use arena::TypedArena; use rustc::infer; use rustc::middle::const_val; use rustc::hir::def_id::DefId; use rustc::mir::mir_map::MirMap; use rustc::mir::repr as mir; use rustc::traits::{self, ProjectionMode}; use rustc::ty::fold::TypeFoldable; use rustc::ty::subst::{self, Subst, Substs}; use rustc::ty::{self, TyCtxt}; use rustc::util::nodemap::DefIdMap; use rustc_data_structures::fnv::FnvHashMap; use std::cell::RefCell; use std::ops::Deref; use std::rc::Rc; use std::{iter, mem}; use syntax::ast; use syntax::attr; use syntax::codemap::{self, DUMMY_SP}; use error::{EvalError, EvalResult}; use memory::{FieldRepr, Memory, Pointer, Repr}; use primval::{self, PrimVal}; const TRACE_EXECUTION: bool = false; struct Interpreter<'a, 'tcx: 'a, 'arena> { /// The results of the type checker, from rustc. tcx: &'a TyCtxt<'tcx>, /// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items. mir_map: &'a MirMap<'tcx>, /// A local cache from DefIds to Mir for non-crate-local items. mir_cache: RefCell>>>, /// An arena allocator for type representations. repr_arena: &'arena TypedArena, /// A cache for in-memory representations of types. repr_cache: RefCell, &'arena Repr>>, /// The virtual memory system. memory: Memory, /// The virtual call stack. stack: Vec>, /// Another stack containing the type substitutions for the current function invocation. It /// exists separately from `stack` because it must contain the `Substs` for a function while /// *creating* the `Frame` for that same function. substs_stack: Vec<&'tcx Substs<'tcx>>, // TODO(tsion): Merge with `substs_stack`. Also try restructuring `Frame` to accomodate. /// A stack of the things necessary to print good strack traces: /// * Function DefIds and Substs to print proper substituted function names. /// * Spans pointing to specific function calls in the source. name_stack: Vec<(DefId, &'tcx Substs<'tcx>, codemap::Span)>, } /// A stack frame. struct Frame<'a, 'tcx: 'a> { /// The MIR for the function called on this frame. mir: CachedMir<'a, 'tcx>, /// The block this frame will execute when a function call returns back to this frame. next_block: mir::BasicBlock, /// A pointer for writing the return value of the current call if it's not a diverging call. return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. locals: Vec, /// The offset of the first variable in `self.locals`. var_offset: usize, /// The offset of the first temporary in `self.locals`. temp_offset: usize, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] struct Lvalue { ptr: Pointer, extra: LvalueExtra, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum LvalueExtra { None, Length(u64), // Vtable(memory::AllocId), } #[derive(Clone)] enum CachedMir<'mir, 'tcx: 'mir> { Ref(&'mir mir::Mir<'tcx>), Owned(Rc>) } /// Represents the action to be taken in the main loop as a result of executing a terminator. enum TerminatorTarget { /// Make a local jump to the given block. Block(mir::BasicBlock), /// Start executing from the new current frame. (For function calls.) Call, /// Stop executing the current frame and resume the previous frame. Return, } impl<'a, 'tcx: 'a, 'arena> Interpreter<'a, 'tcx, 'arena> { fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>, repr_arena: &'arena TypedArena) -> Self { Interpreter { tcx: tcx, mir_map: mir_map, mir_cache: RefCell::new(DefIdMap()), repr_arena: repr_arena, repr_cache: RefCell::new(FnvHashMap()), memory: Memory::new(), stack: Vec::new(), substs_stack: Vec::new(), name_stack: Vec::new(), } } fn maybe_report(&self, span: codemap::Span, r: EvalResult) -> EvalResult { if let Err(ref e) = r { let mut err = self.tcx.sess.struct_span_err(span, &e.to_string()); for &(def_id, substs, span) in self.name_stack.iter().rev() { // FIXME(tsion): Find a way to do this without this Display impl hack. use rustc::util::ppaux; use std::fmt; struct Instance<'tcx>(DefId, &'tcx Substs<'tcx>); impl<'tcx> fmt::Display for Instance<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { ppaux::parameterized(f, self.1, self.0, ppaux::Ns::Value, &[], |tcx| tcx.lookup_item_type(self.0).generics) } } err.span_note(span, &format!("inside call to {}", Instance(def_id, substs))); } err.emit(); } r } fn log(&self, extra_indent: usize, f: F) where F: FnOnce() { let indent = self.stack.len() + extra_indent; if !TRACE_EXECUTION { return; } for _ in 0..indent { print!(" "); } f(); println!