import driver::session::session; import metadata::csearch::{each_path, get_impls_for_mod}; import metadata::csearch::{get_method_names_if_trait, lookup_defs}; import metadata::cstore::find_use_stmt_cnum; import metadata::decoder::{def_like, dl_def, dl_field, dl_impl}; import middle::lang_items::LanguageItems; import middle::lint::{deny, allow, forbid, level, unused_imports, warn}; import syntax::ast::{_mod, add, arm, bind_by_value, bitand, bitor, bitxor}; import syntax::ast::{blk, bound_const, bound_copy, bound_owned, bound_send}; import syntax::ast::{bound_trait, capture_clause, class_ctor, class_dtor}; import syntax::ast::{class_member, class_method, crate, crate_num, decl_item}; import syntax::ast::{def, def_arg, def_binding, def_class, def_const, def_fn}; import syntax::ast::{def_foreign_mod, def_id, def_local, def_mod}; import syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param, def_typaram_binder}; import syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op}; import syntax::ast::{expr_binary, expr_cast, expr_field, expr_fn}; import syntax::ast::{expr_fn_block, expr_index, expr_new, expr_path}; import syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param}; import syntax::ast::{def_upvar, def_use, def_variant, div, eq, expr}; import syntax::ast::{expr_assign_op, expr_binary, expr_cast, expr_field}; import syntax::ast::{expr_fn, expr_fn_block, expr_index, expr_new, expr_path}; import syntax::ast::{expr_struct, expr_unary, fn_decl, foreign_item}; import syntax::ast::{foreign_item_fn, ge, gt, ident, trait_ref, impure_fn}; import syntax::ast::{instance_var, item, item_class, item_const, item_enum}; import syntax::ast::{item_fn, item_mac, item_foreign_mod, item_impl}; import syntax::ast::{item_mod, item_trait, item_ty, le, local, local_crate}; import syntax::ast::{lt, method, mul, ne, neg, node_id, pat, pat_enum}; import syntax::ast::{pat_ident, path, prim_ty, pat_box, pat_uniq, pat_lit}; import syntax::ast::{pat_range, pat_rec, pat_tup, pat_wild, provided}; import syntax::ast::{required, rem, self_ty_, shl, stmt_decl, subtract, ty}; import syntax::ast::{ty_bool, ty_char, ty_f, ty_f32, ty_f64, ty_float, ty_i}; import syntax::ast::{ty_i16, ty_i32, ty_i64, ty_i8, ty_int, ty_param}; import syntax::ast::{ty_path, ty_str, ty_u, ty_u16, ty_u32, ty_u64, ty_u8}; import syntax::ast::{ty_uint, variant, view_item, view_item_export}; import syntax::ast::{view_item_import, view_item_use, view_path_glob}; import syntax::ast::{view_path_list, view_path_simple}; import syntax::ast_util::{def_id_of_def, dummy_sp, local_def, new_def_hash}; import syntax::ast_util::{walk_pat}; import syntax::attr::{attr_metas, contains_name}; import syntax::print::pprust::{pat_to_str, path_to_str}; import syntax::codemap::span; import syntax::visit::{default_visitor, fk_method, mk_vt, visit_block}; import syntax::visit::{visit_crate, visit_expr, visit_expr_opt, visit_fn}; import syntax::visit::{visit_foreign_item, visit_item, visit_method_helper}; import syntax::visit::{visit_mod, visit_ty, vt}; import box::ptr_eq; import dvec::{dvec, extensions}; import option::{get, is_some}; import str::{connect, split_str}; import vec::pop; import std::list::{cons, list, nil}; import std::map::{hashmap, int_hash, str_hash}; import str_eq = str::eq; // Definition mapping type DefMap = hashmap; // Implementation resolution // XXX: This kind of duplicates information kept in ty::method. Maybe it // should go away. type MethodInfo = { did: def_id, n_tps: uint, ident: ident, self_type: self_ty_ }; type Impl = { did: def_id, ident: ident, methods: ~[@MethodInfo] }; type ImplScope = @~[@Impl]; type ImplScopes = @list; type ImplMap = hashmap; // Trait method resolution type TraitMap = @hashmap>; // Export mapping type Export = { reexp: bool, id: def_id }; type ExportMap = hashmap; enum PatternBindingMode { RefutableMode, IrrefutableMode } enum Namespace { ModuleNS, TypeNS, ValueNS, ImplNS } enum NamespaceResult { UnknownResult, UnboundResult, BoundResult(@Module, @NameBindings) } enum ImplNamespaceResult { UnknownImplResult, UnboundImplResult, BoundImplResult(@dvec<@Target>) } enum NameDefinition { NoNameDefinition, //< The name was unbound. ChildNameDefinition(def), //< The name identifies an immediate child. ImportNameDefinition(def) //< The name identifies an import. } enum Mutability { Mutable, Immutable } enum SelfBinding { NoSelfBinding, HasSelfBinding(node_id) } enum CaptureClause { NoCaptureClause, HasCaptureClause(capture_clause) } type ResolveVisitor = vt<()>; enum ModuleDef { NoModuleDef, // Does not define a module. ModuleDef(@Module), // Defines a module. } /// Contains data for specific types of import directives. enum ImportDirectiveSubclass { SingleImport(Atom /* target */, Atom /* source */), GlobImport } /// The context that we thread through while building the reduced graph. enum ReducedGraphParent { ModuleReducedGraphParent(@Module) } enum ResolveResult { Failed, // Failed to resolve the name. Indeterminate, // Couldn't determine due to unresolved globs. Success(T) // Successfully resolved the import. } enum TypeParameters/& { NoTypeParameters, //< No type parameters. HasTypeParameters(&~[ty_param], //< Type parameters. node_id, //< ID of the enclosing item // The index to start numbering the type parameters at. // This is zero if this is the outermost set of type // parameters, or equal to the number of outer type // parameters. For example, if we have: // // impl I { // fn method() { ... } // } // // The index at the method site will be 1, because the // outer T had index 0. uint, // The kind of the rib used for type parameters. RibKind) } // The rib kind controls the translation of argument or local definitions // (`def_arg` or `def_local`) to upvars (`def_upvar`). enum RibKind { // No translation needs to be applied. NormalRibKind, // We passed through a function scope at the given node ID. Translate // upvars as appropriate. FunctionRibKind(node_id), // We passed through a class, impl, or trait and are now in one of its // methods. Allow references to ty params that that class, impl or trait // binds. Disallow any other upvars (including other ty params that are // upvars). // parent; method itself MethodRibKind(node_id, MethodSort), // We passed through a function *item* scope. Disallow upvars. OpaqueFunctionRibKind } // Methods can be required or provided. Required methods only occur in traits. enum MethodSort { Required, Provided(node_id) } // The X-ray flag indicates that a context has the X-ray privilege, which // allows it to reference private names. Currently, this is used for the test // runner. // // XXX: The X-ray flag is kind of questionable in the first place. It might // be better to introduce an expr_xray_path instead. enum XrayFlag { NoXray, //< Private items cannot be accessed. Xray //< Private items can be accessed. } enum AllowCapturingSelfFlag { AllowCapturingSelf, //< The "self" definition can be captured. DontAllowCapturingSelf, //< The "self" definition cannot be captured. } enum EnumVariantOrConstResolution { FoundEnumVariant(def), FoundConst, EnumVariantOrConstNotFound } // FIXME (issue #2550): Should be a class but then it becomes not implicitly // copyable due to a kind bug. type Atom = uint; fn Atom(n: uint) -> Atom { ret n; } class AtomTable { let atoms: hashmap<@~str,Atom>; let strings: dvec<@~str>; let mut atom_count: uint; new() { self.atoms = hashmap::<@~str,Atom>(|x| str::hash(*x), |x, y| str::eq(*x, *y)); self.strings = dvec(); self.atom_count = 0u; } fn intern(string: @~str) -> Atom { alt self.atoms.find(string) { none { /* fall through */ } some(atom) { ret atom; } } let atom = Atom(self.atom_count); self.atom_count += 1u; self.atoms.insert(string, atom); self.strings.push(string); ret atom; } fn atom_to_str(atom: Atom) -> @~str { ret self.strings.get_elt(atom); } fn atoms_to_strs(atoms: ~[Atom], f: fn(@~str) -> bool) { for atoms.each |atom| { if !f(self.atom_to_str(atom)) { ret; } } } fn atoms_to_str(atoms: ~[Atom]) -> @~str { // XXX: str::connect should do this. let mut result = ~""; let mut first = true; for self.atoms_to_strs(atoms) |string| { if first { first = false; } else { result += ~"::"; } result += *string; } // XXX: Shouldn't copy here. We need string builder functionality. ret @result; } } /// Creates a hash table of atoms. fn atom_hashmap() -> hashmap { ret hashmap::(|a| a, |a, b| a == b); } /** * One local scope. In Rust, local scopes can only contain value bindings. * Therefore, we don't have to worry about the other namespaces here. */ class Rib { let bindings: hashmap; let kind: RibKind; new(kind: RibKind) { self.bindings = atom_hashmap(); self.kind = kind; } } /// One import directive. class ImportDirective { let module_path: @dvec; let subclass: @ImportDirectiveSubclass; let span: span; new(module_path: @dvec, subclass: @ImportDirectiveSubclass, span: span) { self.module_path = module_path; self.subclass = subclass; self.span = span; } } /// The item that an import resolves to. class Target { let target_module: @Module; let bindings: @NameBindings; new(target_module: @Module, bindings: @NameBindings) { self.target_module = target_module; self.bindings = bindings; } } class ImportResolution { let span: span; // The number of outstanding references to this name. When this reaches // zero, outside modules can count on the targets being correct. Before // then, all bets are off; future imports could override this name. let mut outstanding_references: uint; let mut module_target: option; let mut value_target: option; let mut type_target: option; let mut impl_target: @dvec<@Target>; let mut used: bool; new(span: span) { self.span = span; self.outstanding_references = 0u; self.module_target = none; self.value_target = none; self.type_target = none; self.impl_target = @dvec(); self.used = false; } fn target_for_namespace(namespace: Namespace) -> option { alt namespace { ModuleNS { ret copy self.module_target; } TypeNS { ret copy self.type_target; } ValueNS { ret copy self.value_target; } ImplNS { if (*self.impl_target).len() > 0u { ret some(copy *(*self.impl_target).get_elt(0u)); } ret none; } } } } /// The link from a module up to its nearest parent node. enum ParentLink { NoParentLink, ModuleParentLink(@Module, Atom), BlockParentLink(@Module, node_id) } /// One node in the tree of modules. class Module { let parent_link: ParentLink; let mut def_id: option; let children: hashmap; let imports: dvec<@ImportDirective>; // The anonymous children of this node. Anonymous children are pseudo- // modules that are implicitly created around items contained within // blocks. // // For example, if we have this: // // fn f() { // fn g() { // ... // } // } // // There will be an anonymous module created around `g` with the ID of the // entry block for `f`. let anonymous_children: hashmap; // XXX: This is about to be reworked so that exports are on individual // items, not names. // // The atom is the name of the exported item, while the node ID is the // ID of the export path. let exported_names: hashmap; // The status of resolving each import in this module. let import_resolutions: hashmap; // The number of unresolved globs that this module exports. let mut glob_count: uint; // The index of the import we're resolving. let mut resolved_import_count: uint; // The list of implementation scopes, rooted from this module. let mut impl_scopes: ImplScopes; new(parent_link: ParentLink, def_id: option) { self.parent_link = parent_link; self.def_id = def_id; self.children = atom_hashmap(); self.imports = dvec(); self.anonymous_children = int_hash(); self.exported_names = atom_hashmap(); self.import_resolutions = atom_hashmap(); self.glob_count = 0u; self.resolved_import_count = 0u; self.impl_scopes = @nil; } fn all_imports_resolved() -> bool { ret self.imports.len() == self.resolved_import_count; } } // XXX: This is a workaround due to is_none in the standard library mistakenly // requiring a T:copy. pure fn is_none(x: option) -> bool { alt x { none { ret true; } some(_) { ret false; } } } fn unused_import_lint_level(session: session) -> level { for session.opts.lint_opts.each |lint_option_pair| { let (lint_type, lint_level) = lint_option_pair; if lint_type == unused_imports { ret lint_level; } } ret allow; } // Records the definitions (at most one for each namespace) that a name is // bound to. class NameBindings { let mut module_def: ModuleDef; //< Meaning in the module namespace. let mut type_def: option; //< Meaning in the type namespace. let mut value_def: option; //< Meaning in the value namespace. let mut impl_defs: ~[@Impl]; //< Meaning in the impl namespace. new() { self.module_def = NoModuleDef; self.type_def = none; self.value_def = none; self.impl_defs = ~[]; } /// Creates a new module in this set of name bindings. fn define_module(parent_link: ParentLink, def_id: option) { if self.module_def == NoModuleDef { let module_ = @Module(parent_link, def_id); self.module_def = ModuleDef(module_); } } /// Records a type definition. fn define_type(def: def) { self.type_def = some(def); } /// Records a value definition. fn define_value(def: def) { self.value_def = some(def); } /// Records an impl definition. fn define_impl(implementation: @Impl) { self.impl_defs += ~[implementation]; } /// Returns the module node if applicable. fn get_module_if_available() -> option<@Module> { alt self.module_def { NoModuleDef { ret none; } ModuleDef(module_) { ret some(module_); } } } /** * Returns the module node. Fails if