/*! This file actually contains two passes related to regions. The first pass builds up the `region_map`, which describes the parent links in the region hierarchy. The second pass infers which types must be region parameterized. */ import driver::session::session; import middle::ty; import syntax::{ast, visit}; import syntax::codemap::span; import syntax::print::pprust; import syntax::ast_util::new_def_hash; import syntax::ast_map; import dvec::{dvec, extensions}; import metadata::csearch; import std::list; import std::list::list; import std::map::{hashmap, int_hash}; type parent = option; /* Records the parameter ID of a region name. */ type binding = {node_id: ast::node_id, name: ~str, br: ty::bound_region}; /// Mapping from a block/expr/binding to the innermost scope that /// bounds its lifetime. For a block/expression, this is the lifetime /// in which it will be evaluated. For a binding, this is the lifetime /// in which is in scope. type region_map = hashmap; type ctxt = { sess: session, def_map: resolve3::DefMap, region_map: region_map, // Generally speaking, expressions are parented to their innermost // enclosing block. But some kinds of expressions serve as // parents: calls, methods, etc. In addition, some expressions // serve as parents by virtue of where they appear. For example, // the condition in a while loop is always a parent. In those // cases, we add the node id of such an expression to this set so // that when we visit it we can view it as a parent. root_exprs: hashmap, // The parent scope is the innermost block, call, or alt // expression during the execution of which the current expression // will be evaluated. Generally speaking, the innermost parent // scope is also the closest suitable ancestor in the AST tree. // // There is a subtle point concerning call arguments. Imagine // you have a call: // // { // block a // foo( // call b // x, // y); // } // // In what lifetime are the expressions `x` and `y` evaluated? At // first, I imagine the answer was the block `a`, as the arguments // are evaluated before the call takes place. But this turns out // to be wrong. The lifetime of the call must encompass the // argument evaluation as well. // // The reason is that evaluation of an earlier argument could // create a borrow which exists during the evaluation of later // arguments. Consider this torture test, for example, // // fn test1(x: @mut ~int) { // foo(&**x, *x = ~5); // } // // Here, the first argument `&**x` will be a borrow of the `~int`, // but the second argument overwrites that very value! Bad. // (This test is borrowck-pure-scope-in-call.rs, btw) parent: parent }; /// Returns true if `subscope` is equal to or is lexically nested inside /// `superscope` and false otherwise. fn scope_contains(region_map: region_map, superscope: ast::node_id, subscope: ast::node_id) -> bool { let mut subscope = subscope; while superscope != subscope { alt region_map.find(subscope) { none { ret false; } some(scope) { subscope = scope; } } } ret true; } /// Determines whether one region is a subregion of another. This is /// intended to run *after inference* and sadly the logic is somewhat /// duplicated with the code in infer.rs. fn subregion(region_map: region_map, super_region: ty::region, sub_region: ty::region) -> bool { super_region == sub_region || alt (super_region, sub_region) { (ty::re_static, _) => {true} (ty::re_scope(super_scope), ty::re_scope(sub_scope)) | (ty::re_free(super_scope, _), ty::re_scope(sub_scope)) => { scope_contains(region_map, super_scope, sub_scope) } _ => { false } } } /// Finds the nearest common ancestor (if any) of two scopes. That /// is, finds the smallest scope which is greater than or equal to /// both `scope_a` and `scope_b`. fn nearest_common_ancestor(region_map: region_map, scope_a: ast::node_id, scope_b: ast::node_id) -> option { fn ancestors_of(region_map: region_map, scope: ast::node_id) -> ~[ast::node_id] { let mut