(""); } fn run(&mut self) -> EvalResult<()> { 'outer: while !self.stack.is_empty() { let mut current_block = self.frame().next_block; loop { self.log(0, || print!("// {:?}", current_block)); let current_mir = self.mir().clone(); // Cloning a reference. let block_data = current_mir.basic_block_data(current_block); for stmt in &block_data.statements { self.log(0, || print!("{:?}", stmt)); let mir::StatementKind::Assign(ref l_value, ref r_value) = stmt.kind; let result = self.eval_assignment(l_value, r_value); try!(self.maybe_report(stmt.span, result)); } let terminator = block_data.terminator(); self.log(0, || print!("{:?}", terminator.kind)); let result = self.eval_terminator(terminator); match try!(self.maybe_report(terminator.span, result)) { TerminatorTarget::Block(block) => current_block = block, TerminatorTarget::Return => { self.pop_stack_frame(); self.name_stack.pop(); continue 'outer; } TerminatorTarget::Call => continue 'outer, } } } Ok(()) } fn push_stack_frame(&mut self, mir: CachedMir<'a, 'tcx>, substs: &'tcx Substs<'tcx>, return_ptr: Option) { self.substs_stack.push(substs); let arg_tys = mir.arg_decls.iter().map(|a| a.ty); let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); let locals: Vec = arg_tys.chain(var_tys).chain(temp_tys).map(|ty| { let size = self.type_size(ty); self.memory.allocate(size) }).collect(); let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); self.stack.push(Frame { mir: mir.clone(), next_block: mir::START_BLOCK, return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, }); } fn pop_stack_frame(&mut self) { let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(tsion): Deallocate local variables. self.substs_stack.pop(); } fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> EvalResult { use rustc::mir::repr::TerminatorKind::*; let target = match terminator.kind { Return => TerminatorTarget::Return, Goto { target } => TerminatorTarget::Block(target), If { ref cond, targets: (then_target, else_target) } => { let cond_ptr = try!(self.eval_operand(cond)); let cond_val = try!(self.memory.read_bool(cond_ptr)); TerminatorTarget::Block(if cond_val { then_target } else { else_target }) } SwitchInt { ref discr, ref values, ref targets, .. } => { let discr_ptr = try!(self.eval_lvalue(discr)).to_ptr(); let discr_size = self.lvalue_repr(discr).size(); let discr_val = try!(self.memory.read_uint(discr_ptr, discr_size)); // Branch to the `otherwise` case by default, if no match is found. let mut target_block = targets[targets.len() - 1]; for (index, val_const) in values.iter().enumerate() { let ptr = try!(self.const_to_ptr(val_const)); let val = try!(self.memory.read_uint(ptr, discr_size)); if discr_val == val { target_block = targets[index]; break; } } TerminatorTarget::Block(target_block) } Switch { ref discr, ref targets, adt_def } => { let adt_ptr = try!(self.eval_lvalue(discr)).to_ptr(); let adt_repr = self.lvalue_repr(discr); let discr_size = match *adt_repr { Repr::Aggregate { discr_size, .. } => discr_size, _ => panic!("attmpted to switch on non-aggregate type"), }; let discr_val = try!(self.memory.read_uint(adt_ptr, discr_size)); let matching = adt_def.variants.iter() .position(|v| discr_val == v.disr_val.to_u64_unchecked()); match matching { Some(i) => TerminatorTarget::Block(targets[i]), None => return Err(EvalError::InvalidDiscriminant), } } Call { ref func, ref args, ref destination, .. } => { let mut return_ptr = None; if let Some((ref lv, target)) = *destination { self.frame_mut().next_block = target; return_ptr = Some(try!(self.eval_lvalue(lv)).to_ptr()); } let func_ty = self.operand_ty(func); match func_ty.sty { ty::TyFnDef(def_id, substs, fn_ty) => { use syntax::abi::Abi; match fn_ty.abi { Abi::RustIntrinsic => { let name = self.tcx.item_name(def_id).as_str(); match fn_ty.sig.0.output { ty::FnConverging(ty) => { let size = self.type_size(ty); try!(self.call_intrinsic(&name, substs, args, return_ptr.unwrap(), size)) } ty::FnDiverging => unimplemented!(), } } Abi::C => try!(self.call_c_abi(def_id, args, return_ptr.unwrap())), Abi::Rust | Abi::RustCall => { // TODO(tsion): Adjust the first argument when calling a Fn or // FnMut closure via FnOnce::call_once. // Only trait methods can have a Self parameter. let (resolved_def_id, resolved_substs) = if substs.self_ty().is_some() { self.trait_method(def_id, substs) } else { (def_id, substs) }; let mut arg_srcs = Vec::new(); for arg in args { let src = try!