// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::cmp::Ordering::{Equal, Greater, Less}; use std::default::Default; use std::iter::RandomAccessIterator; use std::mem; use std::rand::{Rng, thread_rng}; use std::rc::Rc; use std::slice::ElementSwaps; fn square(n: usize) -> usize { n * n } fn is_odd(n: &usize) -> bool { *n % 2 == 1 } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v: Vec<_> = (0..3).map(square).collect(); { let v = v; assert_eq!(v.len(), 3); assert_eq!(v[0], 0); assert_eq!(v[1], 1); assert_eq!(v[2], 4); } // Test on-heap from_fn. v = (0..5).map(square).collect(); { let v = v; assert_eq!(v.len(), 5); assert_eq!(v[0], 0); assert_eq!(v[1], 1); assert_eq!(v[2], 4); assert_eq!(v[3], 9); assert_eq!(v[4], 16); } } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = vec![10, 10]; { let v = v; assert_eq!(v.len(), 2); assert_eq!(v[0], 10); assert_eq!(v[1], 10); } // Test on-heap from_elem. v = vec![20; 6]; { let v = &v[..]; assert_eq!(v[0], 20); assert_eq!(v[1], 20); assert_eq!(v[2], 20); assert_eq!(v[3], 20); assert_eq!(v[4], 20); assert_eq!(v[5], 20); } } #[test] fn test_is_empty() { let xs: [i32; 0] = []; assert!(xs.is_empty()); assert!(![0].is_empty()); } #[test] fn test_len_divzero() { type Z = [i8; 0]; let v0 : &[Z] = &[]; let v1 : &[Z] = &[[]]; let v2 : &[Z] = &[[], []]; assert_eq!(mem::size_of::(), 0); assert_eq!(v0.len(), 0); assert_eq!(v1.len(), 1); assert_eq!(v2.len(), 2); } #[test] fn test_get() { let mut a = vec![11]; assert_eq!(a.get(1), None); a = vec![11, 12]; assert_eq!(a.get(1).unwrap(), &12); a = vec![11, 12, 13]; assert_eq!(a.get(1).unwrap(), &12); } #[test] fn test_first() { let mut a = vec![]; assert_eq!(a.first(), None); a = vec![11]; assert_eq!(a.first().unwrap(), &11); a = vec![11, 12]; assert_eq!(a.first().unwrap(), &11); } #[test] fn test_first_mut() { let mut a = vec![]; assert_eq!(a.first_mut(), None); a = vec![11]; assert_eq!(*a.first_mut().unwrap(), 11); a = vec![11, 12]; assert_eq!(*a.first_mut().unwrap(), 11); } #[test] fn test_tail() { let mut a = vec![11]; let b: &[i32] = &[]; assert_eq!(a.tail(), b); a = vec![11, 12]; let b: &[i32] = &[12]; assert_eq!(a.tail(), b); } #[test] fn test_tail_mut() { let mut a = vec![11]; let b: &mut [i32] = &mut []; assert!(a.tail_mut() == b); a = vec![11, 12]; let b: &mut [_] = &mut [12]; assert!(a.tail_mut() == b); } #[test] #[should_panic] fn test_tail_empty() { let a = Vec::::new(); a.tail(); } #[test] #[should_panic] fn test_tail_mut_empty() { let mut a = Vec::::new(); a.tail_mut(); } #[test] fn test_init() { let mut a = vec![11]; let b: &[i32] = &[]; assert_eq!(a.init(), b); a = vec![11, 12]; let b: &[_] = &[11]; assert_eq!(a.init(), b); } #[test] fn test_init_mut() { let mut a = vec![11]; let b: &mut [i32] = &mut []; assert!(a.init_mut() == b); a = vec![11, 12]; let b: &mut [_] = &mut [11]; assert!(a.init_mut() == b); } #[test] #[should_panic] fn test_init_empty() { let a = Vec::::new(); a.init(); } #[test] #[should_panic] fn test_init_mut_empty() { let mut a = Vec::::new(); a.init_mut(); } #[test] fn test_last() { let mut a = vec![]; assert_eq!(a.last(), None); a = vec![11]; assert_eq!(a.last().unwrap(), &11); a = vec![11, 12]; assert_eq!(a.last().unwrap(), &12); } #[test] fn test_last_mut() { let mut a = vec![]; assert_eq!(a.last_mut(), None); a = vec![11]; assert_eq!(*a.last_mut().unwrap(), 11); a = vec![11, 12]; assert_eq!(*a.last_mut().unwrap(), 12); } #[test] fn test_slice() { // Test fixed length vector. let vec_fixed = [1, 2, 3, 4]; let v_a = vec_fixed[1..vec_fixed.len()].to_vec(); assert_eq!(v_a.len(), 3); assert_eq!(v_a[0], 2); assert_eq!(v_a[1], 3); assert_eq!(v_a[2], 4); // Test on stack. let vec_stack: &[_] = &[1, 2, 3]; let v_b = vec_stack[1..3].to_vec(); assert_eq!(v_b.len(), 2); assert_eq!(v_b[0], 2); assert_eq!(v_b[1], 3); // Test `Box<[T]>` let vec_unique = vec![1, 2, 3, 4, 5, 6]; let v_d = vec_unique[1..6].to_vec(); assert_eq!(v_d.len(), 5); assert_eq!(v_d[0], 2); assert_eq!(v_d[1], 3); assert_eq!