcx(), &substs); return base::trans_named_tuple_constructor(bcx, ctor_ty, disr, args, dest.unwrap(), debug_loc); } }; // Intrinsics should not become actual functions. // We trans them in place in `trans_intrinsic_call` assert!(abi != synabi::RustIntrinsic); let is_rust_fn = abi == synabi::Rust || abi == synabi::RustCall; // Generate a location to store the result. If the user does // not care about the result, just make a stack slot. let opt_llretslot = dest.and_then(|dest| match dest { expr::SaveIn(dst) => Some(dst), expr::Ignore => { let ret_ty = match ret_ty { ty::FnConverging(ret_ty) => ret_ty, ty::FnDiverging => ty::mk_nil(ccx.tcx()) }; if !is_rust_fn || type_of::return_uses_outptr(ccx, ret_ty) || common::type_needs_drop(bcx.tcx(), ret_ty) { // Push the out-pointer if we use an out-pointer for this // return type, otherwise push "undef". if common::type_is_zero_size(ccx, ret_ty) { let llty = type_of::type_of(ccx, ret_ty); Some(common::C_undef(llty.ptr_to())) } else { Some(alloc_ty(bcx, ret_ty, "__llret")) } } else { None } } }); let mut llresult = unsafe { llvm::LLVMGetUndef(Type::nil(ccx).ptr_to().to_ref()) }; // The code below invokes the function, using either the Rust // conventions (if it is a rust fn) or the native conventions // (otherwise). The important part is that, when all is said // and done, either the return value of the function will have been // written in opt_llretslot (if it is Some) or `llresult` will be // set appropriately (otherwise). if is_rust_fn { let mut llargs = Vec::new(); if let (ty::FnConverging(ret_ty), Some(llretslot)) = (ret_ty, opt_llretslot) { if type_of::return_uses_outptr(ccx, ret_ty) { llargs.push(llretslot); } } // Push the environment (or a trait object's self). match (llenv, llself) { (Some(llenv), None) => llargs.push(llenv), (None, Some(llself)) => llargs.push(llself), _ => {} } // Push the arguments. bcx = trans_args(bcx, args, callee_ty, &mut llargs, cleanup::CustomScope(arg_cleanup_scope), llself.is_some(), abi); fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean(); // Invoke the actual rust fn and update bcx/llresult. let (llret, b) = base::invoke(bcx, llfn, &llargs[], callee_ty, debug_loc); bcx = b; llresult = llret; // If the Rust convention for this type is return via // the return value, copy it into llretslot. match (opt_llretslot, ret_ty) { (Some(llretslot), ty::FnConverging(ret_ty)) => { if !type_of::return_uses_outptr(bcx.ccx(), ret_ty) && !common::type_is_zero_size(bcx.ccx(), ret_ty) { store_ty(bcx, llret, llretslot, ret_ty) } } (_, _) => {} } } else { // Lang items are the only case where dest is None, and // they are always Rust fns. assert!(dest.is_some()); let mut llargs = Vec::new(); let arg_tys = match args { ArgExprs(a) => a.iter().map(|x| common::expr_ty(bcx, &**x)).collect(), _ => panic!("expected arg exprs.") }; bcx = trans_args(bcx, args, callee_ty, &mut llargs, cleanup::CustomScope(arg_cleanup_scope), false, abi); fcx.scopes.borrow_mut().last_mut().unwrap().drop_non_lifetime_clean(); bcx = foreign::trans_native_call(bcx, callee_ty, llfn, opt_llretslot.unwrap(), &llargs[], arg_tys, debug_loc); } fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_cleanup_scope); // If the caller doesn't care about the result of this fn call, // drop the temporary slot we made. match (dest, opt_llretslot, ret_ty) { (Some(expr::Ignore), Some(llretslot), ty::FnConverging(ret_ty)) => { // drop the value if it is not being saved. bcx = glue::drop_ty(bcx, llretslot, ret_ty, debug_loc); call_lifetime_end(bcx, llretslot); } _ => {} } if ret_ty == ty::FnDiverging { Unreachable(bcx); } Result::new(bcx, llresult) } pub enum CallArgs<'a, 'tcx> { // Supply value of arguments as a list of expressions that must be // translated. This is used in the common case of `foo(bar, qux)`. ArgExprs(&'a [P]), // Supply value of arguments as a list of LLVM value refs; frequently // used with lang items and so forth, when the argument is an internal // value. ArgVals(&'a [ValueRef]), // For overloaded operators: `(lhs, Vec(rhs, rhs_id), autoref)`. `lhs` // is the left-hand-side and `rhs/rhs_id` is the datum/expr-id of // the right-hand-side arguments (if any). `autoref` indicates whether the `rhs` // arguments should be auto-referenced ArgOverloadedOp(Datum<'tcx, Expr>, Vec<(Datum<'tcx, Expr>, ast::NodeId)>, bool), // Supply value of arguments as a list of expressions that must be // translated, for overloaded call operators. ArgOverloadedCall(Vec<&'a ast::Expr>), } fn trans_args_under_call_abi<'blk, 'tcx>( mut bcx: Block<'blk, 'tcx>, arg_exprs: &[P], fn_ty: Ty<'tcx>, llargs: &mut Vec, arg_cleanup_scope: cleanup::ScopeId, ignore_self: bool) -> Block<'blk, 'tcx> { let args = ty::erase_late_bound_regions( bcx.tcx(), &ty::ty_fn_args(fn_ty)); // Translate the `self` argument first. if !ignore_self { let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &*arg_exprs[0])); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, args[0], arg_datum, arg_cleanup_scope, DontAutorefArg) })) } // Now untuple the rest of the arguments. let tuple_expr = &arg_exprs[1]; let tuple_type = common::node_id_type(bcx, tuple_expr.id); match tuple_type.sty { ty::ty_tup(ref field_types) => { let tuple_datum = unpack_datum!(bcx, expr::trans(bcx, &**tuple_expr)); let tuple_lvalue_datum = unpack_datum!(bcx, tuple_datum.to_lvalue_datum(bcx, "args", tuple_expr.id)); let repr = adt::represent_type(bcx.ccx(), tuple_type); let repr_ptr = &*repr; for i in 0..field_types.len() { let arg_datum = tuple_lvalue_datum.get_element( bcx, field_types[i], |srcval| { adt::trans_field_ptr(bcx, repr_ptr, srcval, 0, i) }); let arg_datum = arg_datum.to_expr_datum(); let arg_datum = unpack_datum!(bcx, arg_datum.to_rvalue_datum(bcx, "arg")); let arg_datum = unpack_datum!(bcx, arg_datum.to_appropriate_datum(bcx)); llargs.push(arg_datum.add_clean(bcx.fcx, arg_cleanup_scope)); } } _ => { bcx.sess().span_bug(tuple_expr.span, "argument to `.call()` wasn't a tuple?!") } }; bcx } fn trans_overloaded_call_args<'blk, 'tcx>( mut bcx: Block<'blk, 'tcx>, arg_exprs: Vec<&ast::Expr>, fn_ty: Ty<'tcx>, llargs: &mut Vec, arg_cleanup_scope: cleanup::ScopeId, ignore_self: bool) -> Block<'blk, 'tcx> { // Translate the `self` argument first. let arg_tys = ty::erase_late_bound_regions(bcx.tcx(), &ty::ty_fn_args(fn_ty)); if !ignore_self { let arg_datum = unpack_datum!(bcx, expr::trans(bcx, arg_exprs[0])); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, arg_tys[0], arg_datum, arg_cleanup_scope, DontAutorefArg) })) } // Now untuple the rest of the arguments. let tuple_type = arg_tys[1]; match tuple_type.sty { ty::ty_tup(ref field_types) => { for (i, &field_type) in field_types.iter().enumerate() { let arg_datum = unpack_datum!(bcx, expr::trans(bcx, arg_exprs[i + 1])); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, field_type, arg_datum, arg_cleanup_scope, DontAutorefArg) })) } } _ => { bcx.sess().span_bug(arg_exprs[0].span, "argument to `.call()` wasn't a tuple?!") } }; bcx } pub fn trans_args<'a, 'blk, 'tcx>(cx: Block<'blk, 'tcx>, args: CallArgs<'a, 'tcx>, fn_ty: Ty<'tcx>, llargs: &mut Vec, arg_cleanup_scope: cleanup::ScopeId, ignore_self: bool, abi: synabi::Abi) -> Block<'blk, 'tcx> { debug!