(self.eval_operand(arg)); let src_ty = self.operand_ty(arg); arg_srcs.push((src, src_ty)); } if fn_ty.abi == Abi::RustCall && !args.is_empty() { arg_srcs.pop(); let last_arg = args.last().unwrap(); let last = try!(self.eval_operand(last_arg)); let last_ty = self.operand_ty(last_arg); let last_repr = self.type_repr(last_ty); match (&last_ty.sty, last_repr) { (&ty::TyTuple(ref fields), &Repr::Aggregate { discr_size: 0, ref variants, .. }) => { assert_eq!(variants.len(), 1); for (repr, ty) in variants[0].iter().zip(fields) { let src = last.offset(repr.offset as isize); arg_srcs.push((src, ty)); } } ty => panic!("expected tuple as last argument in function with 'rust-call' ABI, got {:?}", ty), } } let mir = self.load_mir(resolved_def_id); self.name_stack.push((def_id, substs, terminator.span)); self.push_stack_frame(mir, resolved_substs, return_ptr); for (i, (src, src_ty)) in arg_srcs.into_iter().enumerate() { let dest = self.frame().locals[i]; try!(self.move_(src, dest, src_ty)); } TerminatorTarget::Call } abi => panic!("can't handle function with {:?} ABI", abi), } } _ => panic!("can't handle callee of type {:?}", func_ty), } } Drop { ref value, target, .. } => { let ptr = try!(self.eval_lvalue(value)).to_ptr(); let ty = self.lvalue_ty(value); try!(self.drop(ptr, ty)); TerminatorTarget::Block(target) } Resume => unimplemented!(), }; Ok(target) } fn drop(&mut self, ptr: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<()> { if !self.type_needs_drop(ty) { self.log(1, || print!("no need to drop {:?}", ty)); return Ok(()); } self.log(1, || print!("need to drop {:?}", ty)); // TODO(tsion): Call user-defined Drop::drop impls. match ty.sty { ty::TyBox(contents_ty) => { match self.memory.read_ptr(ptr) { Ok(contents_ptr) => { try!(self.drop(contents_ptr, contents_ty)); self.log(1, || print!("deallocating box")); try!(self.memory.deallocate(contents_ptr)); } Err(EvalError::ReadBytesAsPointer) => { let size = self.memory.pointer_size; let possible_drop_fill = try!(self.memory.read_bytes(ptr, size)); if possible_drop_fill.iter().all(|&b| b == mem::POST_DROP_U8) { return Ok(()); } else { return Err(EvalError::ReadBytesAsPointer); } } Err(e) => return Err(e), } } // TODO(tsion): Implement drop for other relevant types (e.g. aggregates). _ => {} } // Filling drop. // FIXME(tsion): Trait objects (with no static size) probably get filled, too. let size = self.type_size(ty); try!(self.memory.drop_fill(ptr, size)); Ok(()) } fn call_intrinsic( &mut self, name: &str, substs: &'tcx Substs<'tcx>, args: &[mir::Operand<'tcx>], dest: Pointer, dest_size: usize ) -> EvalResult { let args_res: EvalResult> = args.iter() .map(|arg| self.eval_operand(arg)) .collect(); let args = try!(args_res); match name { "assume" => {} "copy_nonoverlapping" => { let elem_ty = *substs.types.get(subst::FnSpace, 0); let elem_size = self.type_size(elem_ty); let src = try!(self.memory.read_ptr(args[0])); let dest = try!(self.memory.read_ptr(args[1])); let count = try!(self.memory.read_isize(args[2])); try!(self.memory.copy(src, dest, count as usize * elem_size)); } "forget" => { let arg_ty = *substs.types.get(subst::FnSpace, 0); let arg_size = self.type_size(arg_ty); try!(self.memory.drop_fill(args[0], arg_size)); } "init" => try!(self.memory.write_repeat(dest, 0, dest_size)), "min_align_of" => { try!(self.memory.write_int(dest, 1, dest_size)); } "move_val_init" => { let ty = *substs.types.get(subst::FnSpace, 0); let ptr = try!(self.memory.read_ptr(args[0])); try!(self.move_(args[1], ptr, ty)); } // FIXME(tsion): Handle different integer types correctly. "add_with_overflow" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty); let left = try!(self.memory.read_int(args[0], size)); let right = try!(self.memory.read_int(args[1], size)); let (n, overflowed) = unsafe { ::std::intrinsics::add_with_overflow::(left, right) }; try!(self.memory.write_int(dest, n, size)); try!(self.memory.write_bool(dest.offset(size as isize), overflowed)); } // FIXME(tsion): Handle different integer types correctly. "mul_with_overflow" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty); let left = try!(self.memory.read_int(args[0], size)); let right = try!(self.memory.read_int(args[1], size)); let (n, overflowed) = unsafe { ::std::intrinsics::mul_with_overflow::(left, right) }; try!(self.memory.write_int(dest, n, size)); try!