result = ~[scope]; let mut scope = scope; loop { alt region_map.find(scope) { none { ret result; } some(superscope) { vec::push(result, superscope); scope = superscope; } } } } if scope_a == scope_b { ret some(scope_a); } let a_ancestors = ancestors_of(region_map, scope_a); let b_ancestors = ancestors_of(region_map, scope_b); let mut a_index = vec::len(a_ancestors) - 1u; let mut b_index = vec::len(b_ancestors) - 1u; // Here, ~[ab]_ancestors is a vector going from narrow to broad. // The end of each vector will be the item where the scope is // defined; if there are any common ancestors, then the tails of // the vector will be the same. So basically we want to walk // backwards from the tail of each vector and find the first point // where they diverge. If one vector is a suffix of the other, // then the corresponding scope is a superscope of the other. if a_ancestors[a_index] != b_ancestors[b_index] { ret none; } loop { // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index] // for all indices between a_index and the end of the array if a_index == 0u { ret some(scope_a); } if b_index == 0u { ret some(scope_b); } a_index -= 1u; b_index -= 1u; if a_ancestors[a_index] != b_ancestors[b_index] { ret some(a_ancestors[a_index + 1u]); } } } /// Extracts that current parent from cx, failing if there is none. fn parent_id(cx: ctxt, span: span) -> ast::node_id { alt cx.parent { none { cx.sess.span_bug(span, ~"crate should not be parent here"); } some(parent_id) { parent_id } } } /// Records the current parent (if any) as the parent of `child_id`. fn record_parent(cx: ctxt, child_id: ast::node_id) { alt cx.parent { none { /* no-op */ } some(parent_id) { debug!{"parent of node %d is node %d", child_id, parent_id}; cx.region_map.insert(child_id, parent_id); } } } fn resolve_block(blk: ast::blk, cx: ctxt, visitor: visit::vt) { // Record the parent of this block. record_parent(cx, blk.node.id); // Descend. let new_cx: ctxt = {parent: some(blk.node.id) with cx}; visit::visit_block(blk, new_cx, visitor); } fn resolve_arm(arm: ast::arm, cx: ctxt, visitor: visit::vt) { visit::visit_arm(arm, cx, visitor); } fn resolve_pat(pat: @ast::pat, cx: ctxt, visitor: visit::vt) { alt pat.node { ast::pat_ident(_, path, _) { let defn_opt = cx.def_map.find(pat.id); alt defn_opt { some(ast::def_variant(_,_)) { /* Nothing to do; this names a variant. */ } _ { /* This names a local. Bind it to the containing scope. */ record_parent(cx, pat.id); } } } _ { /* no-op */ } } visit::visit_pat(pat, cx, visitor); } fn resolve_expr(expr: @ast::expr, cx: ctxt, visitor: visit::vt) { record_parent(cx, expr.id); let mut new_cx = cx; alt expr.node { ast::expr_call(*) => { debug!{"node %d: %s", expr.id, pprust::expr_to_str(expr)}; new_cx.parent = some(expr.id); } ast::expr_alt(subexpr, _, _) => { debug!{"node %d: %s", expr.id, pprust::expr_to_str(expr)}; new_cx.parent = some(expr.id); } ast::expr_fn(_, _, _, cap_clause) | ast::expr_fn_block(_, _, cap_clause) => { // although the capture items are not expressions per se, they // do get "evaluated" in some sense as copies or moves of the // relevant variables so we parent them like an expression for (*cap_clause).each |cap_item| { record_parent(new_cx, cap_item.id); } } ast::expr_while(cond, _) => { new_cx.root_exprs.insert(cond.id, ()); } _ => {} }; if new_cx.root_exprs.contains_key(expr.id) { new_cx.parent = some(expr.id); } visit::visit_expr(expr, new_cx, visitor); } fn resolve_local(local: @ast::local, cx: ctxt, visitor: visit::vt) { record_parent(cx, local.node.id); visit::visit_local(local, cx, visitor); } fn resolve_item(item: @ast::item, cx: ctxt, visitor: visit::vt) { // Items create a new outer block scope as far as we're concerned. let new_cx: ctxt = {parent: none with cx}; visit::visit_item(item, new_cx, visitor); } fn resolve_fn(fk: visit::fn_kind, decl: ast::fn_decl, body: ast::blk, sp: span, id: ast::node_id, cx: ctxt, visitor: visit::vt) { let fn_cx = alt fk { visit::fk_item_fn(*) | visit::fk_method(*) | visit::fk_ctor(*) | visit::fk_dtor(*) { // Top-level functions are a root scope. {parent: some(id) with cx} } visit::fk_anon(*) | visit::fk_fn_block(*) { // Closures continue with the inherited scope. cx } }; debug!