this node does not have a module * definition. */ fn get_module() -> @Module { alt self.module_def { NoModuleDef { fail ~"get_module called on a node with no module definition!"; } ModuleDef(module_) { ret module_; } } } fn defined_in_namespace(namespace: Namespace) -> bool { alt namespace { ModuleNS { ret self.module_def != NoModuleDef; } TypeNS { ret self.type_def != none; } ValueNS { ret self.value_def != none; } ImplNS { ret self.impl_defs.len() >= 1u; } } } fn def_for_namespace(namespace: Namespace) -> option { alt namespace { TypeNS { ret self.type_def; } ValueNS { ret self.value_def; } ModuleNS { alt self.module_def { NoModuleDef { ret none; } ModuleDef(module_) { alt module_.def_id { none { ret none; } some(def_id) { ret some(def_mod(def_id)); } } } } } ImplNS { // Danger: Be careful what you use this for! def_ty is not // necessarily the right def. if self.impl_defs.len() == 0u { ret none; } ret some(def_ty(self.impl_defs[0].did)); } } } } /// Interns the names of the primitive types. class PrimitiveTypeTable { let primitive_types: hashmap; new(atom_table: @AtomTable) { self.primitive_types = atom_hashmap(); self.intern(atom_table, @~"bool", ty_bool); self.intern(atom_table, @~"char", ty_int(ty_char)); self.intern(atom_table, @~"float", ty_float(ty_f)); self.intern(atom_table, @~"f32", ty_float(ty_f32)); self.intern(atom_table, @~"f64", ty_float(ty_f64)); self.intern(atom_table, @~"int", ty_int(ty_i)); self.intern(atom_table, @~"i8", ty_int(ty_i8)); self.intern(atom_table, @~"i16", ty_int(ty_i16)); self.intern(atom_table, @~"i32", ty_int(ty_i32)); self.intern(atom_table, @~"i64", ty_int(ty_i64)); self.intern(atom_table, @~"str", ty_str); self.intern(atom_table, @~"uint", ty_uint(ty_u)); self.intern(atom_table, @~"u8", ty_uint(ty_u8)); self.intern(atom_table, @~"u16", ty_uint(ty_u16)); self.intern(atom_table, @~"u32", ty_uint(ty_u32)); self.intern(atom_table, @~"u64", ty_uint(ty_u64)); } fn intern(atom_table: @AtomTable, string: @~str, primitive_type: prim_ty) { let atom = (*atom_table).intern(string); self.primitive_types.insert(atom, primitive_type); } } /// The main resolver class. class Resolver { let session: session; let lang_items: LanguageItems; let crate: @crate; let atom_table: @AtomTable; let graph_root: @NameBindings; let unused_import_lint_level: level; let trait_info: hashmap>; let structs: hashmap; // The number of imports that are currently unresolved. let mut unresolved_imports: uint; // The module that represents the current item scope. let mut current_module: @Module; // The current set of local scopes, for values. // XXX: Reuse ribs to avoid allocation. let value_ribs: @dvec<@Rib>; // The current set of local scopes, for types. let type_ribs: @dvec<@Rib>; // Whether the current context is an X-ray context. An X-ray context is // allowed to access private names of any module. let mut xray_context: XrayFlag; // The trait that the current context can refer to. let mut current_trait_refs: option<@dvec>; // The atom for the keyword "self". let self_atom: Atom; // The atoms for the primitive types. let primitive_type_table: @PrimitiveTypeTable; // The four namespaces. let namespaces: ~[Namespace]; let def_map: DefMap; let impl_map: ImplMap; let export_map: ExportMap; let trait_map: TraitMap; new(session: session, lang_items: LanguageItems, crate: @crate) { self.session = session; self.lang_items = copy lang_items; self.crate = crate; self.atom_table = @AtomTable(); // The outermost module has def ID 0; this is not reflected in the // AST. self.graph_root = @NameBindings(); (*self.graph_root).define_module(NoParentLink, some({ crate: 0, node: 0 })); self.unused_import_lint_level = unused_import_lint_level(session); self.trait_info = new_def_hash(); self.structs = new_def_hash(); self.unresolved_imports = 0u; self.current_module = (*self.graph_root).get_module(); self.value_ribs = @dvec(); self.type_ribs = @dvec(); self.xray_context = NoXray; self.current_trait_refs = none; self.self_atom = (*self.atom_table).intern(@~"self"); self.primitive_type_table = @PrimitiveTypeTable(self.atom_table); self.namespaces = ~[ ModuleNS, TypeNS, ValueNS, ImplNS ]; self.def_map = int_hash(); self.impl_map = int_hash(); self.export_map = int_hash(); self.trait_map = @int_hash(); } /// The main name resolution procedure. fn resolve(this: @Resolver) { self.build_reduced_graph(this); self.session.abort_if_errors(); self.resolve_imports(); self.session.abort_if_errors(); self.record_exports(); self.session.abort_if_errors(); self.build_impl_scopes(); self.session.abort_if_errors(); self.resolve_crate(); self.session.abort_if_errors(); self.check_for_unused_imports_if_necessary(); } // // Reduced graph building // // Here we build the "reduced graph": the graph of the module tree without // any imports resolved. // /// Constructs the reduced graph for the entire crate. fn build_reduced_graph(this: @Resolver) { let initial_parent = ModuleReducedGraphParent((*self.graph_root).get_module()); visit_crate(*self.crate, initial_parent, mk_vt(@{ visit_item: |item, context, visitor| (*this).build_reduced_graph_for_item(item, context, visitor), visit_foreign_item: |foreign_item, context, visitor| (*this).build_reduced_graph_for_foreign_item(foreign_item, context, visitor), visit_view_item: |view_item, context, visitor| (*this).build_reduced_graph_for_view_item(view_item, context, visitor), visit_block: |block, context, visitor| (*this).build_reduced_graph_for_block(block, context, visitor) with *default_visitor() })); } /// Returns the current module tracked by the reduced graph parent. fn get_module_from_parent(reduced_graph_parent: ReducedGraphParent) -> @Module { alt reduced_graph_parent { ModuleReducedGraphParent(module_) { ret module_; } } } /** * Adds a new child item to the module definition of the parent node and * returns its corresponding name bindings as well as the current parent. * Or, if we're inside a block, creates (or reuses) an anonymous module * corresponding to the innermost block ID and returns the name bindings * as well as the newly-created parent. * * If this node does not have a module definition and we are not inside * a block, fails. */ fn add_child(name: Atom, reduced_graph_parent: ReducedGraphParent) -> (@NameBindings, ReducedGraphParent) { // If this is the immediate descendant of a module, then we add the // child name directly. Otherwise, we create or reuse an anonymous // module and add the child to that. let mut module_; alt reduced_graph_parent { ModuleReducedGraphParent(parent_module) { module_ = parent_module; } } // Add or reuse the child. let new_parent = ModuleReducedGraphParent(module_); alt module_.children.find(name) { none { let child = @NameBindings(); module_.children.insert(name, child); ret (child, new_parent); } some(child) { ret (child, new_parent); } } } fn block_needs_anonymous_module(block: blk) -> bool { // If the block has view items, we need an anonymous module. if block.node.view_items.len() > 0u { ret true; } // Check each statement. for block.node.stmts.each |statement| { alt statement.node { stmt_decl(declaration, _) { alt declaration.node { decl_item(_) { ret true; } _ { // Keep searching. } } } _ { // Keep searching. } } } // If we found neither view items nor items, we don't need to create // an anonymous module. ret false; } fn get_parent_link(parent: ReducedGraphParent, name: Atom) -> ParentLink { alt parent { ModuleReducedGraphParent(module_) { ret ModuleParentLink(module_, name); } } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(item: @item, parent: ReducedGraphParent, &&visitor: vt) { let atom = (*self.atom_table).intern(item.ident); let (name_bindings, new_parent) = self.add_child(atom, parent); alt item.node { item_mod(module_) { let parent_link = self.get_parent_link(new_parent, atom); let def_id = { crate: 0, node: item.id }; (*name_bindings).define_module(parent_link, some(def_id)); let new_parent = ModuleReducedGraphParent((*name_bindings).get_module()); visit_mod(module_, item.span, item.id, new_parent, visitor); } item_foreign_mod(foreign_module) { let parent_link = self.get_parent_link(new_parent, atom); let def_id = { crate: 0, node: item.id }; (*name_bindings).define_module(parent_link, some(def_id)); let new_parent = ModuleReducedGraphParent((*name_bindings).get_module()); visit_item(item, new_parent, visitor); } // These items live in the value namespace. item_const(*) { (*name_bindings).define_value(def_const(local_def(item.id))); } item_fn(decl, _, _) { let def = def_fn(local_def(item.id), decl.purity); (*name_bindings).define_value(def); visit_item(item, new_parent, visitor); } // These items live in the type namespace. item_ty(*) { (*name_bindings).define_type(def_ty(local_def(item.id))); } // These items live in both the type and value namespaces. item_enum(variants, _) { (*name_bindings).define_type(def_ty(local_def(item.id))); for variants.each |variant| { self.build_reduced_graph_for_variant(variant, local_def(item.id), new_parent, visitor); } } item_class(_, _, class_members, optional_ctor, _) { (*name_bindings).define_type(def_ty(local_def(item.id))); alt optional_ctor { none => { // Nothing to do. } some(ctor) => { let purity = ctor.node.dec.purity; let ctor_def = def_fn(local_def(ctor.node.id), purity); (*name_bindings).define_value(ctor_def); } } // Create the set of implementation information that the // implementation scopes (ImplScopes) need and write it into // the implementation definition list for this set of name // bindings. let mut method_infos = ~[]; for class_members.each |class_member| { alt class_member.node { class_method(method) { // XXX: Combine with impl method code below. method_infos += ~[ @{ did: local_def(method.id), n_tps: method.tps.len(), ident: method.ident, self_type: method.self_ty.node } ]; } instance_var(*) { // Don't need to do anything with this. } } } let impl_info = @{ did: local_def(item.id), ident: /* XXX: bad */ copy item.ident, methods: method_infos }; (*name_bindings).define_impl(impl_info); // Record the def ID of this struct. self.structs.insert(local_def(item.id), is_some(optional_ctor)); visit_item(item, new_parent, visitor); } item_impl(_, _, _, methods) { // Create the set of implementation information that the // implementation scopes (ImplScopes) need and write it into // the implementation definition list for this set of name // bindings. let mut method_infos = ~[]; for methods.each |method| { method_infos += ~[ @{ did: local_def(method.id), n_tps: method.tps.len(), ident: method.ident, self_type: method.self_ty.node } ]; } let impl_info = @{ did: local_def(item.id), ident: /* XXX: bad */ copy item.ident, methods: method_infos }; (*name_bindings).define_impl(impl_info); visit_item(item, new_parent, visitor); } item_trait(_, methods) { // Add the names of all the methods to the trait info. let method_names = @atom_hashmap(); for methods.each |method| { let atom; alt method { required(required_method) { atom = (*self.atom_table).intern (required_method.ident); } provided(provided_method) { atom = (*self.atom_table).intern (provided_method.ident); } } (*method_names).insert(atom, ()); } let def_id = local_def(item.id); self.trait_info.insert(def_id, method_names); (*name_bindings).define_type(def_ty(def_id)); visit_item(item, new_parent, visitor); } item_mac(*) { fail ~"item macros unimplemented" } } } /** * Constructs the reduced graph for one variant. Variants exist in the * type namespace. */ fn build_reduced_graph_for_variant(variant: variant, item_id: def_id, parent: ReducedGraphParent, &&_visitor: vt) { let atom = (*self.atom_table).intern(variant.node.name); let (child, _) = self.add_child(atom, parent); (*child).define_value(def_variant(item_id, local_def(variant.node.id))); } /** * Constructs the reduced graph for one 'view item'. View items consist * of imports and use directives. */ fn build_reduced_graph_for_view_item(view_item: @view_item, parent: ReducedGraphParent, &&_visitor: vt) { alt view_item.node { view_item_import(view_paths) { for view_paths.each |view_path| { // Extract and intern the module part of the path. For // globs and lists, the path is found directly in the AST; // for simple paths we have to munge the path a little. let module_path = @dvec(); alt view_path.node { view_path_simple(_, full_path, _) { let path_len = full_path.idents.len(); assert path_len != 0u; for full_path.idents.eachi |i, ident| { if i != path_len - 1u { let atom = (*self.atom_table).intern(ident); (*module_path).push(atom); } } } view_path_glob(module_ident_path, _) | view_path_list(module_ident_path, _, _) { for module_ident_path.idents.each |ident| { let atom = (*self.atom_table).intern(ident); (*module_path).push(atom); } } } // Build up the import directives. let module_ = self.get_module_from_parent(parent); alt view_path.node { view_path_simple(binding, full_path, _) { let target_atom = (*self.atom_table).intern(binding); let source_ident = full_path.idents.last(); let source_atom = (*self.atom_table).intern(source_ident); let subclass = @SingleImport(target_atom, source_atom); self.build_import_directive(module_, module_path, subclass, view_path.span); } view_path_list(_, source_idents, _) { for source_idents.each |source_ident| { let name = source_ident.node.name; let atom = (*self.atom_table).intern(name); let subclass = @SingleImport(atom, atom); self.build_import_directive(module_, module_path, subclass, view_path.span); } } view_path_glob(_, _) { self.build_import_directive(module_, module_path, @GlobImport, view_path.span); } } } } view_item_export(view_paths) { let