(self.memory.write_bool(dest.offset(size as isize), overflowed)); } "offset" => { let pointee_ty = *substs.types.get(subst::FnSpace, 0); let pointee_size = self.type_size(pointee_ty) as isize; let ptr_arg = args[0]; let offset = try!(self.memory.read_isize(args[1])); match self.memory.read_ptr(ptr_arg) { Ok(ptr) => { let result_ptr = ptr.offset(offset as isize * pointee_size); try!(self.memory.write_ptr(dest, result_ptr)); } Err(EvalError::ReadBytesAsPointer) => { let addr = try!(self.memory.read_isize(ptr_arg)); let result_addr = addr + offset * pointee_size as i64; try!(self.memory.write_isize(dest, result_addr)); } Err(e) => return Err(e), } } // FIXME(tsion): Handle different integer types correctly. Use primvals? "overflowing_sub" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty); let left = try!(self.memory.read_int(args[0], size)); let right = try!(self.memory.read_int(args[1], size)); let n = left.wrapping_sub(right); try!(self.memory.write_int(dest, n, size)); } "size_of" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty) as u64; try!(self.memory.write_uint(dest, size, dest_size)); } "transmute" => { let ty = *substs.types.get(subst::FnSpace, 0); try!(self.move_(args[0], dest, ty)); } "uninit" => try!(self.memory.mark_definedness(dest, dest_size, false)), name => panic!("can't handle intrinsic: {}", name), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(TerminatorTarget::Call) } fn call_c_abi( &mut self, def_id: DefId, args: &[mir::Operand<'tcx>], dest: Pointer ) -> EvalResult { let name = self.tcx.item_name(def_id); let attrs = self.tcx.get_attrs(def_id); let link_name = match attr::first_attr_value_str_by_name(&attrs, "link_name") { Some(ln) => ln.clone(), None => name.as_str(), }; let args_res: EvalResult> = args.iter() .map(|arg| self.eval_operand(arg)) .collect(); let args = try!(args_res); match &link_name[..] { "__rust_allocate" => { let size = try!(self.memory.read_usize(args[0])); let ptr = self.memory.allocate(size as usize); try!(self.memory.write_ptr(dest, ptr)); } "__rust_reallocate" => { let ptr = try!(self.memory.read_ptr(args[0])); let size = try!(self.memory.read_usize(args[2])); try!(self.memory.reallocate(ptr, size as usize)); try!(self.memory.write_ptr(dest, ptr)); } _ => panic!("can't call C ABI function: {}", link_name), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(TerminatorTarget::Call) } fn assign_to_aggregate( &mut self, dest: Pointer, dest_repr: &Repr, variant: usize, discr: Option, operands: &[mir::Operand<'tcx>], ) -> EvalResult<()> { match *dest_repr { Repr::Aggregate { discr_size, ref variants, .. } => { if discr_size > 0 { try!(self.memory.write_uint(dest, discr.unwrap(), discr_size)); } let after_discr = dest.offset(discr_size as isize); for (field, operand) in variants[variant].iter().zip(operands) { let src = try!(self.eval_operand(operand)); let src_ty = self.operand_ty(operand); let field_dest = after_discr.offset(field.offset as isize); try!(self.move_(src, field_dest, src_ty)); } } _ => panic!("expected Repr::Aggregate target"), } Ok(()) } fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> EvalResult<()> { let dest = try!(self.eval_lvalue(lvalue)).to_ptr(); let dest_ty = self.lvalue_ty(lvalue); let dest_repr = self.lvalue_repr(lvalue); use rustc::mir::repr::Rvalue::*; match *rvalue { Use(ref operand) => { let src = try!(self.eval_operand(operand)); try!(self.move_(src, dest, dest_ty)); } BinaryOp(bin_op, ref left, ref right) => { let left_ptr = try!(self.eval_operand(left)); let left_ty = self.operand_ty(left); let left_val = try!(self.read_primval(left_ptr, left_ty)); let right_ptr = try!(self.eval_operand(right)); let right_ty = self.operand_ty(right); let right_val = try!(self.read_primval(right_ptr, right_ty)); let val = try!(primval::binary_op(bin_op, left_val, right_val)); try!(self.memory.write_primval(dest, val)); } UnaryOp(un_op, ref operand) => { let ptr = try!(self.eval_operand(operand)); let ty = self.operand_ty(operand); let val = try!(self.read_primval(ptr, ty)); try!(self.memory.write_primval(dest, primval::unary_op(un_op, val))); } Aggregate(ref kind, ref operands) => { use rustc::mir::repr::AggregateKind::*; match *kind { Tuple | Closure(..) => try!(self.assign_to_aggregate(dest, &dest_repr, 0, None, operands)), Adt(adt_def, variant, _) => { let discr = Some(adt_def.variants[variant].disr_val.to_u64_unchecked()); try!