(v_d[2], 4); assert_eq!(v_d[3], 5); assert_eq!(v_d[4], 6); } #[test] fn test_slice_from() { let vec: &[_] = &[1, 2, 3, 4]; assert_eq!(&vec[..], vec); let b: &[_] = &[3, 4]; assert_eq!(&vec[2..], b); let b: &[_] = &[]; assert_eq!(&vec[4..], b); } #[test] fn test_slice_to() { let vec: &[_] = &[1, 2, 3, 4]; assert_eq!(&vec[..4], vec); let b: &[_] = &[1, 2]; assert_eq!(&vec[..2], b); let b: &[_] = &[]; assert_eq!(&vec[..0], b); } #[test] fn test_pop() { let mut v = vec![5]; let e = v.pop(); assert_eq!(v.len(), 0); assert_eq!(e, Some(5)); let f = v.pop(); assert_eq!(f, None); let g = v.pop(); assert_eq!(g, None); } #[test] fn test_swap_remove() { let mut v = vec![1, 2, 3, 4, 5]; let mut e = v.swap_remove(0); assert_eq!(e, 1); assert_eq!(v, [5, 2, 3, 4]); e = v.swap_remove(3); assert_eq!(e, 4); assert_eq!(v, [5, 2, 3]); } #[test] #[should_panic] fn test_swap_remove_fail() { let mut v = vec![1]; let _ = v.swap_remove(0); let _ = v.swap_remove(0); } #[test] fn test_swap_remove_noncopyable() { // Tests that we don't accidentally run destructors twice. let mut v: Vec> = Vec::new(); v.push(box 0u8); v.push(box 0u8); v.push(box 0u8); let mut _e = v.swap_remove(0); assert_eq!(v.len(), 2); _e = v.swap_remove(1); assert_eq!(v.len(), 1); _e = v.swap_remove(0); assert_eq!(v.len(), 0); } #[test] fn test_push() { // Test on-stack push(). let mut v = vec![]; v.push(1); assert_eq!(v.len(), 1); assert_eq!(v[0], 1); // Test on-heap push(). v.push(2); assert_eq!(v.len(), 2); assert_eq!(v[0], 1); assert_eq!(v[1], 2); } #[test] fn test_truncate() { let mut v: Vec> = vec![box 6,box 5,box 4]; v.truncate(1); let v = v; assert_eq!(v.len(), 1); assert_eq!(*(v[0]), 6); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_clear() { let mut v: Vec> = vec![box 6,box 5,box 4]; v.clear(); assert_eq!(v.len(), 0); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_dedup() { fn case(a: Vec, b: Vec) { let mut v = a; v.dedup(); assert_eq!(v, b); } case(vec![], vec![]); case(vec![1], vec![1]); case(vec![1,1], vec![1]); case(vec![1,2,3], vec![1,2,3]); case(vec![1,1,2,3], vec![1,2,3]); case(vec![1,2,2,3], vec![1,2,3]); case(vec![1,2,3,3], vec![1,2,3]); case(vec![1,1,2,2,2,3,3], vec![1,2,3]); } #[test] fn test_dedup_unique() { let mut v0: Vec> = vec![box 1, box 1, box 2, box 3]; v0.dedup(); let mut v1: Vec> = vec![box 1, box 2, box 2, box 3]; v1.dedup(); let mut v2: Vec> = vec![box 1, box 2, box 3, box 3]; v2.dedup(); /* * If the boxed pointers were leaked or otherwise misused, valgrind * and/or rt should raise errors. */ } #[test] fn test_dedup_shared() { let mut v0: Vec> = vec![box 1, box 1, box 2, box 3]; v0.dedup(); let mut v1: Vec> = vec![box 1, box 2, box 2, box 3]; v1.dedup(); let mut v2: Vec> = vec![box 1, box 2, box 3, box 3]; v2.dedup(); /* * If the pointers were leaked or otherwise misused, valgrind and/or * rt should raise errors. */ } #[test] fn test_retain() { let mut v = vec![1, 2, 3, 4, 5]; v.retain(is_odd); assert_eq!(v, [1, 3, 5]); } #[test] fn test_element_swaps() { let mut v = [1, 2, 3]; for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() { v.swap(a, b); match i { 0 => assert!(v == [1, 3, 2]), 1 => assert!(v == [3, 1, 2]), 2 => assert!(v == [3, 2, 1]), 3 => assert!(v == [2, 3, 1]), 4 => assert!(v == [2, 1, 3]), 5 => assert!(v == [1, 2, 3]), _ => panic!(), } } } #[test] fn test_lexicographic_permutations() { let v : &mut[_] = &mut[1, 2, 3, 4, 5]; assert!(v.prev_permutation() == false); assert!(v.next_permutation()); let b: &mut[_] = &mut[1, 2, 3, 5, 4]; assert!(v == b); assert!(v.prev_permutation()); let b: &mut[_] = &mut[1, 2, 3, 4, 5]; assert!(v == b); assert!(v.next_permutation()); assert!(v.next_permutation()); let b: &mut[_] = &mut[1, 2, 4, 3, 5]; assert!(v == b); assert!(v.next_permutation()); let b: &mut[_] = &mut[1, 2, 4, 5, 3]; assert!(v == b); let v : &mut[_] = &mut[1, 0, 0, 0]; assert!(v.next_permutation() == false); assert!(v.prev_permutation()); let b: &mut[_] = &mut[0, 1, 0, 0]; assert!(v == b); assert!