module_ = self.get_module_from_parent(parent); for view_paths.each |view_path| { alt view_path.node { view_path_simple(ident, full_path, ident_id) { let last_ident = full_path.idents.last(); if last_ident != ident { self.session.span_err(view_item.span, ~"cannot export under \ a new name"); } if full_path.idents.len() != 1u { self.session.span_err( view_item.span, ~"cannot export an item \ that is not in this \ module"); } let atom = (*self.atom_table).intern(ident); module_.exported_names.insert(atom, ident_id); } view_path_glob(*) { self.session.span_err(view_item.span, ~"export globs are \ unsupported"); } view_path_list(path, path_list_idents, _) { if path.idents.len() == 1u && path_list_idents.len() == 0u { self.session.span_warn(view_item.span, ~"this syntax for \ exporting no \ variants is \ unsupported; export \ variants \ individually"); } else { if path.idents.len() != 0u { self.session.span_err(view_item.span, ~"cannot export an \ item that is not \ in this module"); } for path_list_idents.each |path_list_ident| { let atom = (*self.atom_table).intern (path_list_ident.node.name); let id = path_list_ident.node.id; module_.exported_names.insert(atom, id); } } } } } } view_item_use(name, _, node_id) { alt find_use_stmt_cnum(self.session.cstore, node_id) { some(crate_id) { let atom = (*self.atom_table).intern(name); let (child_name_bindings, new_parent) = self.add_child(atom, parent); let def_id = { crate: crate_id, node: 0 }; let parent_link = ModuleParentLink (self.get_module_from_parent(new_parent), atom); (*child_name_bindings).define_module(parent_link, some(def_id)); self.build_reduced_graph_for_external_crate ((*child_name_bindings).get_module()); } none { /* Ignore. */ } } } } } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(foreign_item: @foreign_item, parent: ReducedGraphParent, &&visitor: vt) { let name = (*self.atom_table).intern(foreign_item.ident); let (name_bindings, new_parent) = self.add_child(name, parent); alt foreign_item.node { foreign_item_fn(fn_decl, type_parameters) { let def = def_fn(local_def(foreign_item.id), fn_decl.purity); (*name_bindings).define_value(def); do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, foreign_item.id, 0u, NormalRibKind)) || { visit_foreign_item(foreign_item, new_parent, visitor); } } } } fn build_reduced_graph_for_block(block: blk, parent: ReducedGraphParent, &&visitor: vt) { let mut new_parent; if self.block_needs_anonymous_module(block) { let block_id = block.node.id; debug!{"(building reduced graph for block) creating a new \ anonymous module for block %d", block_id}; let parent_module = self.get_module_from_parent(parent); let new_module = @Module(BlockParentLink(parent_module, block_id), none); parent_module.anonymous_children.insert(block_id, new_module); new_parent = ModuleReducedGraphParent(new_module); } else { new_parent = parent; } visit_block(block, new_parent, visitor); } /** * Builds the reduced graph rooted at the 'use' directive for an external * crate. */ fn build_reduced_graph_for_external_crate(root: @Module) { let modules = new_def_hash(); // Create all the items reachable by paths. for each_path(self.session.cstore, get(root.def_id).crate) |path_entry| { debug!{"(building reduced graph for external crate) found path \ entry: %s (%?)", path_entry.path_string, path_entry.def_like}; let mut pieces = split_str(path_entry.path_string, ~"::"); let final_ident = pop(pieces); // Find the module we need, creating modules along the way if we // need to. let mut current_module = root; for pieces.each |ident| { // Create or reuse a graph node for the child. let atom = (*self.atom_table).intern(@copy ident); let (child_name_bindings, new_parent) = self.add_child(atom, ModuleReducedGraphParent(current_module)); // Define or reuse the module node. alt child_name_bindings.module_def { NoModuleDef { debug!{"(building reduced graph for external crate) \ autovivifying %s", ident}; let parent_link = self.get_parent_link(new_parent, atom); (*child_name_bindings).define_module(parent_link, none); } ModuleDef(_) { /* Fall through. */ } } current_module = (*child_name_bindings).get_module(); } // Add the new child item. let atom = (*self.atom_table).intern(@copy final_ident); let (child_name_bindings, new_parent) = self.add_child(atom, ModuleReducedGraphParent(current_module)); alt path_entry.def_like { dl_def(def) { alt def { def_mod(def_id) | def_foreign_mod(def_id) { alt copy child_name_bindings.module_def { NoModuleDef { debug!{"(building reduced graph for \ external crate) building module \ %s", final_ident}; let parent_link = self.get_parent_link(new_parent, atom); alt modules.find(def_id) { none { (*child_name_bindings). define_module(parent_link, some(def_id)); modules.insert(def_id, (*child_name_bindings). get_module()); } some(existing_module) { // Create an import resolution to // avoid creating cycles in the // module graph. let resolution = @ImportResolution(dummy_sp()); resolution. outstanding_references = 0; alt existing_module.parent_link { NoParentLink | BlockParentLink(*) { fail ~"can't happen"; } ModuleParentLink (parent_module, atom) { let name_bindings = parent_module. children.get (atom); resolution.module_target = some(Target (parent_module, name_bindings)); } } debug!{"(building reduced graph \ for external crate) \ ... creating import \ resolution"}; new_parent.import_resolutions. insert(atom, resolution); } } } ModuleDef(module_) { debug!{"(building reduced graph for \ external crate) already created \ module"}; module_.def_id = some(def_id); modules.insert(def_id, module_); } } } def_fn(def_id, _) | def_const(def_id) | def_variant(_, def_id) { debug!{"(building reduced graph for external \ crate) building value %s", final_ident}; (*child_name_bindings).define_value(def); } def_ty(def_id) { debug!{"(building reduced graph for external \ crate) building type %s", final_ident}; // If this is a trait, add all the method names // to the trait info. alt get_method_names_if_trait(self.session.cstore, def_id) { none { // Nothing to do. } some(method_names) { let interned_method_names = @atom_hashmap(); for method_names.each |method_name| { debug!{"(building reduced graph for \ external crate) ... adding \ trait method '%?'", method_name}; let atom = (*self.atom_table).intern (method_name); (*interned_method_names).insert(atom, ()); } self.trait_info.insert (def_id, interned_method_names); } } (*child_name_bindings).define_type(def); } def_class(def_id, has_constructor) { debug!{"(building reduced graph for external \ crate) building type %s (value? %d)", final_ident, if has_constructor { 1 } else { 0 }}; (*child_name_bindings).define_type(def); if has_constructor { (*child_name_bindings).define_value(def); } } def_self(*) | def_arg(*) | def_local(*) | def_prim_ty(*) | def_ty_param(*) | def_binding(*) | def_use(*) | def_upvar(*) | def_region(*) | def_typaram_binder(*) { fail fmt!{"didn't expect `%?`", def}; } } } dl_impl(_) { // Because of the infelicitous way the metadata is // written, we can't process this impl now. We'll get it // later. debug!{"(building reduced graph for external crate) \ ignoring impl %s", final_ident}; } dl_field { debug!{"(building reduced graph for external crate) \ ignoring field %s", final_ident}; } } } // Create nodes for all the impls. self.build_reduced_graph_for_impls_in_external_module_subtree(root); } fn build_reduced_graph_for_impls_in_external_module_subtree(module_: @Module) { self.build_reduced_graph_for_impls_in_external_module(module_); for module_.children.each |_name, child_node| { alt (*child_node).get_module_if_available() { none { // Nothing to do. } some(child_module) { self. build_reduced_graph_for_impls_in_external_module_subtree (child_module); } } } } fn build_reduced_graph_for_impls_in_external_module(module_: @Module) { // XXX: This is really unfortunate. decoder::each_path can produce // false positives, since, in the crate metadata, a trait named 'bar' // in module 'foo' defining a method named 'baz' will result in the // creation of a (bogus) path entry named 'foo::bar::baz', and we will // create a module node for "bar". We can identify these fake modules // by the fact that they have no def ID, which we do here in order to // skip them. debug!{"(building reduced graph for impls in external crate) looking \ for impls in `%s` (%?)", self.module_to_str(module_), copy module_.def_id}; alt module_.def_id { none { debug!{"(building reduced graph for impls in external \ module) no def ID for `%s`, skipping", self.module_to_str(module_)}; ret; } some(_) { // Continue. } } let impls_in_module = get_impls_for_mod(self.session.cstore, get(module_.def_id), none); // Intern def IDs to prevent duplicates. let def_ids = new_def_hash(); for (*impls_in_module).each |implementation| { if def_ids.contains_key(implementation.did) { again; } def_ids.insert(implementation.did, ()); debug!{"(building reduced graph for impls in external module) \ added impl `%s` (%?) to `%s`", *implementation.ident, implementation.did, self.module_to_str(module_)}; let name = (*self.atom_table).intern(implementation.ident); let (name_bindings, _) = self.add_child(name, ModuleReducedGraphParent(module_)); name_bindings.impl_defs += ~[implementation]; } } /// Creates and adds an import directive to the given module. fn build_import_directive(module_: @Module, module_path: @dvec, subclass: @ImportDirectiveSubclass, span: span) { let directive = @ImportDirective(module_path, subclass, span); module_.imports.push(directive); // Bump the reference count on the name. Or, if this is a glob, set // the appropriate flag. alt *subclass { SingleImport(target, _) { alt module_.import_resolutions.find(target) { some(resolution) { resolution.outstanding_references += 1u; } none { let resolution = @ImportResolution(span); resolution.outstanding_references = 1u; module_.import_resolutions.insert(target, resolution); } } } GlobImport { // Set the glob flag. This tells us that we don't know the // module's exports ahead of time. module_.glob_count += 1u; } } self.unresolved_imports += 1u; } // Import resolution // // This is a fixed-point algorithm. We resolve imports until our efforts // are stymied by an unresolved import; then we bail out of the current // module and continue. We terminate successfully once no more imports // remain or unsuccessfully when no forward progress in resolving imports // is made. /** * Resolves all imports for the crate. This method performs the fixed- * point iteration. */ fn resolve_imports() { let mut i = 0u; let mut prev_unresolved_imports = 0u; loop { debug!{"(resolving imports) iteration %u, %u imports left", i, self.unresolved_imports}; let module_root = (*self.graph_root).get_module(); self.resolve_imports_for_module_subtree(module_root); if self.unresolved_imports == 0u { debug!{"(resolving imports) success"}; break; } if self.unresolved_imports == prev_unresolved_imports { self.session.err(~"failed to resolve imports"); self.report_unresolved_imports(module_root); break; } i += 1u; prev_unresolved_imports = self.unresolved_imports; } } /** * Attempts to resolve imports for the given module and all of its * submodules. */ fn resolve_imports_for_module_subtree(module_: @Module) { debug!{"(resolving imports for module subtree) resolving %s", self.module_to_str(module_)}; self.resolve_imports_for_module(module_); for module_.children.each |_name, child_node| { alt (*child_node).get_module_if_available() { none { // Nothing to do. } some(child_module) { self.resolve_imports_for_module_subtree(child_module); } } } for module_.anonymous_children.each |_block_id, child_module| { self.resolve_imports_for_module_subtree(child_module); } } /// Attempts to resolve imports for the given module only. fn resolve_imports_for_module(module_: @Module) { if (*module_).all_imports_resolved() { debug!{"(resolving imports for module) all imports resolved for \ %s", self.module_to_str(module_)}; ret; } let import_count = module_.imports.len(); while module_.resolved_import_count < import_count { let import_index = module_.resolved_import_count; let import_directive = module_.imports.get_elt(import_index); alt self.resolve_import_for_module(module_, import_directive) { Failed { // We presumably emitted an error. Continue. self.session.span_err(import_directive.span, ~"failed to resolve import"); } Indeterminate { // Bail out. We'll come around next time. break; } Success(()) { // Good. Continue. } } module_.resolved_import_count += 1u; } } /** * Attempts to resolve the given import. The return value indicates * failure if we're certain the name does not exist, indeterminate if we * don't know whether the name exists at the moment due to other * currently-unresolved imports, or success if we know the name exists. * If successful, the resolved bindings are written into the module. */ fn resolve_import_for_module(module_: @Module, import_directive: @ImportDirective) -> ResolveResult<()> { let mut resolution_result; let module_path = import_directive.module_path; debug!{"(resolving import for module) resolving import `%s::...