(self.assign_to_aggregate(dest, &dest_repr, variant, discr, operands)); } Vec => if let Repr::Array { elem_size, length } = *dest_repr { assert_eq!(length, operands.len()); for (i, operand) in operands.iter().enumerate() { let src = try!(self.eval_operand(operand)); let src_ty = self.operand_ty(operand); let elem_dest = dest.offset((i * elem_size) as isize); try!(self.move_(src, elem_dest, src_ty)); } } else { panic!("expected Repr::Array target"); }, } } Repeat(ref operand, _) => { if let Repr::Array { elem_size, length } = *dest_repr { let src = try!(self.eval_operand(operand)); for i in 0..length { let elem_dest = dest.offset((i * elem_size) as isize); try!(self.memory.copy(src, elem_dest, elem_size)); } } else { panic!("expected Repr::Array target"); } } Len(ref lvalue) => { let src = try!(self.eval_lvalue(lvalue)); let ty = self.lvalue_ty(lvalue); let len = match ty.sty { ty::TyArray(_, n) => n as u64, ty::TySlice(_) => if let LvalueExtra::Length(n) = src.extra { n } else { panic!("Rvalue::Len of a slice given non-slice pointer: {:?}", src); }, _ => panic!("Rvalue::Len expected array or slice, got {:?}", ty), }; try!(self.memory.write_usize(dest, len)); } Ref(_, _, ref lvalue) => { let lv = try!(self.eval_lvalue(lvalue)); try!(self.memory.write_ptr(dest, lv.ptr)); match lv.extra { LvalueExtra::None => {}, LvalueExtra::Length(len) => { let len_ptr = dest.offset(self.memory.pointer_size as isize); try!(self.memory.write_usize(len_ptr, len)); } } } Box(ty) => { let size = self.type_size(ty); let ptr = self.memory.allocate(size); try!(self.memory.write_ptr(dest, ptr)); } Cast(kind, ref operand, dest_ty) => { let src = try!(self.eval_operand(operand)); let src_ty = self.operand_ty(operand); use rustc::mir::repr::CastKind::*; match kind { Unsize => { try!(self.move_(src, dest, src_ty)); let src_pointee_ty = pointee_type(src_ty).unwrap(); let dest_pointee_ty = pointee_type(dest_ty).unwrap(); match (&src_pointee_ty.sty, &dest_pointee_ty.sty) { (&ty::TyArray(_, length), &ty::TySlice(_)) => { let len_ptr = dest.offset(self.memory.pointer_size as isize); try!(self.memory.write_usize(len_ptr, length as u64)); } _ => panic!("can't handle cast: {:?}", rvalue), } } Misc => { // FIXME(tsion): Wrong for almost everything. let size = dest_repr.size(); try!(self.memory.copy(src, dest, size)); } _ => panic!("can't handle cast: {:?}", rvalue), } } Slice { .. } => unimplemented!(), InlineAsm { .. } => unimplemented!(), } Ok(()) } fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult { self.eval_operand_and_repr(op).map(|(p, _)| p) } fn eval_operand_and_repr(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<(Pointer, &'arena Repr)> { use rustc::mir::repr::Operand::*; match *op { Consume(ref lvalue) => Ok((try!(self.eval_lvalue(lvalue)).to_ptr(), self.lvalue_repr(lvalue))), Constant(mir::Constant { ref literal, ty, .. }) => { use rustc::mir::repr::Literal::*; match *literal { Value { ref value } => Ok(( try!(self.const_to_ptr(value)), self.type_repr(ty), )), Item { .. } => unimplemented!(), } } } } // TODO(tsion): Replace this inefficient hack with a wrapper like LvalueTy (e.g. LvalueRepr). fn lvalue_repr(&self, lvalue: &mir::Lvalue<'tcx>) -> &'arena Repr { use rustc::mir::tcx::LvalueTy; match self.mir().lvalue_ty(self.tcx, lvalue) { LvalueTy::Ty { ty } => self.type_repr(ty), LvalueTy::Downcast { adt_def, substs, variant_index } => { let field_tys = adt_def.variants[variant_index].fields.iter() .map(|f| f.ty(self.tcx, substs)); self.repr_arena.alloc(self.make_aggregate_repr(iter::once(field_tys))) } } } fn eval_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult { use rustc::mir::repr::Lvalue::*; let ptr = match *lvalue { ReturnPointer => self.frame().return_ptr .expect("ReturnPointer used in a function with no return value"), Arg(i) => self.frame().locals[i as usize], Var(i) => self.frame().locals[self.frame().var_offset + i as usize], Temp(i) => self.frame().locals[self.frame().temp_offset + i as usize], Static(_def_id) => unimplemented!(), Projection(ref proj) => { let base_ptr = try!(self.eval_lvalue(&proj.base)).to_ptr(); let base_repr = self.lvalue_repr(&proj.base); let base_ty = self.lvalue_ty(&proj.base); use rustc::mir::repr::ProjectionElem::*; match proj.elem { Field(field, _) => match *base_repr { Repr::Aggregate { discr_size: 0, ref variants, .. } => { let fields = &variants[0]; base_ptr.offset(fields[field.index()].offset as isize) } _ => panic!