{"visiting fn with body %d. cx.parent: %? \ fn_cx.parent: %?", body.node.id, cx.parent, fn_cx.parent}; for decl.inputs.each |input| { cx.region_map.insert(input.id, body.node.id); } visit::visit_fn(fk, decl, body, sp, id, fn_cx, visitor); } fn resolve_crate(sess: session, def_map: resolve3::DefMap, crate: @ast::crate) -> region_map { let cx: ctxt = {sess: sess, def_map: def_map, region_map: int_hash(), root_exprs: int_hash(), parent: none}; let visitor = visit::mk_vt(@{ visit_block: resolve_block, visit_item: resolve_item, visit_fn: resolve_fn, visit_arm: resolve_arm, visit_pat: resolve_pat, visit_expr: resolve_expr, visit_local: resolve_local with *visit::default_visitor() }); visit::visit_crate(*crate, cx, visitor); ret cx.region_map; } // ___________________________________________________________________________ // Determining region parameterization // // Infers which type defns must be region parameterized---this is done // by scanning their contents to see whether they reference a region // type, directly or indirectly. This is a fixed-point computation. // // We do it in two passes. First we walk the AST and construct a map // from each type defn T1 to other defns which make use of it. For example, // if we have a type like: // // type S = *int; // type T = S; // // Then there would be a map entry from S to T. During the same walk, // we also construct add any types that reference regions to a set and // a worklist. We can then process the worklist, propagating indirect // dependencies until a fixed point is reached. type region_paramd_items = hashmap; type dep_map = hashmap>; type determine_rp_ctxt_ = { sess: session, ast_map: ast_map::map, def_map: resolve3::DefMap, region_paramd_items: region_paramd_items, dep_map: dep_map, worklist: dvec, // the innermost enclosing item id mut item_id: ast::node_id, // true when we are within an item but not within a method. // see long discussion on region_is_relevant() mut anon_implies_rp: bool }; enum determine_rp_ctxt { determine_rp_ctxt_(@determine_rp_ctxt_) } impl methods for determine_rp_ctxt { fn add_rp(id: ast::node_id) { assert id != 0; if self.region_paramd_items.insert(id, ()) { debug!{"add region-parameterized item: %d (%s)", id, ast_map::node_id_to_str(self.ast_map, id)}; self.worklist.push(id); } else { debug!{"item %d already region-parameterized", id}; } } fn add_dep(from: ast::node_id, to: ast::node_id) { debug!{"add dependency from %d -> %d (%s -> %s)", from, to, ast_map::node_id_to_str(self.ast_map, from), ast_map::node_id_to_str(self.ast_map, to)}; let vec = alt self.dep_map.find(from) { some(vec) => {vec} none => { let vec = @dvec(); self.dep_map.insert(from, vec); vec } }; if !vec.contains(to) { vec.push(to); } } // Determines whether a reference to a region that appears in the // AST implies that the enclosing type is region-parameterized. // // This point is subtle. Here are four examples to make it more // concrete. // // 1. impl foo for &int { ... } // 2. impl foo for &self/int { ... } // 3. impl foo for bar { fn m() -> &self/int { ... } } // 4. impl foo for bar { fn m() -> &int { ... } } // // In case 1, the anonymous region is being referenced, // but it appears in a context where the anonymous region // resolves to self, so the impl foo is region-parameterized. // // In case 2, the self parameter is written explicitly. // // In case 3, the method refers to self, so that implies that the // impl must be region parameterized. (If the type bar is not // region parameterized, that is an error, because the self region // is effectively unconstrained, but that is detected elsewhere). // // In case 4, the anonymous region is referenced, but it // bound by the method, so it does not refer to self. This impl // need not be region parameterized. // // So the rules basically are: the `self` region always implies // that the enclosing type is region parameterized. The anonymous // region also does, unless it appears within a method, in which // case it is bound. We handle this by setting a flag // (anon_implies_rp) to true when we enter an item and setting // that flag to false when we enter a method. fn region_is_relevant(r: @ast::region) -> bool { alt r.node { ast::re_anon {self.anon_implies_rp} ast::re_named(@~"self") {true} ast::re_named(_) {false} } } fn with(item_id: ast::node_id, anon_implies_rp: bool, f: fn()) { let old_item_id = self.item_id; let old_anon_implies_rp = self.anon_implies_rp; self.item_id = item_id; self.anon_implies_rp = anon_implies_rp; debug!{"with_item_id(%d, %b)", item_id, anon_implies_rp}; let _i = util::common::indenter(); f(); self.item_id = old_item_id; self.anon_implies_rp = old_anon_implies_rp; } } fn determine_rp_in_item(item: @ast::item, &&cx: determine_rp_ctxt, visitor: visit::vt) { do cx.with(item.id, true) { visit::visit_item(item, cx, visitor); } } fn determine_rp_in_fn(fk: visit::fn_kind, decl: ast::fn_decl, body: ast::blk, sp: span, id: ast::node_id, &&cx: determine_rp_ctxt, visitor: visit::vt) { do cx.with(cx.item_id, false) { visit::visit_fn(fk, decl, body, sp, id, cx, visitor); } } fn determine_rp_in_ty_method(ty_m: ast::ty_method, &&cx: determine_rp_ctxt, visitor: visit::vt) { do cx.with(cx.item_id, false) { visit::visit_ty_method(ty_m, cx, visitor); } } fn determine_rp_in_ty(ty: @ast::ty, &&cx: determine_rp_ctxt, visitor: visit::vt) { // we are only interesting in types that will require an item to // be region-parameterized. if cx.item_id is zero, then this type // is not a member of a type defn nor is it a constitutent of an // impl etc. So we can ignore it and its components. if cx.item_id == 0 { ret; } // if this type directly references a region, either via a // region pointer like &r.ty or a region-parameterized path // like path/r, add to the worklist/set alt ty.node { ast::ty_rptr(r, _) | ast::ty_path(@{rp: some(r), _}, _) => { debug!{"referenced type with regions %s", pprust::ty_to_str(ty)}; if cx.region_is_relevant(r) { cx.add_rp(cx.item_id); } } _ => {} } // if this references another named type, add the dependency // to the dep_map. If the type is not defined in this crate, // then check whether it is region-parameterized and consider // that as a direct dependency. alt ty.node { ast::ty_path(_, id) { alt cx.def_map.get(id) { ast::def_ty(did) | ast::def_class(did, _) { if did.crate == ast::local_crate { cx.add_dep(did.node, cx.item_id); } else { let cstore = cx.sess.cstore; if csearch::get_region_param(cstore, did) { debug!{"reference to external, rp'd type %s", pprust::ty_to_str(ty)}; cx.add_rp(cx.item_id); } } } _ {} } } _ {} } alt ty.node { ast::ty_fn(*) => { do cx.with(cx.item_id, false) { visit::visit_ty(ty, cx, visitor); } } _ => { visit::visit_ty(ty, cx, visitor); } } } fn determine_rp_in_crate(sess: session, ast_map: ast_map::map, def_map: resolve3::DefMap, crate: @ast::crate) -> region_paramd_items { let cx = determine_rp_ctxt_(@{sess: sess, ast_map: ast_map, def_map: def_map, region_paramd_items: int_hash(), dep_map: int_hash(), worklist: dvec(), mut item_id: 0, mut anon_implies_rp: false}); // gather up the base set, worklist and dep_map: let visitor = visit::mk_vt(@{ visit_fn: determine_rp_in_fn, visit_item: determine_rp_in_item, visit_ty: determine_rp_in_ty, visit_ty_method: determine_rp_in_ty_method, with *visit::default_visitor() }); visit::visit_crate(*crate, cx, visitor); // propagate indirect dependencies while cx.worklist.len() != 0 { let id = cx.worklist.pop(); debug!{"popped %d from worklist", id}; alt cx.dep_map.find(id) { none {} some(vec) { for vec.each |to_id| { cx.add_rp(to_id); } } } } // return final set ret cx.region_paramd_items; }