` in \ `%s`", *(*self.atom_table).atoms_to_str((*module_path).get()), self.module_to_str(module_)}; // One-level renaming imports of the form `import foo = bar;` are // handled specially. if (*module_path).len() == 0u { resolution_result = self.resolve_one_level_renaming_import(module_, import_directive); } else { // First, resolve the module path for the directive, if necessary. alt self.resolve_module_path_for_import(module_, module_path, NoXray, import_directive.span) { Failed { resolution_result = Failed; } Indeterminate { resolution_result = Indeterminate; } Success(containing_module) { // We found the module that the target is contained // within. Attempt to resolve the import within it. alt *import_directive.subclass { SingleImport(target, source) { resolution_result = self.resolve_single_import(module_, containing_module, target, source); } GlobImport { let span = import_directive.span; resolution_result = self.resolve_glob_import(module_, containing_module, span); } } } } } // Decrement the count of unresolved imports. alt resolution_result { Success(()) { assert self.unresolved_imports >= 1u; self.unresolved_imports -= 1u; } _ { // Nothing to do here; just return the error. } } // Decrement the count of unresolved globs if necessary. But only if // the resolution result is indeterminate -- otherwise we'll stop // processing imports here. (See the loop in // resolve_imports_for_module.) if resolution_result != Indeterminate { alt *import_directive.subclass { GlobImport { assert module_.glob_count >= 1u; module_.glob_count -= 1u; } SingleImport(*) { // Ignore. } } } ret resolution_result; } fn resolve_single_import(module_: @Module, containing_module: @Module, target: Atom, source: Atom) -> ResolveResult<()> { debug!{"(resolving single import) resolving `%s` = `%s::%s` from \ `%s`", *(*self.atom_table).atom_to_str(target), self.module_to_str(containing_module), *(*self.atom_table).atom_to_str(source), self.module_to_str(module_)}; if !self.name_is_exported(containing_module, source) { debug!{"(resolving single import) name `%s` is unexported", *(*self.atom_table).atom_to_str(source)}; ret Failed; } // We need to resolve all four namespaces for this to succeed. // // XXX: See if there's some way of handling namespaces in a more // generic way. We have four of them; it seems worth doing... let mut module_result = UnknownResult; let mut value_result = UnknownResult; let mut type_result = UnknownResult; let mut impl_result = UnknownImplResult; // Search for direct children of the containing module. alt containing_module.children.find(source) { none { // Continue. } some(child_name_bindings) { if (*child_name_bindings).defined_in_namespace(ModuleNS) { module_result = BoundResult(containing_module, child_name_bindings); } if (*child_name_bindings).defined_in_namespace(ValueNS) { value_result = BoundResult(containing_module, child_name_bindings); } if (*child_name_bindings).defined_in_namespace(TypeNS) { type_result = BoundResult(containing_module, child_name_bindings); } if (*child_name_bindings).defined_in_namespace(ImplNS) { let targets = @dvec(); (*targets).push(@Target(containing_module, child_name_bindings)); impl_result = BoundImplResult(targets); } } } // Unless we managed to find a result in all four namespaces // (exceedingly unlikely), search imports as well. alt (module_result, value_result, type_result, impl_result) { (BoundResult(*), BoundResult(*), BoundResult(*), BoundImplResult(*)) { // Continue. } _ { // If there is an unresolved glob at this point in the // containing module, bail out. We don't know enough to be // able to resolve this import. if containing_module.glob_count > 0u { debug!{"(resolving single import) unresolved glob; \ bailing out"}; ret Indeterminate; } // Now search the exported imports within the containing // module. alt containing_module.import_resolutions.find(source) { none { // The containing module definitely doesn't have an // exported import with the name in question. We can // therefore accurately report that the names are // unbound. if module_result == UnknownResult { module_result = UnboundResult; } if value_result == UnknownResult { value_result = UnboundResult; } if type_result == UnknownResult { type_result = UnboundResult; } if impl_result == UnknownImplResult { impl_result = UnboundImplResult; } } some(import_resolution) if import_resolution.outstanding_references == 0u { fn get_binding(import_resolution: @ImportResolution, namespace: Namespace) -> NamespaceResult { alt (*import_resolution). target_for_namespace(namespace) { none { ret UnboundResult; } some(target) { import_resolution.used = true; ret BoundResult(target.target_module, target.bindings); } } } fn get_import_binding(import_resolution: @ImportResolution) -> ImplNamespaceResult { if (*import_resolution.impl_target).len() == 0u { ret UnboundImplResult; } ret BoundImplResult(import_resolution. impl_target); } // The name is an import which has been fully // resolved. We can, therefore, just follow it. if module_result == UnknownResult { module_result = get_binding(import_resolution, ModuleNS); } if value_result == UnknownResult { value_result = get_binding(import_resolution, ValueNS); } if type_result == UnknownResult { type_result = get_binding(import_resolution, TypeNS); } if impl_result == UnknownImplResult { impl_result = get_import_binding(import_resolution); } } some(_) { // The import is unresolved. Bail out. debug!{"(resolving single import) unresolved import; \ bailing out"}; ret Indeterminate; } } } } // We've successfully resolved the import. Write the results in. assert module_.import_resolutions.contains_key(target); let import_resolution = module_.import_resolutions.get(target); alt module_result { BoundResult(target_module, name_bindings) { debug!{"(resolving single import) found module binding"}; import_resolution.module_target = some(Target(target_module, name_bindings)); } UnboundResult { debug!{"(resolving single import) didn't find module \ binding"}; } UnknownResult { fail ~"module result should be known at this point"; } } alt value_result { BoundResult(target_module, name_bindings) { import_resolution.value_target = some(Target(target_module, name_bindings)); } UnboundResult { /* Continue. */ } UnknownResult { fail ~"value result should be known at this point"; } } alt type_result { BoundResult(target_module, name_bindings) { import_resolution.type_target = some(Target(target_module, name_bindings)); } UnboundResult { /* Continue. */ } UnknownResult { fail ~"type result should be known at this point"; } } alt impl_result { BoundImplResult(targets) { for (*targets).each |target| { (*import_resolution.impl_target).push(target); } } UnboundImplResult { /* Continue. */ } UnknownImplResult { fail ~"impl result should be known at this point"; } } let i = import_resolution; alt (i.module_target, i.value_target, i.type_target, i.impl_target) { /* If this name wasn't found in any of the four namespaces, it's definitely unresolved */ (none, none, none, v) if v.len() == 0 { ret Failed; } _ {} } assert import_resolution.outstanding_references >= 1u; import_resolution.outstanding_references -= 1u; debug!{"(resolving single import) successfully resolved import"}; ret Success(()); } /** * Resolves a glob import. Note that this function cannot fail; it either * succeeds or bails out (as importing * from an empty module or a module * that exports nothing is valid). */ fn resolve_glob_import(module_: @Module, containing_module: @Module, span: span) -> ResolveResult<()> { // This function works in a highly imperative manner; it eagerly adds // everything it can to the list of import resolutions of the module // node. // We must bail out if the node has unresolved imports of any kind // (including globs). if !(*containing_module).all_imports_resolved() { debug!{"(resolving glob import) target module has unresolved \ imports; bailing out"}; ret Indeterminate; } assert containing_module.glob_count == 0u; // Add all resolved imports from the containing module. for containing_module.import_resolutions.each |atom, target_import_resolution| { if !self.name_is_exported(containing_module, atom) { debug!{"(resolving glob import) name `%s` is unexported", *(*self.atom_table).atom_to_str(atom)}; again; } debug!{"(resolving glob import) writing module resolution \ %? into `%s`", is_none(target_import_resolution.module_target), self.module_to_str(module_)}; // Here we merge two import resolutions. alt module_.import_resolutions.find(atom) { none { // Simple: just copy the old import resolution. let new_import_resolution = @ImportResolution(target_import_resolution.span); new_import_resolution.module_target = copy target_import_resolution.module_target; new_import_resolution.value_target = copy target_import_resolution.value_target; new_import_resolution.type_target = copy target_import_resolution.type_target; new_import_resolution.impl_target = copy target_import_resolution.impl_target; module_.import_resolutions.insert (atom, new_import_resolution); } some(dest_import_resolution) { // Merge the two import resolutions at a finer-grained // level. alt copy target_import_resolution.module_target { none { // Continue. } some(module_target) { dest_import_resolution.module_target = some(copy module_target); } } alt copy target_import_resolution.value_target { none { // Continue. } some(value_target) { dest_import_resolution.value_target = some(copy value_target); } } alt copy target_import_resolution.type_target { none { // Continue. } some(type_target) { dest_import_resolution.type_target = some(copy type_target); } } if (*target_import_resolution.impl_target).len() > 0u && !ptr_eq(target_import_resolution.impl_target, dest_import_resolution.impl_target) { for (*target_import_resolution.impl_target).each |impl_target| { (*dest_import_resolution.impl_target). push(impl_target); } } } } } // Add all children from the containing module. for containing_module.children.each |atom, name_bindings| { if !self.name_is_exported(containing_module, atom) { debug!{"(resolving glob import) name `%s` is unexported", *(*self.atom_table).atom_to_str(atom)}; again; } let mut dest_import_resolution; alt module_.import_resolutions.find(atom) { none { // Create a new import resolution from this child. dest_import_resolution = @ImportResolution(span); module_.import_resolutions.insert (atom, dest_import_resolution); } some(existing_import_resolution) { dest_import_resolution = existing_import_resolution; } } debug!{"(resolving glob import) writing resolution `%s` in `%s` \ to `%s`", *(*self.atom_table).atom_to_str(atom), self.module_to_str(containing_module), self.module_to_str(module_)}; // Merge the child item into the import resolution. if (*name_bindings).defined_in_namespace(ModuleNS) { debug!{"(resolving glob import) ... for module target"}; dest_import_resolution.module_target = some(Target(containing_module, name_bindings)); } if (*name_bindings).defined_in_namespace(ValueNS) { debug!{"(resolving glob import) ... for value target"}; dest_import_resolution.value_target = some(Target(containing_module, name_bindings)); } if (*name_bindings).defined_in_namespace(TypeNS) { debug!{"(resolving glob import) ... for type target"}; dest_import_resolution.type_target = some(Target(containing_module, name_bindings)); } if (*name_bindings).defined_in_namespace(ImplNS) { debug!{"(resolving glob import) ... for impl target"}; (*dest_import_resolution.impl_target).push (@Target(containing_module, name_bindings)); } } debug!{"(resolving glob import) successfully resolved import"}; ret Success(()); } fn resolve_module_path_from_root(module_: @Module, module_path: @dvec, index: uint, xray: XrayFlag, span: span) -> ResolveResult<@Module> { let mut search_module = module_; let mut index = index; let module_path_len = (*module_path).len(); // Resolve the module part of the path. This does not involve looking // upward though scope chains; we simply resolve names directly in // modules as we go. while index < module_path_len { let name = (*module_path).get_elt(index); alt self.resolve_name_in_module(search_module, name, ModuleNS, xray) { Failed { self.session.span_err(span, ~"unresolved name"); ret Failed; } Indeterminate { debug!{"(resolving module path for import) module \ resolution is indeterminate: %s", *(*self.atom_table).atom_to_str(name)}; ret Indeterminate; } Success(target) { alt target.bindings.module_def { NoModuleDef { // Not a module. self.session.span_err(span, fmt!{"not a module: %s", *(*self.atom_table). atom_to_str(name)}); ret Failed; } ModuleDef(module_) { search_module = module_; } } } } index += 1u; } ret Success(search_module); } /** * Attempts to resolve the module part of an import directive rooted at * the given module. */ fn resolve_module_path_for_import(module_: @Module, module_path: @dvec, xray: XrayFlag, span: span) -> ResolveResult<@Module> { let module_path_len = (*module_path).len(); assert module_path_len > 0u; debug!{"(resolving module path for import) processing `%s` rooted at \ `%s`", *(*self.atom_table).atoms_to_str((*module_path).get()), self.module_to_str(module_)}; // The first element of the module path must be in the current scope // chain. let first_element = (*module_path).get_elt(0u); let mut search_module; alt self.resolve_module_in_lexical_scope(module_, first_element) { Failed { self.session.span_err(span, ~"unresolved name"); ret Failed; } Indeterminate { debug!{"(resolving module path for import) indeterminate; \ bailing"}; ret Indeterminate; } Success(resulting_module) { search_module = resulting_module; } } ret self.resolve_module_path_from_root(search_module, module_path, 1u, xray, span); } fn resolve_item_in_lexical_scope(module_: @Module, name: Atom, namespace: Namespace) -> ResolveResult { debug!