("field access on non-product type: {:?}", base_repr), }, Downcast(..) => match *base_repr { Repr::Aggregate { discr_size, .. } => base_ptr.offset(discr_size as isize), _ => panic!("variant downcast on non-aggregate type: {:?}", base_repr), }, Deref => { let pointee_ty = pointee_type(base_ty).expect("Deref of non-pointer"); let ptr = try!(self.memory.read_ptr(base_ptr)); let extra = match pointee_ty.sty { ty::TySlice(_) | ty::TyStr => { let len_ptr = base_ptr.offset(self.memory.pointer_size as isize); let len = try!(self.memory.read_usize(len_ptr)); LvalueExtra::Length(len) } ty::TyTrait(_) => unimplemented!(), _ => LvalueExtra::None, }; return Ok(Lvalue { ptr: ptr, extra: extra }); } Index(ref operand) => { let elem_size = match base_ty.sty { ty::TyArray(elem_ty, _) | ty::TySlice(elem_ty) => self.type_size(elem_ty), _ => panic!("indexing expected an array or slice, got {:?}", base_ty), }; let n_ptr = try!(self.eval_operand(operand)); let n = try!(self.memory.read_usize(n_ptr)); base_ptr.offset(n as isize * elem_size as isize) } ConstantIndex { .. } => unimplemented!(), } } }; Ok(Lvalue { ptr: ptr, extra: LvalueExtra::None }) } // TODO(tsion): Try making const_to_primval instead. fn const_to_ptr(&mut self, const_val: &const_val::ConstVal) -> EvalResult { use rustc::middle::const_val::ConstVal::*; match *const_val { Float(_f) => unimplemented!(), Integral(int) => { // TODO(tsion): Check int constant type. let ptr = self.memory.allocate(8); try!(self.memory.write_uint(ptr, int.to_u64_unchecked(), 8)); Ok(ptr) } Str(ref s) => { let psize = self.memory.pointer_size; let static_ptr = self.memory.allocate(s.len()); let ptr = self.memory.allocate(psize * 2); try!(self.memory.write_bytes(static_ptr, s.as_bytes())); try!(self.memory.write_ptr(ptr, static_ptr)); try!(self.memory.write_usize(ptr.offset(psize as isize), s.len() as u64)); Ok(ptr) } ByteStr(ref bs) => { let psize = self.memory.pointer_size; let static_ptr = self.memory.allocate(bs.len()); let ptr = self.memory.allocate(psize); try!(self.memory.write_bytes(static_ptr, bs)); try!(self.memory.write_ptr(ptr, static_ptr)); Ok(ptr) } Bool(b) => { let ptr = self.memory.allocate(1); try!(self.memory.write_bool(ptr, b)); Ok(ptr) } Char(_c) => unimplemented!(), Struct(_node_id) => unimplemented!(), Tuple(_node_id) => unimplemented!(), Function(_def_id) => unimplemented!(), Array(_, _) => unimplemented!(), Repeat(_, _) => unimplemented!(), Dummy => unimplemented!(), } } fn lvalue_ty(&self, lvalue: &mir::Lvalue<'tcx>) -> ty::Ty<'tcx> { self.monomorphize(self.mir().lvalue_ty(self.tcx, lvalue).to_ty(self.tcx)) } fn operand_ty(&self, operand: &mir::Operand<'tcx>) -> ty::Ty<'tcx> { self.monomorphize(self.mir().operand_ty(self.tcx, operand)) } fn monomorphize(&self, ty: ty::Ty<'tcx>) -> ty::Ty<'tcx> { let substituted = ty.subst(self.tcx, self.substs()); infer::normalize_associated_type(self.tcx, &substituted) } fn type_needs_drop(&self, ty: ty::Ty<'tcx>) -> bool { self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment()) } fn move_(&mut self, src: Pointer, dest: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<()> { let size = self.type_size(ty); try!(self.memory.copy(src, dest, size)); if self.type_needs_drop(ty) { try!(self.memory.drop_fill(src, size)); } Ok(()) } fn type_is_sized(&self, ty: ty::Ty<'tcx>) -> bool { ty.is_sized(&self.tcx.empty_parameter_environment(), DUMMY_SP) } fn type_size(&self, ty: ty::Ty<'tcx>) -> usize { self.type_repr(ty).size() } fn type_repr(&self, ty: ty::Ty<'tcx>) -> &'arena Repr { let ty = self.monomorphize(ty); if let Some(repr) = self.repr_cache.borrow().get(ty) { return repr; } use syntax::ast::{IntTy, UintTy}; let repr = match ty.sty { ty::TyBool => Repr::Primitive { size: 1 }, ty::TyInt(IntTy::I8) | ty::TyUint(UintTy::U8) => Repr::Primitive { size: 1 }, ty::TyInt(IntTy::I16) | ty::TyUint(UintTy::U16) => Repr::Primitive { size: 2 }, ty::TyInt(IntTy::I32) | ty::TyUint(UintTy::U32) => Repr::Primitive { size: 4 }, ty::TyInt(IntTy::I64) | ty::TyUint(UintTy::U64) => Repr::Primitive { size: 8 }, ty::TyInt(IntTy::Is) | ty::TyUint(UintTy::Us) => Repr::Primitive { size: self.memory.pointer_size }, ty::TyTuple(ref fields) => self.make_aggregate_repr(iter::once(fields.iter().cloned())), ty::TyEnum(adt_def, substs) | ty::TyStruct(adt_def, substs) => { let variants = adt_def.variants.iter().map(|v| { v.fields.iter().map(|f| f.ty(self.tcx, substs)) }); self.make_aggregate_repr(variants) } ty::TyArray(elem_ty, length) => Repr::Array { elem_size: self.type_size(elem_ty), length: length, }, ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { if self.type_is_sized(ty) { Repr::Primitive { size: self.memory.pointer_size } } else { Repr::Primitive { size: self.memory.pointer_size * 2 } } } ty::TyFnPtr(..) => Repr::Primitive { size: self.memory.pointer_size }, ty::TyClosure(_, ref closure_substs) => self.make_aggregate_repr(iter::once(closure_substs.upvar_tys.iter().cloned())), ref t => panic!