(v.prev_permutation()); let b: &mut[_] = &mut[0, 0, 1, 0]; assert!(v == b); assert!(v.prev_permutation()); let b: &mut[_] = &mut[0, 0, 0, 1]; assert!(v == b); assert!(v.prev_permutation() == false); } #[test] fn test_lexicographic_permutations_empty_and_short() { let empty : &mut[i32] = &mut[]; assert!(empty.next_permutation() == false); let b: &mut[i32] = &mut[]; assert!(empty == b); assert!(empty.prev_permutation() == false); assert!(empty == b); let one_elem : &mut[_] = &mut[4]; assert!(one_elem.prev_permutation() == false); let b: &mut[_] = &mut[4]; assert!(one_elem == b); assert!(one_elem.next_permutation() == false); assert!(one_elem == b); let two_elem : &mut[_] = &mut[1, 2]; assert!(two_elem.prev_permutation() == false); let b : &mut[_] = &mut[1, 2]; let c : &mut[_] = &mut[2, 1]; assert!(two_elem == b); assert!(two_elem.next_permutation()); assert!(two_elem == c); assert!(two_elem.next_permutation() == false); assert!(two_elem == c); assert!(two_elem.prev_permutation()); assert!(two_elem == b); assert!(two_elem.prev_permutation() == false); assert!(two_elem == b); } #[test] fn test_position_elem() { assert!([].position_elem(&1).is_none()); let v1 = vec![1, 2, 3, 3, 2, 5]; assert_eq!(v1.position_elem(&1), Some(0)); assert_eq!(v1.position_elem(&2), Some(1)); assert_eq!(v1.position_elem(&5), Some(5)); assert!(v1.position_elem(&4).is_none()); } #[test] fn test_binary_search() { assert_eq!([1,2,3,4,5].binary_search(&5).ok(), Some(4)); assert_eq!([1,2,3,4,5].binary_search(&4).ok(), Some(3)); assert_eq!([1,2,3,4,5].binary_search(&3).ok(), Some(2)); assert_eq!([1,2,3,4,5].binary_search(&2).ok(), Some(1)); assert_eq!([1,2,3,4,5].binary_search(&1).ok(), Some(0)); assert_eq!([2,4,6,8,10].binary_search(&1).ok(), None); assert_eq!([2,4,6,8,10].binary_search(&5).ok(), None); assert_eq!([2,4,6,8,10].binary_search(&4).ok(), Some(1)); assert_eq!([2,4,6,8,10].binary_search(&10).ok(), Some(4)); assert_eq!([2,4,6,8].binary_search(&1).ok(), None); assert_eq!([2,4,6,8].binary_search(&5).ok(), None); assert_eq!([2,4,6,8].binary_search(&4).ok(), Some(1)); assert_eq!([2,4,6,8].binary_search(&8).ok(), Some(3)); assert_eq!([2,4,6].binary_search(&1).ok(), None); assert_eq!([2,4,6].binary_search(&5).ok(), None); assert_eq!([2,4,6].binary_search(&4).ok(), Some(1)); assert_eq!([2,4,6].binary_search(&6).ok(), Some(2)); assert_eq!([2,4].binary_search(&1).ok(), None); assert_eq!([2,4].binary_search(&5).ok(), None); assert_eq!([2,4].binary_search(&2).ok(), Some(0)); assert_eq!([2,4].binary_search(&4).ok(), Some(1)); assert_eq!([2].binary_search(&1).ok(), None); assert_eq!([2].binary_search(&5).ok(), None); assert_eq!([2].binary_search(&2).ok(), Some(0)); assert_eq!([].binary_search(&1).ok(), None); assert_eq!([].binary_search(&5).ok(), None); assert!([1,1,1,1,1].binary_search(&1).ok() != None); assert!([1,1,1,1,2].binary_search(&1).ok() != None); assert!([1,1,1,2,2].binary_search(&1).ok() != None); assert!([1,1,2,2,2].binary_search(&1).ok() != None); assert_eq!([1,2,2,2,2].binary_search(&1).ok(), Some(0)); assert_eq!([1,2,3,4,5].binary_search(&6).ok(), None); assert_eq!([1,2,3,4,5].binary_search(&0).ok(), None); } #[test] fn test_reverse() { let mut v = vec![10, 20]; assert_eq!(v[0], 10); assert_eq!(v[1], 20); v.reverse(); assert_eq!(v[0], 20); assert_eq!(v[1], 10); let mut v3 = Vec::::new(); v3.reverse(); assert!(v3.is_empty()); } #[test] fn test_sort() { for len in 4..25 { for _ in 0..100 { let mut v: Vec<_> = thread_rng().gen_iter::().take(len).collect(); let mut v1 = v.clone(); v.sort(); assert!(v.windows(2).all(|w| w[0] <= w[1])); v1.sort_by(|a, b| a.cmp(b)); assert!(v1.windows(2).all(|w| w[0] <= w[1])); v1.sort_by(|a, b| b.cmp(a)); assert!(v1.windows(2).all(|w| w[0] >= w[1])); } } // shouldn't panic let mut v: [i32; 0] = []; v.sort(); let mut v = [0xDEADBEEFu64]; v.sort(); assert!