{"(resolving item in lexical scope) resolving `%s` in \ namespace %? in `%s`", *(*self.atom_table).atom_to_str(name), namespace, self.module_to_str(module_)}; // The current module node is handled specially. First, check for // its immediate children. alt module_.children.find(name) { some(name_bindings) if (*name_bindings).defined_in_namespace(namespace) { ret Success(Target(module_, name_bindings)); } some(_) | none { /* Not found; continue. */ } } // Now check for its import directives. We don't have to have resolved // all its imports in the usual way; this is because chains of // adjacent import statements are processed as though they mutated the // current scope. alt module_.import_resolutions.find(name) { none { // Not found; continue. } some(import_resolution) { alt (*import_resolution).target_for_namespace(namespace) { none { // Not found; continue. debug!{"(resolving item in lexical scope) found \ import resolution, but not in namespace %?", namespace}; } some(target) { import_resolution.used = true; ret Success(copy target); } } } } // Finally, proceed up the scope chain looking for parent modules. let mut search_module = module_; loop { // Go to the next parent. alt search_module.parent_link { NoParentLink { // No more parents. This module was unresolved. debug!{"(resolving item in lexical scope) unresolved \ module"}; ret Failed; } ModuleParentLink(parent_module_node, _) | BlockParentLink(parent_module_node, _) { search_module = parent_module_node; } } // Resolve the name in the parent module. alt self.resolve_name_in_module(search_module, name, namespace, Xray) { Failed { // Continue up the search chain. } Indeterminate { // We couldn't see through the higher scope because of an // unresolved import higher up. Bail. debug!{"(resolving item in lexical scope) indeterminate \ higher scope; bailing"}; ret Indeterminate; } Success(target) { // We found the module. ret Success(copy target); } } } } fn resolve_module_in_lexical_scope(module_: @Module, name: Atom) -> ResolveResult<@Module> { alt self.resolve_item_in_lexical_scope(module_, name, ModuleNS) { Success(target) { alt target.bindings.module_def { NoModuleDef { error!{"!!! (resolving module in lexical scope) module wasn't actually a module!"}; ret Failed; } ModuleDef(module_) { ret Success(module_); } } } Indeterminate { debug!{"(resolving module in lexical scope) indeterminate; \ bailing"}; ret Indeterminate; } Failed { debug!{"(resolving module in lexical scope) failed to \ resolve"}; ret Failed; } } } fn name_is_exported(module_: @Module, name: Atom) -> bool { ret module_.exported_names.size() == 0u || module_.exported_names.contains_key(name); } /** * Attempts to resolve the supplied name in the given module for the * given namespace. If successful, returns the target corresponding to * the name. */ fn resolve_name_in_module(module_: @Module, name: Atom, namespace: Namespace, xray: XrayFlag) -> ResolveResult { debug!{"(resolving name in module) resolving `%s` in `%s`", *(*self.atom_table).atom_to_str(name), self.module_to_str(module_)}; if xray == NoXray && !self.name_is_exported(module_, name) { debug!{"(resolving name in module) name `%s` is unexported", *(*self.atom_table).atom_to_str(name)}; ret Failed; } // First, check the direct children of the module. alt module_.children.find(name) { some(name_bindings) if (*name_bindings).defined_in_namespace(namespace) { debug!{"(resolving name in module) found node as child"}; ret Success(Target(module_, name_bindings)); } some(_) | none { // Continue. } } // Next, check the module's imports. If the module has a glob, then // we bail out; we don't know its imports yet. if module_.glob_count > 0u { debug!{"(resolving name in module) module has glob; bailing out"}; ret Indeterminate; } // Otherwise, we check the list of resolved imports. alt module_.import_resolutions.find(name) { some(import_resolution) { if import_resolution.outstanding_references != 0u { debug!{"(resolving name in module) import unresolved; \ bailing out"}; ret Indeterminate; } alt (*import_resolution).target_for_namespace(namespace) { none { debug!{"(resolving name in module) name found, but \ not in namespace %?", namespace}; } some(target) { debug!{"(resolving name in module) resolved to \ import"}; import_resolution.used = true; ret Success(copy target); } } } none { // Continue. } } // We're out of luck. debug!{"(resolving name in module) failed to resolve %s", *(*self.atom_table).atom_to_str(name)}; ret Failed; } /** * Resolves a one-level renaming import of the kind `import foo = bar;` * This needs special handling, as, unlike all of the other imports, it * needs to look in the scope chain for modules and non-modules alike. */ fn resolve_one_level_renaming_import(module_: @Module, import_directive: @ImportDirective) -> ResolveResult<()> { let mut target_name; let mut source_name; alt *import_directive.subclass { SingleImport(target, source) { target_name = target; source_name = source; } GlobImport { fail ~"found `import *`, which is invalid"; } } debug!{"(resolving one-level naming result) resolving import `%s` = \ `%s` in `%s`", *(*self.atom_table).atom_to_str(target_name), *(*self.atom_table).atom_to_str(source_name), self.module_to_str(module_)}; // Find the matching items in the lexical scope chain for every // namespace. If any of them come back indeterminate, this entire // import is indeterminate. let mut module_result; debug!{"(resolving one-level naming result) searching for module"}; alt self.resolve_item_in_lexical_scope(module_, source_name, ModuleNS) { Failed { debug!{"(resolving one-level renaming import) didn't find \ module result"}; module_result = none; } Indeterminate { debug!{"(resolving one-level renaming import) module result \ is indeterminate; bailing"}; ret Indeterminate; } Success(name_bindings) { debug!{"(resolving one-level renaming import) module result \ found"}; module_result = some(copy name_bindings); } } let mut value_result; debug!{"(resolving one-level naming result) searching for value"}; alt self.resolve_item_in_lexical_scope(module_, source_name, ValueNS) { Failed { debug!{"(resolving one-level renaming import) didn't find \ value result"}; value_result = none; } Indeterminate { debug!{"(resolving one-level renaming import) value result \ is indeterminate; bailing"}; ret Indeterminate; } Success(name_bindings) { debug!{"(resolving one-level renaming import) value result \ found"}; value_result = some(copy name_bindings); } } let mut type_result; debug!{"(resolving one-level naming result) searching for type"}; alt self.resolve_item_in_lexical_scope(module_, source_name, TypeNS) { Failed { debug!{"(resolving one-level renaming import) didn't find \ type result"}; type_result = none; } Indeterminate { debug!{"(resolving one-level renaming import) type result is \ indeterminate; bailing"}; ret Indeterminate; } Success(name_bindings) { debug!{"(resolving one-level renaming import) type result \ found"}; type_result = some(copy name_bindings); } } // // NB: This one results in effects that may be somewhat surprising. It // means that this: // // mod A { // impl foo for ... { ... } // mod B { // impl foo for ... { ... } // import bar = foo; // ... // } // } // // results in only A::B::foo being aliased to A::B::bar, not A::foo // *and* A::B::foo being aliased to A::B::bar. // let mut impl_result; debug!{"(resolving one-level naming result) searching for impl"}; alt self.resolve_item_in_lexical_scope(module_, source_name, ImplNS) { Failed { debug!{"(resolving one-level renaming import) didn't find \ impl result"}; impl_result = none; } Indeterminate { debug!{"(resolving one-level renaming import) impl result is \ indeterminate; bailing"}; ret Indeterminate; } Success(name_bindings) { debug!{"(resolving one-level renaming import) impl result \ found"}; impl_result = some(@copy name_bindings); } } // If nothing at all was found, that's an error. if is_none(module_result) && is_none(value_result) && is_none(type_result) && is_none(impl_result) { self.session.span_err(import_directive.span, ~"unresolved import"); ret Failed; } // Otherwise, proceed and write in the bindings. alt module_.import_resolutions.find(target_name) { none { fail ~"(resolving one-level renaming import) reduced graph \ construction or glob importing should have created the \ import resolution name by now"; } some(import_resolution) { debug!{"(resolving one-level renaming import) writing module \ result %? for `%s` into `%s`", is_none(module_result), *(*self.atom_table).atom_to_str(target_name), self.module_to_str(module_)}; import_resolution.module_target = module_result; import_resolution.value_target = value_result; import_resolution.type_target = type_result; alt impl_result { none { // Nothing to do. } some(impl_result) { (*import_resolution.impl_target).push(impl_result); } } assert import_resolution.outstanding_references >= 1u; import_resolution.outstanding_references -= 1u; } } debug!{"(resolving one-level renaming import) successfully resolved"}; ret Success(()); } fn report_unresolved_imports(module_: @Module) { let index = module_.resolved_import_count; let import_count = module_.imports.len(); if index != import_count { self.session.span_err(module_.imports.get_elt(index).span, ~"unresolved import"); } // Descend into children and anonymous children. for module_.children.each |_name, child_node| { alt (*child_node).get_module_if_available() { none { // Continue. } some(child_module) { self.report_unresolved_imports(child_module); } } } for module_.anonymous_children.each |_name, module_| { self.report_unresolved_imports(module_); } } // Export recording // // This pass simply determines what all "export" keywords refer to and // writes the results into the export map. // // XXX: This pass will be removed once exports change to per-item. Then // this operation can simply be performed as part of item (or import) // processing. fn record_exports() { let root_module = (*self.graph_root).get_module(); self.record_exports_for_module_subtree(root_module); } fn record_exports_for_module_subtree(module_: @Module) { // If this isn't a local crate, then bail out. We don't need to record // exports for local crates. alt module_.def_id { some(def_id) if def_id.crate == local_crate { // OK. Continue. } none { // Record exports for the root module. } some(_) { // Bail out. debug!{"(recording exports for module subtree) not recording \ exports for `%s`", self.module_to_str(module_)}; ret; } } self.record_exports_for_module(module_); for module_.children.each |_atom, child_name_bindings| { alt (*child_name_bindings).get_module_if_available() { none { // Nothing to do. } some(child_module) { self.record_exports_for_module_subtree(child_module); } } } for module_.anonymous_children.each |_node_id, child_module| { self.record_exports_for_module_subtree(child_module); } } fn record_exports_for_module(module_: @Module) { for module_.exported_names.each |name, node_id| { let mut exports = ~[]; for self.namespaces.each |namespace| { // Ignore impl namespaces; they cause the original resolve // to fail. if namespace == ImplNS { again; } alt self.resolve_definition_of_name_in_module(module_, name, namespace, Xray) { NoNameDefinition { // Nothing to do. } ChildNameDefinition(target_def) { vec::push(exports, { reexp: false, id: def_id_of_def(target_def) }); } ImportNameDefinition(target_def) { vec::push(exports, { reexp: true, id: def_id_of_def(target_def) }); } } } self.export_map.insert(node_id, exports); } } // Implementation scope creation // // This is a fairly simple pass that simply gathers up all the typeclass // implementations in scope and threads a series of singly-linked series // of impls through the tree. fn build_impl_scopes() { let root_module = (*self.graph_root).get_module(); self.build_impl_scopes_for_module_subtree(root_module); } fn build_impl_scopes_for_module_subtree(module_: @Module) { // If this isn't a local crate, then bail out. We don't need to // resolve implementations for external crates. alt module_.def_id { some(def_id) if def_id.crate == local_crate { // OK. Continue. } none { // Resolve implementation scopes for the root module. } some(_) { // Bail out. debug!{"(building impl scopes for module subtree) not \ resolving implementations for `%s`", self.module_to_str(module_)}; ret; } } self.build_impl_scope_for_module(module_); for module_.children.each |_atom, child_name_bindings| { alt (*child_name_bindings).get_module_if_available() { none { // Nothing to do. } some(child_module) { self.build_impl_scopes_for_module_subtree(child_module); } } } for module_.anonymous_children.each |_node_id, child_module| { self.build_impl_scopes_for_module_subtree(child_module); } } fn build_impl_scope_for_module(module_: @Module) { let mut impl_scope = ~[]; debug!{"(building impl scope for module) processing module %s (%?)", self.module_to_str(module_), copy module_.def_id}; // Gather up all direct children implementations in the module. for module_.children.each |_impl_name, child_name_bindings| { if child_name_bindings.impl_defs.len() >= 1u { impl_scope += child_name_bindings.impl_defs; } } debug!{"(building impl scope for module) found %u impl(s) as direct \ children", impl_scope.len()}; // Gather up all imports. for module_.import_resolutions.each |_impl_name, import_resolution| { for (*import_resolution.impl_target).each |impl_target| { debug!{"(building impl scope for module) found impl def"}; impl_scope += impl_target.bindings.impl_defs; } } debug!