("can't convert type to repr: {:?}", t), }; let repr_ref = self.repr_arena.alloc(repr); self.repr_cache.borrow_mut().insert(ty, repr_ref); repr_ref } fn make_aggregate_repr(&self, variant_fields: V) -> Repr where V: IntoIterator, V::Item: IntoIterator> { let mut variants = Vec::new(); let mut max_variant_size = 0; for field_tys in variant_fields { let mut fields = Vec::new(); let mut size = 0; for ty in field_tys { let field_size = self.type_size(ty); let offest = size; size += field_size; fields.push(FieldRepr { offset: offest, size: field_size }); } if size > max_variant_size { max_variant_size = size; } variants.push(fields); } let discr_size = match variants.len() as u64 { n if n <= 1 => 0, n if n <= 1 << 8 => 1, n if n <= 1 << 16 => 2, n if n <= 1 << 32 => 4, _ => 8, }; Repr::Aggregate { discr_size: discr_size, size: max_variant_size + discr_size, variants: variants, } } pub fn read_primval(&mut self, ptr: Pointer, ty: ty::Ty<'tcx>) -> EvalResult { use syntax::ast::{IntTy, UintTy}; let val = match ty.sty { ty::TyBool => PrimVal::Bool(try!(self.memory.read_bool(ptr))), ty::TyInt(IntTy::I8) => PrimVal::I8(try!(self.memory.read_int(ptr, 1)) as i8), ty::TyInt(IntTy::I16) => PrimVal::I16(try!(self.memory.read_int(ptr, 2)) as i16), ty::TyInt(IntTy::I32) => PrimVal::I32(try!(self.memory.read_int(ptr, 4)) as i32), ty::TyInt(IntTy::I64) => PrimVal::I64(try!(self.memory.read_int(ptr, 8)) as i64), ty::TyUint(UintTy::U8) => PrimVal::U8(try!(self.memory.read_uint(ptr, 1)) as u8), ty::TyUint(UintTy::U16) => PrimVal::U16(try!(self.memory.read_uint(ptr, 2)) as u16), ty::TyUint(UintTy::U32) => PrimVal::U32(try!(self.memory.read_uint(ptr, 4)) as u32), ty::TyUint(UintTy::U64) => PrimVal::U64(try!(self.memory.read_uint(ptr, 8)) as u64), // TODO(tsion): Pick the PrimVal dynamically. ty::TyInt(IntTy::Is) => PrimVal::I64(try!(self.memory.read_isize(ptr))), ty::TyUint(UintTy::Us) => PrimVal::U64(try!(self.memory.read_usize(ptr))), ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) => { if self.type_is_sized(ty) { match self.memory.read_ptr(ptr) { Ok(p) => PrimVal::AbstractPtr(p), Err(EvalError::ReadBytesAsPointer) => { let n = try!(self.memory.read_usize(ptr)); PrimVal::IntegerPtr(n) } Err(e) => return Err(e), } } else { panic!("unimplemented: primitive read of fat pointer type: {:?}", ty); } } _ => panic!("primitive read of non-primitive type: {:?}", ty), }; Ok(val) } fn frame(&self) -> &Frame<'a, 'tcx> { self.stack.last().expect("no call frames exist") } fn frame_mut(&mut self) -> &mut Frame<'a, 'tcx> { self.stack.last_mut().expect("no call frames exist") } fn mir(&self) -> &mir::Mir<'tcx> { &self.frame().mir } fn substs(&self) -> &'tcx Substs<'tcx> { self.substs_stack.last().cloned().unwrap_or_else(|| self.tcx.mk_substs(Substs::empty())) } fn load_mir(&self, def_id: DefId) -> CachedMir<'a, 'tcx> { match self.tcx.map.as_local_node_id(def_id) { Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()), None => { let mut mir_cache = self.mir_cache.borrow_mut(); if let Some(mir) = mir_cache.get(&def_id) { return CachedMir::Owned(mir.clone()); } use rustc::middle::cstore::CrateStore; let cs = &self.tcx.sess.cstore; let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap_or_else(|| { panic!("no mir for {:?