(v == [0xDEADBEEF]); } #[test] fn test_sort_stability() { for len in 4..25 { for _ in 0..10 { let mut counts = [0; 10]; // create a vector like [(6, 1), (5, 1), (6, 2), ...], // where the first item of each tuple is random, but // the second item represents which occurrence of that // number this element is, i.e. the second elements // will occur in sorted order. let mut v: Vec<_> = (0..len).map(|_| { let n = thread_rng().gen::() % 10; counts[n] += 1; (n, counts[n]) }).collect(); // only sort on the first element, so an unstable sort // may mix up the counts. v.sort_by(|&(a,_), &(b,_)| a.cmp(&b)); // this comparison includes the count (the second item // of the tuple), so elements with equal first items // will need to be ordered with increasing // counts... i.e. exactly asserting that this sort is // stable. assert!(v.windows(2).all(|w| w[0] <= w[1])); } } } #[test] fn test_concat() { let v: [Vec; 0] = []; let c = v.concat(); assert_eq!(c, []); let d = [vec![1], vec![2, 3]].concat(); assert_eq!(d, [1, 2, 3]); let v: &[&[_]] = &[&[1], &[2, 3]]; assert_eq!(v.connect(&0), [1, 0, 2, 3]); let v: &[&[_]] = &[&[1], &[2], &[3]]; assert_eq!(v.connect(&0), [1, 0, 2, 0, 3]); } #[test] fn test_connect() { let v: [Vec; 0] = []; assert_eq!(v.connect(&0), []); assert_eq!([vec![1], vec![2, 3]].connect(&0), [1, 0, 2, 3]); assert_eq!([vec![1], vec![2], vec![3]].connect(&0), [1, 0, 2, 0, 3]); let v: [&[_]; 2] = [&[1], &[2, 3]]; assert_eq!(v.connect(&0), [1, 0, 2, 3]); let v: [&[_]; 3] = [&[1], &[2], &[3]]; assert_eq!(v.connect(&0), [1, 0, 2, 0, 3]); } #[test] fn test_insert() { let mut a = vec![1, 2, 4]; a.insert(2, 3); assert_eq!(a, [1, 2, 3, 4]); let mut a = vec![1, 2, 3]; a.insert(0, 0); assert_eq!(a, [0, 1, 2, 3]); let mut a = vec![1, 2, 3]; a.insert(3, 4); assert_eq!(a, [1, 2, 3, 4]); let mut a = vec![]; a.insert(0, 1); assert_eq!(a, [1]); } #[test] #[should_panic] fn test_insert_oob() { let mut a = vec![1, 2, 3]; a.insert(4, 5); } #[test] fn test_remove() { let mut a = vec![1, 2, 3, 4]; assert_eq!(a.remove(2), 3); assert_eq!(a, [1, 2, 4]); assert_eq!(a.remove(2), 4); assert_eq!(a, [1, 2]); assert_eq!(a.remove(0), 1); assert_eq!(a, [2]); assert_eq!(a.remove(0), 2); assert_eq!(a, []); } #[test] #[should_panic] fn test_remove_fail() { let mut a = vec![1]; let _ = a.remove(0); let _ = a.remove(0); } #[test] fn test_capacity() { let mut v = vec![0]; v.reserve_exact(10); assert!(v.capacity() >= 11); } #[test] fn test_slice_2() { let v = vec![1, 2, 3, 4, 5]; let v = &v[1..3]; assert_eq!(v.len(), 2); assert_eq!(v[0], 2); assert_eq!(v[1], 3); } #[test] #[should_panic] fn test_permute_fail() { let v: [(Box<_>, Rc<_>); 4] = [(box 0, Rc::new(0)), (box 0, Rc::new(0)), (box 0, Rc::new(0)), (box 0, Rc::new(0))]; let mut i = 0; for _ in v.permutations() { if i == 2 { panic!() } i += 1; } } #[test] fn test_total_ord() { let c = &[1, 2, 3]; [1, 2, 3, 4][..].cmp(c) == Greater; let c = &[1, 2, 3, 4]; [1, 2, 3][..].cmp(c) == Less; let c = &[1, 2, 3, 6]; [1, 2, 3, 4][..].cmp(c) == Equal; let c = &[1, 2, 3, 4, 5, 6]; [1, 2, 3, 4, 5, 5, 5, 5][..].cmp(c) == Less; let c = &[1, 2, 3, 4]; [2, 2][..].cmp(c) == Greater; } #[test] fn test_iterator() { let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.size_hint(), (5, Some(5))); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.size_hint(), (4, Some(4))); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.size_hint(), (3, Some(3))); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.size_hint(), (2, Some(2))); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.size_hint(), (1, Some(1))); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.size_hint(), (0, Some(0))); assert!(it.next().is_none()); } #[test] fn test_random_access_iterator() { let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.indexable(), 5); assert_eq!(it.idx(0).unwrap(), &1); assert_eq!(it.idx(2).unwrap(), &5); assert_eq!(it.idx(4).unwrap(), &11); assert!(it.idx(5).is_none()); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.indexable(), 4); assert_eq!(it.idx(0).unwrap(), &2); assert_eq!(it.idx(3).unwrap(), &11); assert!