{"(building impl scope for module) found %u impl(s) in total", impl_scope.len()}; // Determine the parent's implementation scope. let mut parent_impl_scopes; alt module_.parent_link { NoParentLink { parent_impl_scopes = @nil; } ModuleParentLink(parent_module_node, _) | BlockParentLink(parent_module_node, _) { parent_impl_scopes = parent_module_node.impl_scopes; } } // Create the new implementation scope, if it was nonempty, and chain // it up to the parent. if impl_scope.len() >= 1u { module_.impl_scopes = @cons(@impl_scope, parent_impl_scopes); } else { module_.impl_scopes = parent_impl_scopes; } } // AST resolution // // We maintain a list of value ribs and type ribs. // // Simultaneously, we keep track of the current position in the module // graph in the `current_module` pointer. When we go to resolve a name in // the value or type namespaces, we first look through all the ribs and // then query the module graph. When we resolve a name in the module // namespace, we can skip all the ribs (since nested modules are not // allowed within blocks in Rust) and jump straight to the current module // graph node. // // Named implementations are handled separately. When we find a method // call, we consult the module node to find all of the implementations in // scope. This information is lazily cached in the module node. We then // generate a fake "implementation scope" containing all the // implementations thus found, for compatibility with old resolve pass. fn with_scope(name: option, f: fn()) { let orig_module = self.current_module; // Move down in the graph. alt name { none { // Nothing to do. } some(name) { alt orig_module.children.find(name) { none { debug!{"!!! (with scope) didn't find `%s` in `%s`", *(*self.atom_table).atom_to_str(name), self.module_to_str(orig_module)}; } some(name_bindings) { alt (*name_bindings).get_module_if_available() { none { debug!{"!!! (with scope) didn't find module \ for `%s` in `%s`", *(*self.atom_table).atom_to_str(name), self.module_to_str(orig_module)}; } some(module_) { self.current_module = module_; } } } } } } f(); self.current_module = orig_module; } // Wraps the given definition in the appropriate number of `def_upvar` // wrappers. fn upvarify(ribs: @dvec<@Rib>, rib_index: uint, def_like: def_like, span: span, allow_capturing_self: AllowCapturingSelfFlag) -> option { let mut def; let mut is_ty_param; alt def_like { dl_def(d @ def_local(*)) | dl_def(d @ def_upvar(*)) | dl_def(d @ def_arg(*)) | dl_def(d @ def_binding(*)) { def = d; is_ty_param = false; } dl_def(d @ def_ty_param(*)) { def = d; is_ty_param = true; } dl_def(d @ def_self(*)) if allow_capturing_self == DontAllowCapturingSelf { def = d; is_ty_param = false; } _ { ret some(def_like); } } let mut rib_index = rib_index + 1u; while rib_index < (*ribs).len() { let rib = (*ribs).get_elt(rib_index); alt rib.kind { NormalRibKind { // Nothing to do. Continue. } FunctionRibKind(function_id) { if !is_ty_param { def = def_upvar(def_id_of_def(def).node, @def, function_id); } } MethodRibKind(item_id, method_id) { // If the def is a ty param, and came from the parent // item, it's ok alt def { def_ty_param(did, _) if self.def_map.find(copy(did.node)) == some(def_typaram_binder(item_id)) { // ok } _ { if !is_ty_param { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.session.span_err( span, ~"attempted dynamic environment-capture"); } else { // This was an attempt to use a type parameter outside // its scope. self.session.span_err(span, ~"attempt to use a type \ argument out of scope"); } ret none; } } } OpaqueFunctionRibKind { if !is_ty_param { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.session.span_err( span, ~"attempted dynamic environment-capture"); } else { // This was an attempt to use a type parameter outside // its scope. self.session.span_err(span, ~"attempt to use a type \ argument out of scope"); } ret none; } } rib_index += 1u; } ret some(dl_def(def)); } fn search_ribs(ribs: @dvec<@Rib>, name: Atom, span: span, allow_capturing_self: AllowCapturingSelfFlag) -> option { // XXX: This should not use a while loop. // XXX: Try caching? let mut i = (*ribs).len(); while i != 0u { i -= 1u; let rib = (*ribs).get_elt(i); alt rib.bindings.find(name) { some(def_like) { ret self.upvarify(ribs, i, def_like, span, allow_capturing_self); } none { // Continue. } } } ret none; } // XXX: This shouldn't be unsafe! fn resolve_crate() unsafe { debug!{"(resolving crate) starting"}; // To avoid a failure in metadata encoding later, we have to add the // crate-level implementation scopes self.impl_map.insert(0, (*self.graph_root).get_module().impl_scopes); // XXX: This is awful! let this = ptr::addr_of(self); visit_crate(*self.crate, (), mk_vt(@{ visit_item: |item, _context, visitor| (*this).resolve_item(item, visitor), visit_arm: |arm, _context, visitor| (*this).resolve_arm(arm, visitor), visit_block: |block, _context, visitor| (*this).resolve_block(block, visitor), visit_expr: |expr, _context, visitor| (*this).resolve_expr(expr, visitor), visit_local: |local, _context, visitor| (*this).resolve_local(local, visitor), visit_ty: |ty, _context, visitor| (*this).resolve_type(ty, visitor) with *default_visitor() })); } fn resolve_item(item: @item, visitor: ResolveVisitor) { debug!{"(resolving item) resolving %s", *item.ident}; // Items with the !resolve_unexported attribute are X-ray contexts. // This is used to allow the test runner to run unexported tests. let orig_xray_flag = self.xray_context; if contains_name(attr_metas(item.attrs), ~"!resolve_unexported") { self.xray_context = Xray; } alt item.node { item_enum(_, type_parameters) | item_ty(_, type_parameters) { do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, item.id, 0u, NormalRibKind)) || { visit_item(item, (), visitor); } } item_impl(type_parameters, implemented_traits, self_type, methods) { self.resolve_implementation(item.id, item.span, type_parameters, implemented_traits, self_type, methods, visitor); } item_trait(type_parameters, methods) { // Create a new rib for the self type. let self_type_rib = @Rib(NormalRibKind); (*self.type_ribs).push(self_type_rib); self_type_rib.bindings.insert(self.self_atom, dl_def(def_self(item.id))); // Create a new rib for the trait-wide type parameters. do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, item.id, 0u, NormalRibKind)) { self.resolve_type_parameters(type_parameters, visitor); for methods.each |method| { // Create a new rib for the method-specific type // parameters. // // XXX: Do we need a node ID here? alt method { required(ty_m) { do self.with_type_parameter_rib (HasTypeParameters(&ty_m.tps, item.id, type_parameters.len(), MethodRibKind(item.id, Required))) { // Resolve the method-specific type // parameters. self.resolve_type_parameters(ty_m.tps, visitor); for ty_m.decl.inputs.each |argument| { self.resolve_type(argument.ty, visitor); } self.resolve_type(ty_m.decl.output, visitor); } } provided(m) { self.resolve_method(MethodRibKind(item.id, Provided(m.id)), m, type_parameters.len(), visitor) } } } } (*self.type_ribs).pop(); } item_class(ty_params, traits, class_members, optional_constructor, optional_destructor) { self.resolve_class(item.id, @copy ty_params, traits, class_members, optional_constructor, optional_destructor, visitor); } item_mod(module_) { let atom = (*self.atom_table).intern(item.ident); do self.with_scope(some(atom)) { self.resolve_module(module_, item.span, item.ident, item.id, visitor); } } item_foreign_mod(foreign_module) { let atom = (*self.atom_table).intern(item.ident); do self.with_scope(some(atom)) { for foreign_module.items.each |foreign_item| { alt foreign_item.node { foreign_item_fn(_, type_parameters) { do self.with_type_parameter_rib (HasTypeParameters(&type_parameters, foreign_item.id, 0u, OpaqueFunctionRibKind)) || { visit_foreign_item(foreign_item, (), visitor); } } } } } } item_fn(fn_decl, ty_params, block) { // If this is the main function, we must record it in the // session. // // For speed, we put the string comparison last in this chain // of conditionals. if !self.session.building_library && is_none(self.session.main_fn) && str::eq(*item.ident, ~"main") { self.session.main_fn = some((item.id, item.span)); } self.resolve_function(OpaqueFunctionRibKind, some(@fn_decl), HasTypeParameters (&ty_params, item.id, 0u, OpaqueFunctionRibKind), block, NoSelfBinding, NoCaptureClause, visitor); } item_const(*) { visit_item(item, (), visitor); } item_mac(*) { fail ~"item macros unimplemented" } } self.xray_context = orig_xray_flag; } fn with_type_parameter_rib(type_parameters: TypeParameters, f: fn()) { alt type_parameters { HasTypeParameters(type_parameters, node_id, initial_index, rib_kind) { let function_type_rib = @Rib(rib_kind); (*self.type_ribs).push(function_type_rib); for (*type_parameters).eachi |index, type_parameter| { let name = (*self.atom_table).intern(type_parameter.ident); debug!{"with_type_parameter_rib: %d %d", node_id, type_parameter.id}; let def_like = dl_def(def_ty_param (local_def(type_parameter.id), index + initial_index)); // Associate this type parameter with // the item that bound it self.record_def(type_parameter.id, def_typaram_binder(node_id)); (*function_type_rib).bindings.insert(name, def_like); } } NoTypeParameters { // Nothing to do. } } f(); alt type_parameters { HasTypeParameters(type_parameters, _, _, _) { (*self.type_ribs).pop(); } NoTypeParameters { // Nothing to do. } } } fn resolve_function(rib_kind: RibKind, optional_declaration: option<@fn_decl>, type_parameters: TypeParameters, block: blk, self_binding: SelfBinding, capture_clause: CaptureClause, visitor: ResolveVisitor) { // Check each element of the capture clause. alt capture_clause { NoCaptureClause { // Nothing to do. } HasCaptureClause(capture_clause) { // Resolve each captured item. for (*capture_clause).each |capture_item| { alt self.resolve_identifier(capture_item.name, ValueNS, true, capture_item.span) { none { self.session.span_err(capture_item.span, ~"unresolved name in \ capture clause"); } some(def) { self.record_def(capture_item.id, def); } } } } } // Create a value rib for the function. let function_value_rib = @Rib(rib_kind); (*self.value_ribs).push(function_value_rib); // If this function has type parameters, add them now. do self.with_type_parameter_rib(type_parameters) { // Resolve the type parameters. alt type_parameters { NoTypeParameters { // Continue. } HasTypeParameters(type_parameters, _, _, _) { self.resolve_type_parameters(*type_parameters, visitor); } } // Add self to the rib, if necessary. alt self_binding { NoSelfBinding { // Nothing to do. } HasSelfBinding(self_node_id) { let def_like = dl_def(def_self(self_node_id)); (*function_value_rib).bindings.insert(self.self_atom, def_like); } } // Add each argument to the rib. alt optional_declaration { none { // Nothing to do. } some(declaration) { for declaration.inputs.each |argument| { let name = (*self.atom_table).intern(argument.ident); let def_like = dl_def(def_arg(argument.id, argument.mode)); (*function_value_rib).bindings.insert(name, def_like); self.resolve_type(argument.ty, visitor); debug!{"(resolving function) recorded argument `%s`", *(*self.atom_table).atom_to_str(name)}; } self.resolve_type(declaration.output, visitor); } } // Resolve the function body. self.resolve_block(block, visitor); debug!{"(resolving function) leaving function"}; } (*self.value_ribs).pop(); } fn resolve_type_parameters(type_parameters: ~[ty_param], visitor: ResolveVisitor) { for type_parameters.each |type_parameter| { for (*type_parameter.bounds).each |bound| { alt bound { bound_copy | bound_send | bound_const | bound_owned { // Nothing to do. } bound_trait(trait_type) { self.resolve_type(trait_type, visitor); } } } } } fn resolve_class(id: node_id, type_parameters: @~[ty_param], traits: ~[@trait_ref], class_members: ~[@class_member], optional_constructor: option, optional_destructor: option, visitor: ResolveVisitor) { // Add a type into the def map. This is needed to prevent an ICE in // ty::impl_traits. // If applicable, create a rib for the type parameters. let outer_type_parameter_count = (*type_parameters).len(); let borrowed_type_parameters: &~[ty_param] = &*type_parameters; do self.with_type_parameter_rib(HasTypeParameters (borrowed_type_parameters, id, 0u, NormalRibKind)) { // Resolve the type parameters. self.resolve_type_parameters(*type_parameters, visitor); // Resolve implemented traits. for traits.each |trt| { alt self.resolve_path(trt.path, TypeNS, true, visitor) { none { self.session.span_err(trt.path.span, ~"attempt to implement a \ nonexistent trait"); } some(def) { // Write a mapping from the trait ID to the // definition of the trait into the definition // map. debug!