}", def_id); }); let cached = Rc::new(mir); mir_cache.insert(def_id, cached.clone()); CachedMir::Owned(cached) } } } fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> { // Do the initial selection for the obligation. This yields the shallow result we are // looking for -- that is, what specific impl. let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables, ProjectionMode::Any); let mut selcx = traits::SelectionContext::new(&infcx); let obligation = traits::Obligation::new( traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID), trait_ref.to_poly_trait_predicate(), ); let selection = selcx.select(&obligation).unwrap().unwrap(); // Currently, we use a fulfillment context to completely resolve all nested obligations. // This is because they can inform the inference of the impl's type parameters. let mut fulfill_cx = traits::FulfillmentContext::new(); let vtable = selection.map(|predicate| { fulfill_cx.register_predicate_obligation(&infcx, predicate); }); infer::drain_fulfillment_cx_or_panic( DUMMY_SP, &infcx, &mut fulfill_cx, &vtable ) } /// Trait method, which has to be resolved to an impl method. pub fn trait_method(&self, def_id: DefId, substs: &'tcx Substs<'tcx>) -> (DefId, &'tcx Substs<'tcx>) { let method_item = self.tcx.impl_or_trait_item(def_id); let trait_id = method_item.container().id(); let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id)); match self.fulfill_obligation(trait_ref) { traits::VtableImpl(vtable_impl) => { let impl_did = vtable_impl.impl_def_id; let mname = self.tcx.item_name(def_id); // Create a concatenated set of substitutions which includes those from the impl // and those from the method: let impl_substs = vtable_impl.substs.with_method_from(substs); let substs = self.tcx.mk_substs(impl_substs); let mth = get_impl_method(self.tcx, impl_did, substs, mname); (mth.method.def_id, mth.substs) } traits::VtableClosure(vtable_closure) => (vtable_closure.closure_def_id, vtable_closure.substs.func_substs), traits::VtableFnPointer(_fn_ty) => { let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap(); unimplemented!() // let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty); // let method_ty = def_ty(tcx, def_id, substs); // let fn_ptr_ty = match method_ty.sty { // ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)), // _ => unreachable!("expected fn item type, found {}", // method_ty) // }; // Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty)) } traits::VtableObject(ref _data) => { unimplemented!() // Callee { // data: Virtual(traits::get_vtable_index_of_object_method( // tcx, data, def_id)), // ty: def_ty(tcx, def_id, substs) // } } vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable), } } } fn pointee_type(ptr_ty: ty::Ty) -> Option { match ptr_ty.sty { ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { Some(ty) } _ => None, } } impl Lvalue { fn to_ptr(self) -> Pointer { assert_eq!(self.extra, LvalueExtra::None); self.ptr } } impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> { type Target = mir::Mir<'tcx>; fn deref(&self) -> &mir::Mir<'tcx> { match *self { CachedMir::Ref(r) => r, CachedMir::Owned(ref rc) => &rc, } } } #[derive(Debug)] pub struct ImplMethod<'tcx> { pub method: Rc>, pub substs: &'tcx Substs<'tcx>, pub is_provided: bool, } /// Locates the applicable definition of a method, given its name. pub fn get_impl_method<'tcx>( tcx: &TyCtxt<'tcx>, impl_def_id: DefId, substs: &'tcx Substs<'tcx>, name: ast::Name, ) -> ImplMethod<'tcx> { assert!(!substs.types.needs_infer()); let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap(); let trait_def = tcx.lookup_trait_def(trait_def_id); let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables, ProjectionMode::Any); match trait_def.ancestors(impl_def_id).fn_defs(tcx, name).next() { Some(node_item) => { ImplMethod { method: node_item.item, substs: traits::translate_substs(&infcx, impl_def_id, substs, node_item.node), is_provided: node_item.node.is_from_trait(), } } None => { bug!("method {:?} not found in {:?}", name, impl_def_id); } } } pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) { for (&id, mir) in &mir_map.map { for attr in tcx.map.attrs(id) { use syntax::attr::AttrMetaMethods; if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let repr_arena = TypedArena::new(); let mut miri = Interpreter::new(tcx, mir_map, &repr_arena); let return_ptr = match mir.return_ty { ty::FnConverging(ty) => { let size = miri.type_size(ty); Some(miri.memory.allocate(size)) } ty::FnDiverging => None, }; let substs = miri.tcx.mk_substs(Substs::empty()); miri.push_stack_frame(CachedMir::Ref(mir), substs, return_ptr); if let Err(_e) = miri.run() { // TODO(tsion): Detect whether the error was already reported or not. // tcx.sess.err(&e.to_string()); } else if let Some(ret) = return_ptr { miri.memory.dump(ret.alloc_id); } println!(""); } } } }