(it.idx(4).is_none()); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.indexable(), 3); assert_eq!(it.idx(1).unwrap(), &10); assert!(it.idx(3).is_none()); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.indexable(), 2); assert_eq!(it.idx(1).unwrap(), &11); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.indexable(), 1); assert_eq!(it.idx(0).unwrap(), &11); assert!(it.idx(1).is_none()); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.indexable(), 0); assert!(it.idx(0).is_none()); assert!(it.next().is_none()); } #[test] fn test_iter_size_hints() { let mut xs = [1, 2, 5, 10, 11]; assert_eq!(xs.iter().size_hint(), (5, Some(5))); assert_eq!(xs.iter_mut().size_hint(), (5, Some(5))); } #[test] fn test_iter_clone() { let xs = [1, 2, 5]; let mut it = xs.iter(); it.next(); let mut jt = it.clone(); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); } #[test] fn test_mut_iterator() { let mut xs = [1, 2, 3, 4, 5]; for x in &mut xs { *x += 1; } assert!(xs == [2, 3, 4, 5, 6]) } #[test] fn test_rev_iterator() { let xs = [1, 2, 5, 10, 11]; let ys = [11, 10, 5, 2, 1]; let mut i = 0; for &x in xs.iter().rev() { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, 5); } #[test] fn test_mut_rev_iterator() { let mut xs = [1, 2, 3, 4, 5]; for (i,x) in xs.iter_mut().rev().enumerate() { *x += i; } assert!(xs == [5, 5, 5, 5, 5]) } #[test] fn test_move_iterator() { let xs = vec![1,2,3,4,5]; assert_eq!(xs.into_iter().fold(0, |a: usize, b: usize| 10*a + b), 12345); } #[test] fn test_move_rev_iterator() { let xs = vec![1,2,3,4,5]; assert_eq!(xs.into_iter().rev().fold(0, |a: usize, b: usize| 10*a + b), 54321); } #[test] fn test_splitator() { let xs = &[1,2,3,4,5]; let splits: &[&[_]] = &[&[1], &[3], &[5]]; assert_eq!(xs.split(|x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[], &[2,3,4,5]]; assert_eq!(xs.split(|x| *x == 1).collect::>(), splits); let splits: &[&[_]] = &[&[1,2,3,4], &[]]; assert_eq!(xs.split(|x| *x == 5).collect::>(), splits); let splits: &[&[_]] = &[&[1,2,3,4,5]]; assert_eq!(xs.split(|x| *x == 10).collect::>(), splits); let splits: &[&[_]] = &[&[], &[], &[], &[], &[], &[]]; assert_eq!(xs.split(|_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split(|x| *x == 5).collect::>(), splits); } #[test] fn test_splitnator() { let xs = &[1,2,3,4,5]; let splits: &[&[_]] = &[&[1,2,3,4,5]]; assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[1], &[3,4,5]]; assert_eq!(xs.splitn(2, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[], &[], &[], &[4,5]]; assert_eq!(xs.splitn(4, |_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.splitn(2, |x| *x == 5).collect::>(), splits); } #[test] fn test_splitnator_mut() { let xs = &mut [1,2,3,4,5]; let splits: &[&mut[_]] = &[&mut [1,2,3,4,5]]; assert_eq!(xs.splitn_mut(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&mut[_]] = &[&mut [1], &mut [3,4,5]]; assert_eq!(xs.splitn_mut(2, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&mut[_]] = &[&mut [], &mut [], &mut [], &mut [4,5]]; assert_eq!(xs.splitn_mut(4, |_| true).collect::>(), splits); let xs: &mut [i32] = &mut []; let splits: &[&mut[i32]] = &[&mut []]; assert_eq!(xs.splitn_mut(2, |x| *x == 5).collect::>(), splits); } #[test] fn test_rsplitator() { let xs = &[1,2,3,4,5]; let splits: &[&[_]] = &[&[5], &[3], &[1]]; assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::>(), splits); let splits: &[&[_]] = &[&[2,3,4,5], &[]]; assert_eq!(xs.split(|x| *x == 1).rev().collect::>(), splits); let splits: &[&[_]] = &[&[], &[1,2,3,4]]; assert_eq!(xs.split(|x| *x == 5).rev().collect::>(), splits); let splits: &[&[_]] = &[&[1,2,3,4,5]]; assert_eq!(xs.split(|x| *x == 10).rev().collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.split(|x| *x == 5).rev().collect::>(), splits); } #[test] fn test_rsplitnator() { let xs = &[1,2,3,4,5]; let splits: &[&[_]] = &[&[1,2,3,4,5]]; assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[5], &[1,2,3]]; assert_eq!(xs.rsplitn(2, |x| *x % 2 == 0).collect::>(), splits); let splits: &[&[_]] = &[&[], &[], &[], &[1,2]]; assert_eq!