{"(resolving class) found trait def: %?", def}; self.record_def(trt.ref_id, def); // XXX: This is wrong but is needed for tests to // pass. self.record_def(id, def); } } } // Resolve methods. for class_members.each |class_member| { alt class_member.node { class_method(method) { self.resolve_method(MethodRibKind(id, Provided(method.id)), method, outer_type_parameter_count, visitor); } instance_var(_, field_type, _, _, _) { self.resolve_type(field_type, visitor); } } } // Resolve the constructor, if applicable. alt optional_constructor { none => { // Nothing to do. } some(constructor) => { self.resolve_function(NormalRibKind, some(@constructor.node.dec), NoTypeParameters, constructor.node.body, HasSelfBinding(constructor.node. self_id), NoCaptureClause, visitor); } } // Resolve the destructor, if applicable. alt optional_destructor { none { // Nothing to do. } some(destructor) { self.resolve_function(NormalRibKind, none, NoTypeParameters, destructor.node.body, HasSelfBinding (destructor.node.self_id), NoCaptureClause, visitor); } } } } // Does this really need to take a RibKind or is it always going // to be NormalRibKind? fn resolve_method(rib_kind: RibKind, method: @method, outer_type_parameter_count: uint, visitor: ResolveVisitor) { let borrowed_method_type_parameters = &method.tps; let type_parameters = HasTypeParameters(borrowed_method_type_parameters, method.id, outer_type_parameter_count, rib_kind); self.resolve_function(rib_kind, some(@method.decl), type_parameters, method.body, HasSelfBinding(method.self_id), NoCaptureClause, visitor); } fn resolve_implementation(id: node_id, span: span, type_parameters: ~[ty_param], trait_references: ~[@trait_ref], self_type: @ty, methods: ~[@method], visitor: ResolveVisitor) { // If applicable, create a rib for the type parameters. let outer_type_parameter_count = type_parameters.len(); let borrowed_type_parameters: &~[ty_param] = &type_parameters; do self.with_type_parameter_rib(HasTypeParameters (borrowed_type_parameters, id, 0u, NormalRibKind)) { // Resolve the type parameters. self.resolve_type_parameters(type_parameters, visitor); // Resolve the trait reference, if necessary. let original_trait_refs = self.current_trait_refs; if trait_references.len() >= 1 { let mut new_trait_refs = @dvec(); for trait_references.each |trait_reference| { alt self.resolve_path(trait_reference.path, TypeNS, true, visitor) { none { self.session.span_err(span, ~"attempt to implement an \ unknown trait"); } some(def) { self.record_def(trait_reference.ref_id, def); // Record the current trait reference. (*new_trait_refs).push(def_id_of_def(def)); } } } // Record the current set of trait references. self.current_trait_refs = some(new_trait_refs); } // Resolve the self type. self.resolve_type(self_type, visitor); for methods.each |method| { // We also need a new scope for the method-specific // type parameters. let borrowed_type_parameters = &method.tps; self.resolve_function(MethodRibKind(id, Provided(method.id)), some(@method.decl), HasTypeParameters (borrowed_type_parameters, method.id, outer_type_parameter_count, NormalRibKind), method.body, HasSelfBinding(method.self_id), NoCaptureClause, visitor); } // Restore the original trait references. self.current_trait_refs = original_trait_refs; } } fn resolve_module(module_: _mod, span: span, _name: ident, id: node_id, visitor: ResolveVisitor) { // Write the implementations in scope into the module metadata. debug!{"(resolving module) resolving module ID %d", id}; self.impl_map.insert(id, self.current_module.impl_scopes); visit_mod(module_, span, id, (), visitor); } fn resolve_local(local: @local, visitor: ResolveVisitor) { let mut mutability; if local.node.is_mutbl { mutability = Mutable; } else { mutability = Immutable; } // Resolve the type. self.resolve_type(local.node.ty, visitor); // Resolve the initializer, if necessary. alt local.node.init { none { // Nothing to do. } some(initializer) { self.resolve_expr(initializer.expr, visitor); } } // Resolve the pattern. self.resolve_pattern(local.node.pat, IrrefutableMode, mutability, none, visitor); } fn num_bindings(pat: @pat) -> uint { pat_util::pat_binding_ids(self.def_map, pat).len() } fn warn_var_patterns(arm: arm) { /* The idea here is that an arm like: alpha | beta where alpha is a variant and beta is an identifier that might refer to a variant that's not in scope will result in a confusing error message. Showing that beta actually binds a new variable might help. */ for arm.pats.each |p| { do pat_util::pat_bindings(self.def_map, p) |_id, sp, pth| { self.session.span_note(sp, fmt!{"Treating %s as a variable \ binding, because it does not denote any variant in scope", path_to_str(pth)}); } }; } fn check_consistent_bindings(arm: arm) { if arm.pats.len() == 0 { ret; } let good = self.num_bindings(arm.pats[0]); for arm.pats.each() |p: @pat| { if self.num_bindings(p) != good { self.session.span_err(p.span, ~"inconsistent number of bindings"); self.warn_var_patterns(arm); break; }; }; } fn resolve_arm(arm: arm, visitor: ResolveVisitor) { (*self.value_ribs).push(@Rib(NormalRibKind)); let bindings_list = atom_hashmap(); for arm.pats.each |pattern| { self.resolve_pattern(pattern, RefutableMode, Immutable, some(bindings_list), visitor); } // This has to happen *after* we determine which // pat_idents are variants self.check_consistent_bindings(arm); visit_expr_opt(arm.guard, (), visitor); self.resolve_block(arm.body, visitor); (*self.value_ribs).pop(); } fn resolve_block(block: blk, visitor: ResolveVisitor) { debug!{"(resolving block) entering block"}; (*self.value_ribs).push(@Rib(NormalRibKind)); // Move down in the graph, if there's an anonymous module rooted here. let orig_module = self.current_module; alt self.current_module.anonymous_children.find(block.node.id) { none { /* Nothing to do. */ } some(anonymous_module) { debug!{"(resolving block) found anonymous module, moving \ down"}; self.current_module = anonymous_module; } } // Descend into the block. visit_block(block, (), visitor); // Move back up. self.current_module = orig_module; (*self.value_ribs).pop(); debug!{"(resolving block) leaving block"}; } fn resolve_type(ty: @ty, visitor: ResolveVisitor) { alt ty.node { // Like path expressions, the interpretation of path types depends // on whether the path has multiple elements in it or not. ty_path(path, path_id) { // This is a path in the type namespace. Walk through scopes // scopes looking for it. let mut result_def; alt self.resolve_path(path, TypeNS, true, visitor) { some(def) { debug!{"(resolving type) resolved `%s` to type", *path.idents.last()}; result_def = some(def); } none { result_def = none; } } alt result_def { some(_) { // Continue. } none { // Check to see whether the name is a primitive type. if path.idents.len() == 1u { let name = (*self.atom_table).intern(path.idents.last()); alt self.primitive_type_table .primitive_types .find(name) { some(primitive_type) { result_def = some(def_prim_ty(primitive_type)); } none { // Continue. } } } } } alt copy result_def { some(def) { // Write the result into the def map. debug!{"(resolving type) writing resolution for `%s` \ (id %d)", connect(path.idents.map(|x| *x), ~"::"), path_id}; self.record_def(path_id, def); } none { self.session.span_err (ty.span, fmt!{"use of undeclared type name `%s`", connect(path.idents.map(|x| *x), ~"::")}); } } } _ { // Just resolve embedded types. visit_ty(ty, (), visitor); } } } fn resolve_pattern(pattern: @pat, mode: PatternBindingMode, mutability: Mutability, // Maps idents to the node ID for the (outermost) // pattern that binds them bindings_list: option>, visitor: ResolveVisitor) { let pat_id = pattern.id; do walk_pat(pattern) |pattern| { alt pattern.node { pat_ident(_, path, _) if !path.global && path.idents.len() == 1u => { // The meaning of pat_ident with no type parameters // depends on whether an enum variant with that name is in // scope. The probing lookup has to be careful not to emit // spurious errors. Only matching patterns (alt) can match // nullary variants. For binding patterns (let), matching // such a variant is simply disallowed (since it's rarely // what you want). let atom = (*self.atom_table).intern(path.idents[0]); alt self.resolve_enum_variant_or_const(atom) { FoundEnumVariant(def) if mode == RefutableMode => { debug!{"(resolving pattern) resolving `%s` to \ enum variant", *path.idents[0]}; self.record_def(pattern.id, def); } FoundEnumVariant(_) => { self.session.span_err(pattern.span, fmt!{"declaration of `%s` \ shadows an enum \ that's in scope", *(*self.atom_table). atom_to_str (atom)}); } FoundConst => { self.session.span_err(pattern.span, ~"pattern variable \ conflicts with a constant \ in scope"); } EnumVariantOrConstNotFound => { debug!{"(resolving pattern) binding `%s`", *path.idents[0]}; let is_mutable = mutability == Mutable; let def = alt mode { RefutableMode { // For pattern arms, we must use // `def_binding` definitions. def_binding(pattern.id) } IrrefutableMode { // But for locals, we use `def_local`. def_local(pattern.id, is_mutable) } }; // Record the definition so that later passes // will be able to distinguish variants from // locals in patterns. self.record_def(pattern.id, def); // Add the binding to the local ribs, if it // doesn't already exist in the bindings list. (We // must not add it if it's in the bindings list // because that breaks the assumptions later // passes make about or-patterns.) alt bindings_list { some(bindings_list) if !bindings_list.contains_key(atom) { let last_rib = (*self.value_ribs).last(); last_rib.bindings.insert(atom, dl_def(def)); bindings_list.insert(atom, pat_id); } some(b) { if b.find(atom) == some(pat_id) { // Then this is a duplicate variable // in the same disjunct, which is an // error self.session.span_err(pattern.span, fmt!{"Identifier %s is bound more \ than once in the same pattern", path_to_str(path)}); } // Not bound in the same pattern: do nothing } none { let last_rib = (*self.value_ribs).last(); last_rib.bindings.insert(atom, dl_def(def)); } } } } // Check the types in the path pattern. for path.types.each |ty| { self.resolve_type(ty, visitor); } } pat_ident(_, path, _) | pat_enum(path, _) => { // These two must be enum variants. alt self.resolve_path(path, ValueNS, false, visitor) { some(def @ def_variant(*)) { self.record_def(pattern.id, def); } some(_) { self.session.span_err(path.span, fmt!{"not an enum \ variant: %s", *path.idents.last()}); } none { self.session.span_err(path.span, ~"unresolved enum variant"); } } // Check the types in the path pattern. for path.types.each |ty| { self.resolve_type(ty, visitor); } } pat_lit(expr) => { self.resolve_expr(expr, visitor); } pat_range(first_expr, last_expr) => { self.resolve_expr(first_expr, visitor); self.resolve_expr(last_expr, visitor); } _ => { // Nothing to do. } } } } fn resolve_enum_variant_or_const(name: Atom) -> EnumVariantOrConstResolution { alt self.resolve_item_in_lexical_scope(self.current_module, name, ValueNS) { Success(target) { alt target.bindings.value_def { none { fail ~"resolved name in the value namespace to a set \ of name bindings with no def?!"; } some(def @ def_variant(*)) { ret FoundEnumVariant(def); } some(def_const(*)) { ret FoundConst; } some(_) { ret EnumVariantOrConstNotFound; } } } Indeterminate { fail ~"unexpected indeterminate result"; } Failed { ret EnumVariantOrConstNotFound; } } } /** * If `check_ribs` is true, checks the local definitions first; i.e. * doesn't skip straight to the containing module. */ fn resolve_path(path: @path, namespace: Namespace, check_ribs: bool, visitor: ResolveVisitor) -> option { // First, resolve the types. for path.types.each |ty| { self.resolve_type(ty, visitor); } if path.global { ret self.resolve_crate_relative_path(path, self.xray_context, namespace); } if path.idents.len() > 1u { ret self.resolve_module_relative_path(path, self.xray_context, namespace); } ret self.resolve_identifier(path.idents.last(), namespace, check_ribs, path.span); } fn resolve_identifier(identifier: ident, namespace: Namespace, check_ribs: bool, span: span) -> option { if check_ribs { alt self.resolve_identifier_in_local_ribs(identifier, namespace, span) { some(def) { ret some(def); } none { // Continue. } } } ret self.resolve_item_by_identifier_in_lexical_scope(identifier, namespace); } // XXX: Merge me with resolve_name_in_module? fn resolve_definition_of_name_in_module(containing_module: @Module, name: Atom, namespace: Namespace, xray: XrayFlag) -> NameDefinition { if xray == NoXray && !self.name_is_exported(containing_module, name) { debug!{"(resolving definition of name in module) name `%s` is \ unexported", *(*self.atom_table).atom_to_str(name)}; ret NoNameDefinition; } // First, search children. alt containing_module.children.find(name) { some(child_name_bindings) { alt (*child_name_bindings).def_for_namespace(namespace) { some(def) { // Found it. Stop the search here. ret ChildNameDefinition(def); } none { // Continue. } } } none { // Continue. } } // Next, search import resolutions. alt containing_module.import_resolutions.find(name) { some(import_resolution) { alt (*import_resolution).target_for_namespace(namespace) { some(target) { alt (*target.bindings).def_for_namespace(namespace) { some(def) { // Found it. import_resolution.used = true; ret ImportNameDefinition(def); } none { // This can happen with external impls, due to // the imperfect way we read the metadata. ret NoNameDefinition; } } } none { ret NoNameDefinition; } } } none { ret NoNameDefinition; } } } fn intern_module_part_of_path(path: @path) -> @dvec { let module_path_atoms = @dvec(); for path.idents.eachi |index, ident| { if index == path.idents.len() - 1u { break; } (*module_path_atoms).push((*self.atom_table).intern(ident)); } ret module_path_atoms; } fn resolve_module_relative_path(path: @path, +xray: XrayFlag, namespace: Namespace) -> option { let module_path_atoms = self.intern_module_part_of_path(path); let mut containing_module; alt self.resolve_module_path_for_import(self.current_module, module_path_atoms, xray, path.span) { Failed { self.session.span_err(path.span, fmt!