("trans_args(abi={})", abi); let _icx = push_ctxt("trans_args"); let arg_tys = ty::erase_late_bound_regions(cx.tcx(), &ty::ty_fn_args(fn_ty)); let variadic = ty::fn_is_variadic(fn_ty); let mut bcx = cx; // First we figure out the caller's view of the types of the arguments. // This will be needed if this is a generic call, because the callee has // to cast her view of the arguments to the caller's view. match args { ArgExprs(arg_exprs) => { if abi == synabi::RustCall { // This is only used for direct calls to the `call`, // `call_mut` or `call_once` functions. return trans_args_under_call_abi(cx, arg_exprs, fn_ty, llargs, arg_cleanup_scope, ignore_self) } let num_formal_args = arg_tys.len(); for (i, arg_expr) in arg_exprs.iter().enumerate() { if i == 0 && ignore_self { continue; } let arg_ty = if i >= num_formal_args { assert!(variadic); common::expr_ty_adjusted(cx, &**arg_expr) } else { arg_tys[i] }; let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &**arg_expr)); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, arg_ty, arg_datum, arg_cleanup_scope, DontAutorefArg) })); } } ArgOverloadedCall(arg_exprs) => { return trans_overloaded_call_args(cx, arg_exprs, fn_ty, llargs, arg_cleanup_scope, ignore_self) } ArgOverloadedOp(lhs, rhs, autoref) => { assert!(!variadic); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, arg_tys[0], lhs, arg_cleanup_scope, DontAutorefArg) })); assert_eq!(arg_tys.len(), 1 + rhs.len()); for (rhs, rhs_id) in rhs { llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, arg_tys[1], rhs, arg_cleanup_scope, if autoref { DoAutorefArg(rhs_id) } else { DontAutorefArg }) })); } } ArgVals(vs) => { llargs.push_all(vs); } } bcx } #[derive(Copy)] pub enum AutorefArg { DontAutorefArg, DoAutorefArg(ast::NodeId) } pub fn trans_arg_datum<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, formal_arg_ty: Ty<'tcx>, arg_datum: Datum<'tcx, Expr>, arg_cleanup_scope: cleanup::ScopeId, autoref_arg: AutorefArg) -> Result<'blk, 'tcx> { let _icx = push_ctxt("trans_arg_datum"); let mut bcx = bcx; let ccx = bcx.ccx(); debug!("trans_arg_datum({})", formal_arg_ty.repr(bcx.tcx())); let arg_datum_ty = arg_datum.ty; debug!(" arg datum: {}", arg_datum.to_string(bcx.ccx())); let mut val; // FIXME(#3548) use the adjustments table match autoref_arg { DoAutorefArg(arg_id) => { // We will pass argument by reference // We want an lvalue, so that we can pass by reference and let arg_datum = unpack_datum!( bcx, arg_datum.to_lvalue_datum(bcx, "arg", arg_id)); val = arg_datum.val; } DontAutorefArg => { // Make this an rvalue, since we are going to be // passing ownership. let arg_datum = unpack_datum!( bcx, arg_datum.to_rvalue_datum(bcx, "arg")); // Now that arg_datum is owned, get it into the appropriate // mode (ref vs value). let arg_datum = unpack_datum!( bcx, arg_datum.to_appropriate_datum(bcx)); // Technically, ownership of val passes to the callee. // However, we must cleanup should we panic before the // callee is actually invoked. val = arg_datum.add_clean(bcx.fcx, arg_cleanup_scope); } } if formal_arg_ty != arg_datum_ty { // this could happen due to e.g. subtyping let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty); debug!("casting actual type ({}) to match formal ({})", bcx.val_to_string(val), bcx.llty_str(llformal_arg_ty)); debug!("Rust types: {}; {}", ty_to_string(bcx.tcx(), arg_datum_ty), ty_to_string(bcx.tcx(), formal_arg_ty)); val = PointerCast(bcx, val, llformal_arg_ty); } debug!("--- trans_arg_datum passing {}", bcx.val_to_string(val)); Result::new(bcx, val) }