(xs.rsplitn(4, |_| true).collect::>(), splits); let xs: &[i32] = &[]; let splits: &[&[i32]] = &[&[]]; assert_eq!(xs.rsplitn(2, |x| *x == 5).collect::>(), splits); assert!(xs.rsplitn(0, |x| *x % 2 == 0).next().is_none()); } #[test] fn test_windowsator() { let v = &[1,2,3,4]; let wins: &[&[_]] = &[&[1,2], &[2,3], &[3,4]]; assert_eq!(v.windows(2).collect::>(), wins); let wins: &[&[_]] = &[&[1,2,3], &[2,3,4]]; assert_eq!(v.windows(3).collect::>(), wins); assert!(v.windows(6).next().is_none()); let wins: &[&[_]] = &[&[3,4], &[2,3], &[1,2]]; assert_eq!(v.windows(2).rev().collect::>(), wins); let mut it = v.windows(2); assert_eq!(it.indexable(), 3); let win: &[_] = &[1,2]; assert_eq!(it.idx(0).unwrap(), win); let win: &[_] = &[2,3]; assert_eq!(it.idx(1).unwrap(), win); let win: &[_] = &[3,4]; assert_eq!(it.idx(2).unwrap(), win); assert_eq!(it.idx(3), None); } #[test] #[should_panic] fn test_windowsator_0() { let v = &[1,2,3,4]; let _it = v.windows(0); } #[test] fn test_chunksator() { let v = &[1,2,3,4,5]; assert_eq!(v.chunks(2).len(), 3); let chunks: &[&[_]] = &[&[1,2], &[3,4], &[5]]; assert_eq!(v.chunks(2).collect::>(), chunks); let chunks: &[&[_]] = &[&[1,2,3], &[4,5]]; assert_eq!(v.chunks(3).collect::>(), chunks); let chunks: &[&[_]] = &[&[1,2,3,4,5]]; assert_eq!(v.chunks(6).collect::>(), chunks); let chunks: &[&[_]] = &[&[5], &[3,4], &[1,2]]; assert_eq!(v.chunks(2).rev().collect::>(), chunks); let mut it = v.chunks(2); assert_eq!(it.indexable(), 3); let chunk: &[_] = &[1,2]; assert_eq!(it.idx(0).unwrap(), chunk); let chunk: &[_] = &[3,4]; assert_eq!(it.idx(1).unwrap(), chunk); let chunk: &[_] = &[5]; assert_eq!(it.idx(2).unwrap(), chunk); assert_eq!(it.idx(3), None); } #[test] #[should_panic] fn test_chunksator_0() { let v = &[1,2,3,4]; let _it = v.chunks(0); } #[test] fn test_move_from() { let mut a = [1,2,3,4,5]; let b = vec![6,7,8]; assert_eq!(a.move_from(b, 0, 3), 3); assert!(a == [6,7,8,4,5]); let mut a = [7,2,8,1]; let b = vec![3,1,4,1,5,9]; assert_eq!(a.move_from(b, 0, 6), 4); assert!(a == [3,1,4,1]); let mut a = [1,2,3,4]; let b = vec![5,6,7,8,9,0]; assert_eq!(a.move_from(b, 2, 3), 1); assert!(a == [7,2,3,4]); let mut a = [1,2,3,4,5]; let b = vec![5,6,7,8,9,0]; assert_eq!(a[2..4].move_from(b,1,6), 2); assert!(a == [1,2,6,7,5]); } #[test] fn test_reverse_part() { let mut values = [1,2,3,4,5]; values[1..4].reverse(); assert!(values == [1,4,3,2,5]); } #[test] fn test_show() { macro_rules! test_show_vec { ($x:expr, $x_str:expr) => ({ let (x, x_str) = ($x, $x_str); assert_eq!(format!("{:?}", x), x_str); assert_eq!(format!("{:?}", x), x_str); }) } let empty = Vec::::new(); test_show_vec!(empty, "[]"); test_show_vec!(vec![1], "[1]"); test_show_vec!(vec![1, 2, 3], "[1, 2, 3]"); test_show_vec!(vec![vec![], vec![1], vec![1, 1]], "[[], [1], [1, 1]]"); let empty_mut: &mut [i32] = &mut[]; test_show_vec!(empty_mut, "[]"); let v = &mut[1]; test_show_vec!(v, "[1]"); let v = &mut[1, 2, 3]; test_show_vec!(v, "[1, 2, 3]"); let v: &mut[&mut[_]] = &mut[&mut[], &mut[1], &mut[1, 1]]; test_show_vec!(v, "[[], [1], [1, 1]]"); } #[test] fn test_vec_default() { macro_rules! t { ($ty:ty) => {{ let v: $ty = Default::default(); assert!(v.is_empty()); }} } t!(&[i32]); t!(Vec); } #[test] fn test_bytes_set_memory() { use std::slice::bytes::MutableByteVector; let mut values = [1,2,3,4,5]; values[0..5].set_memory(0xAB); assert!(values == [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]); values[2..4].set_memory(0xFF); assert!(values == [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]); } #[test] #[should_panic] fn test_overflow_does_not_cause_segfault() { let mut v = vec![]; v.reserve_exact(!0); v.push(1); v.push(2); } #[test] #[should_panic] fn test_overflow_does_not_cause_segfault_managed() { let mut v = vec![Rc::new(1)]; v.reserve_exact(!0); v.push(Rc::new(2)); } #[test] fn test_mut_split_at() { let mut values = [1u8,2,3,4,5]; { let (left, right) = values.split_at_mut(2); { let left: &[_] = left; assert!