{"use of undeclared module `%s`", *(*self.atom_table).atoms_to_str ((*module_path_atoms).get())}); ret none; } Indeterminate { fail ~"indeterminate unexpected"; } Success(resulting_module) { containing_module = resulting_module; } } let name = (*self.atom_table).intern(path.idents.last()); alt self.resolve_definition_of_name_in_module(containing_module, name, namespace, xray) { NoNameDefinition { // We failed to resolve the name. Report an error. self.session.span_err(path.span, fmt!{"unresolved name: %s::%s", *(*self.atom_table).atoms_to_str ((*module_path_atoms).get()), *(*self.atom_table).atom_to_str (name)}); ret none; } ChildNameDefinition(def) | ImportNameDefinition(def) { ret some(def); } } } fn resolve_crate_relative_path(path: @path, +xray: XrayFlag, namespace: Namespace) -> option { let module_path_atoms = self.intern_module_part_of_path(path); let root_module = (*self.graph_root).get_module(); let mut containing_module; alt self.resolve_module_path_from_root(root_module, module_path_atoms, 0u, xray, path.span) { Failed { self.session.span_err(path.span, fmt!{"use of undeclared module `::%s`", *(*self.atom_table).atoms_to_str ((*module_path_atoms).get())}); ret none; } Indeterminate { fail ~"indeterminate unexpected"; } Success(resulting_module) { containing_module = resulting_module; } } let name = (*self.atom_table).intern(path.idents.last()); alt self.resolve_definition_of_name_in_module(containing_module, name, namespace, xray) { NoNameDefinition { // We failed to resolve the name. Report an error. self.session.span_err(path.span, fmt!{"unresolved name: %s::%s", *(*self.atom_table).atoms_to_str ((*module_path_atoms).get()), *(*self.atom_table).atom_to_str (name)}); ret none; } ChildNameDefinition(def) | ImportNameDefinition(def) { ret some(def); } } } fn resolve_identifier_in_local_ribs(identifier: ident, namespace: Namespace, span: span) -> option { let name = (*self.atom_table).intern(identifier); // Check the local set of ribs. let mut search_result; alt namespace { ValueNS { search_result = self.search_ribs(self.value_ribs, name, span, DontAllowCapturingSelf); } TypeNS { search_result = self.search_ribs(self.type_ribs, name, span, AllowCapturingSelf); } ModuleNS | ImplNS { fail ~"module or impl namespaces do not have local ribs"; } } alt copy search_result { some(dl_def(def)) { debug!{"(resolving path in local ribs) resolved `%s` to \ local: %?", *(*self.atom_table).atom_to_str(name), def}; ret some(def); } some(dl_field) | some(dl_impl(_)) | none { ret none; } } } fn resolve_item_by_identifier_in_lexical_scope(ident: ident, namespace: Namespace) -> option { let name = (*self.atom_table).intern(ident); // Check the items. alt self.resolve_item_in_lexical_scope(self.current_module, name, namespace) { Success(target) { alt (*target.bindings).def_for_namespace(namespace) { none { fail ~"resolved name in a namespace to a set of name \ bindings with no def for that namespace?!"; } some(def) { debug!{"(resolving item path in lexical scope) \ resolved `%s` to item", *(*self.atom_table).atom_to_str(name)}; ret some(def); } } } Indeterminate { fail ~"unexpected indeterminate result"; } Failed { ret none; } } } fn resolve_expr(expr: @expr, visitor: ResolveVisitor) { // First, write the implementations in scope into a table if the // expression might need them. self.record_impls_for_expr_if_necessary(expr); // Then record candidate traits for this expression if it could result // in the invocation of a method call. self.record_candidate_traits_for_expr_if_necessary(expr); // Next, resolve the node. alt expr.node { // The interpretation of paths depends on whether the path has // multiple elements in it or not. expr_path(path) { // This is a local path in the value namespace. Walk through // scopes looking for it. alt self.resolve_path(path, ValueNS, true, visitor) { some(def) { // Write the result into the def map. debug!{"(resolving expr) resolved `%s`", connect(path.idents.map(|x| *x), ~"::")}; self.record_def(expr.id, def); } none { self.session.span_err(expr.span, fmt!{"unresolved name: %s", connect(path.idents.map(|x| *x), ~"::")}); } } visit_expr(expr, (), visitor); } expr_fn(_, fn_decl, block, capture_clause) | expr_fn_block(fn_decl, block, capture_clause) { self.resolve_function(FunctionRibKind(expr.id), some(@fn_decl), NoTypeParameters, block, NoSelfBinding, HasCaptureClause(capture_clause), visitor); } expr_struct(path, _) { // Resolve the path to the structure it goes to. // // XXX: We might want to support explicit type parameters in // the path, in which case this gets a little more // complicated: // // 1. Should we go through the ast_path_to_ty() path, which // handles typedefs and the like? // // 2. If so, should programmers be able to write this? // // class Foo { ... } // type Bar = Foo; // let bar = Bar { ... } // no type parameters alt self.resolve_path(path, TypeNS, false, visitor) { some(definition @ def_ty(class_id)) if self.structs.contains_key(class_id) { let has_constructor = self.structs.get(class_id); let class_def = def_class(class_id, has_constructor); self.record_def(expr.id, class_def); } _ { self.session.span_err(path.span, fmt!{"`%s` does not name a \ structure", connect(path.idents.map (|x| *x), ~"::")}); } } visit_expr(expr, (), visitor); } _ { visit_expr(expr, (), visitor); } } } fn record_impls_for_expr_if_necessary(expr: @expr) { alt expr.node { expr_field(*) | expr_path(*) | expr_cast(*) | expr_binary(*) | expr_unary(*) | expr_assign_op(*) | expr_index(*) { self.impl_map.insert(expr.id, self.current_module.impl_scopes); } expr_new(container, _, _) { self.impl_map.insert(container.id, self.current_module.impl_scopes); } _ { // Nothing to do. } } } fn record_candidate_traits_for_expr_if_necessary(expr: @expr) { alt expr.node { expr_field(_, ident, _) => { let atom = (*self.atom_table).intern(ident); let traits = self.search_for_traits_containing_method(atom); self.trait_map.insert(expr.id, traits); } expr_binary(add, _, _) | expr_assign_op(add, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.add_trait); } expr_binary(subtract, _, _) | expr_assign_op(subtract, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.sub_trait); } expr_binary(mul, _, _) | expr_assign_op(mul, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.mul_trait); } expr_binary(div, _, _) | expr_assign_op(div, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.div_trait); } expr_binary(rem, _, _) | expr_assign_op(rem, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.modulo_trait); } expr_binary(bitxor, _, _) | expr_assign_op(bitxor, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.bitxor_trait); } expr_binary(bitand, _, _) | expr_assign_op(bitand, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.bitand_trait); } expr_binary(bitor, _, _) | expr_assign_op(bitor, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.bitor_trait); } expr_binary(shl, _, _) | expr_assign_op(shl, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.shl_trait); } expr_binary(shr, _, _) | expr_assign_op(shr, _, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.shr_trait); } expr_unary(neg, _) => { self.add_fixed_trait_for_expr(expr.id, self.lang_items.neg_trait); } expr_index(*) { self.add_fixed_trait_for_expr(expr.id, self.lang_items.index_trait); } _ => { // Nothing to do. } } } fn search_for_traits_containing_method(name: Atom) -> @dvec { let found_traits = @dvec(); let mut search_module = self.current_module; loop { // Look for the current trait. alt copy self.current_trait_refs { some(trait_def_ids) { for trait_def_ids.each |trait_def_id| { self.add_trait_info_if_containing_method (found_traits, trait_def_id, name); } } none { // Nothing to do. } } // Look for trait children. for search_module.children.each |_name, child_name_bindings| { alt child_name_bindings.def_for_namespace(TypeNS) { some(def_ty(trait_def_id)) { self.add_trait_info_if_containing_method(found_traits, trait_def_id, name); } some(_) | none { // Continue. } } } // Look for imports. for search_module.import_resolutions.each |_atom, import_resolution| { alt import_resolution.target_for_namespace(TypeNS) { none { // Continue. } some(target) { alt target.bindings.def_for_namespace(TypeNS) { some(def_ty(trait_def_id)) { self.add_trait_info_if_containing_method (found_traits, trait_def_id, name); } some(_) | none { // Continue. } } } } } // Move to the next parent. alt search_module.parent_link { NoParentLink { // Done. break; } ModuleParentLink(parent_module, _) | BlockParentLink(parent_module, _) { search_module = parent_module; } } } ret found_traits; } fn add_trait_info_if_containing_method(found_traits: @dvec, trait_def_id: def_id, name: Atom) { alt self.trait_info.find(trait_def_id) { some(trait_info) if trait_info.contains_key(name) { debug!{"(adding trait info if containing method) found trait \ %d:%d for method '%s'", trait_def_id.crate, trait_def_id.node, *(*self.atom_table).atom_to_str(name)}; (*found_traits).push(trait_def_id); } some(_) | none { // Continue. } } } fn add_fixed_trait_for_expr(expr_id: node_id, +trait_id: option) { let traits = @dvec(); traits.push(trait_id.get()); self.trait_map.insert(expr_id, traits); } fn record_def(node_id: node_id, def: def) { debug!{"(recording def) recording %? for %?", def, node_id}; self.def_map.insert(node_id, def); } // // Unused import checking // // Although this is a lint pass, it lives in here because it depends on // resolve data structures. // fn check_for_unused_imports_if_necessary() { if self.unused_import_lint_level == allow { ret; } let root_module = (*self.graph_root).get_module(); self.check_for_unused_imports_in_module_subtree(root_module); } fn check_for_unused_imports_in_module_subtree(module_: @Module) { // If this isn't a local crate, then bail out. We don't need to check // for unused imports in external crates. alt module_.def_id { some(def_id) if def_id.crate == local_crate { // OK. Continue. } none { // Check for unused imports in the root module. } some(_) { // Bail out. debug!{"(checking for unused imports in module subtree) not \ checking for unused imports for `%s`", self.module_to_str(module_)}; ret; } } self.check_for_unused_imports_in_module(module_); for module_.children.each |_atom, child_name_bindings| { alt (*child_name_bindings).get_module_if_available() { none { // Nothing to do. } some(child_module) { self.check_for_unused_imports_in_module_subtree (child_module); } } } for module_.anonymous_children.each |_node_id, child_module| { self.check_for_unused_imports_in_module_subtree(child_module); } } fn check_for_unused_imports_in_module(module_: @Module) { for module_.import_resolutions.each |_impl_name, import_resolution| { if !import_resolution.used { alt self.unused_import_lint_level { warn { self.session.span_warn(import_resolution.span, ~"unused import"); } deny | forbid { self.session.span_err(import_resolution.span, ~"unused import"); } allow { self.session.span_bug(import_resolution.span, ~"shouldn't be here if lint \ is allowed"); } } } } } // // Diagnostics // // Diagnostics are not particularly efficient, because they're rarely // hit. // /// A somewhat inefficient routine to print out the name of a module. fn module_to_str(module_: @Module) -> ~str { let atoms = dvec(); let mut current_module = module_; loop { alt current_module.parent_link { NoParentLink { break; } ModuleParentLink(module_, name) { atoms.push(name); current_module = module_; } BlockParentLink(module_, node_id) { atoms.push((*self.atom_table).intern(@~"")); current_module = module_; } } } if atoms.len() == 0u { ret ~"???"; } let mut string = ~""; let mut i = atoms.len() - 1u; loop { if i < atoms.len() - 1u { string += ~"::"; } string += *(*self.atom_table).atom_to_str(atoms.get_elt(i)); if i == 0u { break; } i -= 1u; } ret string; } fn dump_module(module_: @Module) { debug!{"Dump of module `%s`:", self.module_to_str(module_)}; debug!{"Children:"}; for module_.children.each |name, _child| { debug!{"* %s", *(*self.atom_table).atom_to_str(name)}; } debug!{"Import resolutions:"}; for module_.import_resolutions.each |name, import_resolution| { let mut module_repr; alt (*import_resolution).target_for_namespace(ModuleNS) { none { module_repr = ~""; } some(target) { module_repr = ~" module:?"; // XXX } } let mut value_repr; alt (*import_resolution).target_for_namespace(ValueNS) { none { value_repr = ~""; } some(target) { value_repr = ~" value:?"; // XXX } } let mut type_repr; alt (*import_resolution).target_for_namespace(TypeNS) { none { type_repr = ~""; } some(target) { type_repr = ~" type:?"; // XXX } } let mut impl_repr; alt (*import_resolution).target_for_namespace(ImplNS) { none { impl_repr = ~""; } some(target) { impl_repr = ~" impl:?"; // XXX } } debug!{"* %s:%s%s%s%s", *(*self.atom_table).atom_to_str(name), module_repr, value_repr, type_repr, impl_repr}; } } fn dump_impl_scopes(impl_scopes: ImplScopes) { debug!{"Dump of impl scopes:"}; let mut i = 0u; let mut impl_scopes = impl_scopes; loop { alt *impl_scopes { cons(impl_scope, rest_impl_scopes) { debug!{"Impl scope %u:", i}; for (*impl_scope).each |implementation| { debug!{"Impl: %s", *implementation.ident}; } i += 1u; impl_scopes = rest_impl_scopes; } nil { break; } } } } } /// Entry point to crate resolution. fn resolve_crate(session: session, lang_items: LanguageItems, crate: @crate) -> { def_map: DefMap, exp_map: ExportMap, impl_map: ImplMap, trait_map: TraitMap } { let resolver = @Resolver(session, lang_items, crate); (*resolver).resolve(resolver); ret { def_map: resolver.def_map, exp_map: resolver.export_map, impl_map: resolver.impl_map, trait_map: resolver.trait_map }; }