(left[..left.len()] == [1, 2]); } for p in left { *p += 1; } { let right: &[_] = right; assert!(right[..right.len()] == [3, 4, 5]); } for p in right { *p += 2; } } assert!(values == [2, 3, 5, 6, 7]); } #[derive(Clone, PartialEq)] struct Foo; #[test] fn test_iter_zero_sized() { let mut v = vec![Foo, Foo, Foo]; assert_eq!(v.len(), 3); let mut cnt = 0; for f in &v { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 3); for f in &v[1..3] { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 5); for f in &mut v { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 8); for f in v { assert!(f == Foo); cnt += 1; } assert_eq!(cnt, 11); let xs: [Foo; 3] = [Foo, Foo, Foo]; cnt = 0; for f in &xs { assert!(*f == Foo); cnt += 1; } assert!(cnt == 3); } #[test] fn test_shrink_to_fit() { let mut xs = vec![0, 1, 2, 3]; for i in 4..100 { xs.push(i) } assert_eq!(xs.capacity(), 128); xs.shrink_to_fit(); assert_eq!(xs.capacity(), 100); assert_eq!(xs, (0..100).collect::>()); } #[test] fn test_starts_with() { assert!(b"foobar".starts_with(b"foo")); assert!(!b"foobar".starts_with(b"oob")); assert!(!b"foobar".starts_with(b"bar")); assert!(!b"foo".starts_with(b"foobar")); assert!(!b"bar".starts_with(b"foobar")); assert!(b"foobar".starts_with(b"foobar")); let empty: &[u8] = &[]; assert!(empty.starts_with(empty)); assert!(!empty.starts_with(b"foo")); assert!(b"foobar".starts_with(empty)); } #[test] fn test_ends_with() { assert!(b"foobar".ends_with(b"bar")); assert!(!b"foobar".ends_with(b"oba")); assert!(!b"foobar".ends_with(b"foo")); assert!(!b"foo".ends_with(b"foobar")); assert!(!b"bar".ends_with(b"foobar")); assert!(b"foobar".ends_with(b"foobar")); let empty: &[u8] = &[]; assert!(empty.ends_with(empty)); assert!(!empty.ends_with(b"foo")); assert!(b"foobar".ends_with(empty)); } #[test] fn test_mut_splitator() { let mut xs = [0,1,0,2,3,0,0,4,5,0]; assert_eq!(xs.split_mut(|x| *x == 0).count(), 6); for slice in xs.split_mut(|x| *x == 0) { slice.reverse(); } assert!(xs == [0,1,0,3,2,0,0,5,4,0]); let mut xs = [0,1,0,2,3,0,0,4,5,0,6,7]; for slice in xs.split_mut(|x| *x == 0).take(5) { slice.reverse(); } assert!(xs == [0,1,0,3,2,0,0,5,4,0,6,7]); } #[test] fn test_mut_splitator_rev() { let mut xs = [1,2,0,3,4,0,0,5,6,0]; for slice in xs.split_mut(|x| *x == 0).rev().take(4) { slice.reverse(); } assert!(xs == [1,2,0,4,3,0,0,6,5,0]); } #[test] fn test_get_mut() { let mut v = [0,1,2]; assert_eq!(v.get_mut(3), None); v.get_mut(1).map(|e| *e = 7); assert_eq!(v[1], 7); let mut x = 2; assert_eq!(v.get_mut(2), Some(&mut x)); } #[test] fn test_mut_chunks() { let mut v = [0, 1, 2, 3, 4, 5, 6]; assert_eq!(v.chunks_mut(2).len(), 4); for (i, chunk) in v.chunks_mut(3).enumerate() { for x in chunk { *x = i as u8; } } let result = [0, 0, 0, 1, 1, 1, 2]; assert!(v == result); } #[test] fn test_mut_chunks_rev() { let mut v = [0, 1, 2, 3, 4, 5, 6]; for (i, chunk) in v.chunks_mut(3).rev().enumerate() { for x in chunk { *x = i as u8; } } let result = [2, 2, 2, 1, 1, 1, 0]; assert!(v == result); } #[test] #[should_panic] fn test_mut_chunks_0() { let mut v = [1, 2, 3, 4]; let _it = v.chunks_mut(0); } #[test] fn test_mut_last() { let mut x = [1, 2, 3, 4, 5]; let h = x.last_mut(); assert_eq!(*h.unwrap(), 5); let y: &mut [i32] = &mut []; assert!(y.last_mut().is_none()); } #[test] fn test_to_vec() { let xs: Box<_> = box [1, 2, 3]; let ys = xs.to_vec(); assert_eq!(ys, [1, 2, 3]); } mod bench { use std::iter::repeat; use std::{mem, ptr}; use std::rand::{Rng, weak_rng}; use test::{Bencher, black_box}; #[bench] fn iterator(b: &mut Bencher) { // peculiar numbers to stop LLVM from optimising the summation // out. let v: Vec<_> = (0..100).map(|i| i ^ (i << 1) ^ (i >> 1)).collect(); b.iter(|| { let mut sum = 0; for x in &v { sum += *x; } // sum == 11806, to stop dead code elimination. if sum == 0 {panic!()} }) } #[bench] fn mut_iterator(b: &mut Bencher) { let mut v: Vec<_> = repeat(0).take(100).collect(); b.iter(|| { let mut i = 0; for x in &mut v { *x = i; i += 1; } }) } #[bench] fn concat(b: &mut Bencher) { let xss: Vec> = (0..100).map(|i| (0..i).collect()).collect(); b.iter(|| { xss.concat(); }); } #[bench] fn connect(b: &mut Bencher) { let xss: Vec> = (0..100).map(|i| (0..i).collect()).collect(); b.iter(|| { xss.connect(&0) }); } #[bench] fn push(b: &mut Bencher) { let mut vec = Vec::::new(); b.iter(|| { vec.push(0); black_box(&vec); }); } #[bench] fn starts_with_same_vector(b: &mut Bencher) { let vec: Vec<_> = (0..100).collect(); b.iter(|| { vec.starts_with(&vec) }) } #[bench] fn starts_with_single_element(b: &mut Bencher) { let vec: Vec<_> = vec![0]; b.iter(|| { vec.starts_with(&vec) }) } #[bench] fn starts_with_diff_one_element_at_end(b: &mut Bencher) { let vec: Vec<_> = (0..100).collect(); let mut match_vec: Vec<_> = (0..99).collect(); match_vec.push(0); b.iter(|| { vec.starts_with(&match_vec) }) } #[bench] fn ends_with_same_vector(b: &mut Bencher) { let vec: Vec<_> = (0..100).collect(); b.iter(|| { vec.ends_with(&vec) }) } #[bench] fn ends_with_single_element(b: &mut Bencher) { let vec: Vec<_> = vec![0]; b.iter(|| { vec.ends_with(&vec) }) } #[bench] fn ends_with_diff_one_element_at_beginning(b: &mut Bencher) { let vec: Vec<_> = (0..100).collect(); let mut match_vec: Vec<_> = (0..100).collect(); match_vec[0] = 200; b.iter(|| { vec.starts_with(&match_vec) }) } #[bench] fn contains_last_element(b: &mut Bencher) { let vec: Vec<_> = (0..100).collect(); b.iter(|| { vec.contains(&99) }) } #[bench] fn zero_1kb_from_elem(b: &mut Bencher) { b.iter(|| { repeat(0u8).take(1024).collect::>() }); } #[bench] fn zero_1kb_set_memory(b: &mut Bencher) { b.iter(|| { let mut v = Vec::::with_capacity(1024); unsafe { let vp = v.as_mut_ptr(); ptr::write_bytes(vp, 0, 1024); v.set_len(1024); } v }); } #[bench] fn zero_1kb_loop_set(b: &mut Bencher) { b.iter(|| { let mut v = Vec::::with_capacity(1024); unsafe { v.set_len(1024); } for i in 0..1024 { v[i] = 0; } }); } #[bench] fn zero_1kb_mut_iter(b: &mut Bencher) { b.iter(|| { let mut v = Vec::::with_capacity(1024); unsafe { v.set_len(1024); } for x in &mut v { *x = 0; } v }); } #[bench] fn random_inserts(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v: Vec<_> = repeat((0, 0)).take(30).collect(); for _ in 0..100 { let l = v.len(); v.insert(rng.gen::() % (l + 1), (1, 1)); } }) } #[bench] fn random_removes(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v: Vec<_> = repeat((0, 0)).take(130).collect(); for _ in 0..100 { let l = v.len(); v.remove(rng.gen::() % l); } }) } #[bench] fn sort_random_small(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v: Vec<_> = rng.gen_iter::().take(5).collect(); v.sort(); }); b.bytes = 5 * mem::size_of::() as u64; } #[bench] fn sort_random_medium(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v: Vec<_> = rng.gen_iter::().take(100).collect(); v.sort(); }); b.bytes = 100 * mem::size_of::() as u64; } #[bench] fn sort_random_large(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v: Vec<_> = rng.gen_iter::().take(10000).collect(); v.sort(); }); b.bytes = 10000 * mem::size_of::() as u64; } #[bench] fn sort_sorted(b: &mut Bencher) { let mut v: Vec<_> = (0..10000).collect(); b.iter(|| { v.sort(); }); b.bytes = (v.len() * mem::size_of_val(&v[0])) as u64; } type BigSortable = (u64, u64, u64, u64); #[bench] fn sort_big_random_small(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(5) .collect::>(); v.sort(); }); b.bytes = 5 * mem::size_of::() as u64; } #[bench] fn sort_big_random_medium(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(100) .collect::>(); v.sort(); }); b.bytes = 100 * mem::size_of::() as u64; } #[bench] fn sort_big_random_large(b: &mut Bencher) { let mut rng = weak_rng(); b.iter(|| { let mut v = rng.gen_iter::().take(10000) .collect::>(); v.sort(); }); b.bytes = 10000 * mem::size_of::() as u64; } #[bench] fn sort_big_sorted(b: &mut Bencher) { let mut v: Vec = (0..10000).map(|i| (i, i, i, i)).collect(); b.iter(|| { v.sort(); }); b.bytes = (v.len() * mem::size_of_val(&v[0])) as u64; } }