//! A type representing either success or failure import either::either; /// The result type enum result { /// Contains the successful result value ok(T), /// Contains the error value err(U) } /** * Get the value out of a successful result * * # Failure * * If the result is an error */ pure fn get(res: result) -> T { alt res { ok(t) { t } err(the_err) { unchecked{ fail fmt!{"get called on error result: %?", the_err}; } } } } /** * Get the value out of an error result * * # Failure * * If the result is not an error */ pure fn get_err(res: result) -> U { alt res { err(u) { u } ok(_) { fail ~"get_error called on ok result"; } } } /// Returns true if the result is `ok` pure fn is_ok(res: result) -> bool { alt res { ok(_) { true } err(_) { false } } } /// Returns true if the result is `err` pure fn is_err(res: result) -> bool { !is_ok(res) } /** * Convert to the `either` type * * `ok` result variants are converted to `either::right` variants, `err` * result variants are converted to `either::left`. */ pure fn to_either(res: result) -> either { alt res { ok(res) { either::right(res) } err(fail_) { either::left(fail_) } } } /** * Call a function based on a previous result * * If `res` is `ok` then the value is extracted and passed to `op` whereupon * `op`s result is returned. if `res` is `err` then it is immediately * returned. This function can be used to compose the results of two * functions. * * Example: * * let res = chain(read_file(file)) { |buf| * ok(parse_buf(buf)) * } */ fn chain(res: result, op: fn(T) -> result) -> result { alt res { ok(t) { op(t) } err(e) { err(e) } } } /** * Call a function based on a previous result * * If `res` is `err` then the value is extracted and passed to `op` * whereupon `op`s result is returned. if `res` is `ok` then it is * immediately returned. This function can be used to pass through a * successful result while handling an error. */ fn chain_err( res: result, op: fn(V) -> result) -> result { alt res { ok(t) { ok(t) } err(v) { op(v) } } } /** * Call a function based on a previous result * * If `res` is `ok` then the value is extracted and passed to `op` whereupon * `op`s result is returned. if `res` is `err` then it is immediately * returned. This function can be used to compose the results of two * functions. * * Example: * * iter(read_file(file)) { |buf| * print_buf(buf) * } */ fn iter(res: result, f: fn(T)) { alt res { ok(t) { f(t) } err(_) { } } } /** * Call a function based on a previous result * * If `res` is `err` then the value is extracted and passed to `op` whereupon * `op`s result is returned. if `res` is `ok` then it is immediately returned. * This function can be used to pass through a successful result while * handling an error. */ fn iter_err(res: result, f: fn(E)) { alt res { ok(_) { } err(e) { f(e) } } } /** * Call a function based on a previous result * * If `res` is `ok` then the value is extracted and passed to `op` whereupon * `op`s result is wrapped in `ok` and returned. if `res` is `err` then it is * immediately returned. This function can be used to compose the results of * two functions. * * Example: * * let res = map(read_file(file)) { |buf| * parse_buf(buf) * } */ fn map(res: result, op: fn(T) -> U) -> result { alt res { ok(t) { ok(op(t)) } err(e) { err(e) } } } /** * Call a function based on a previous result * * If `res` is `err` then the value is extracted and passed to `op` whereupon * `op`s result is wrapped in an `err` and returned. if `res` is `ok` then it * is immediately returned. This function can be used to pass through a * successful result while handling an error. */ fn map_err(res: result, op: fn(E) -> F) -> result { alt res { ok(t) { ok(t) } err(e) { err(op(e)) } } } impl extensions for result { fn is_ok() -> bool { is_ok(self) } fn is_err() -> bool { is_err(self) } fn iter(f: fn(T)) { alt self { ok(t) { f(t) } err(_) { } } } fn iter_err(f: fn(E)) { alt self { ok(_) { } err(e) { f(e) } } } } impl extensions for result { fn get() -> T { get(self) } fn map_err(op: fn(E) -> F) -> result { alt self { ok(t) { ok(t) } err(e) { err(op(e)) } } } } impl extensions for result { fn get_err() -> E { get_err(self) } fn map(op: fn(T) -> U) -> result { alt self { ok(t) { ok(op(t)) } err(e) { err(e) } } } } impl extensions for result { fn chain(op: fn(T) -> result) -> result { chain(self, op) } fn chain_err(op: fn(E) -> result) -> result { chain_err(self, op) } } /** * Maps each element in the vector `ts` using the operation `op`. Should an * error occur, no further mappings are performed and the error is returned. * Should no error occur, a vector containing the result of each map is * returned. * * Here is an example which increments every integer in a vector, * checking for overflow: * * fn inc_conditionally(x: uint) -> result { * if x == uint::max_value { ret err("overflow"); } * else { ret ok(x+1u); } * } * map(~[1u, 2u, 3u], inc_conditionally).chain {|incd| * assert incd == ~[2u, 3u, 4u]; * } */ fn map_vec( ts: ~[T], op: fn(T) -> result) -> result<~[V],U> { let mut vs: ~[V] = ~[]; vec::reserve(vs, vec::len(ts)); for vec::each(ts) |t| { alt op(t) { ok(v) { vec::push(vs, v); } err(u) { ret err(u); } } } ret ok(vs); } fn map_opt( o_t: option, op: fn(T) -> result) -> result,U> { alt o_t { none { ok(none) } some(t) { alt op(t) { ok(v) { ok(some(v)) } err(e) { err(e) } } } } } /** * Same as map, but it operates over two parallel vectors. * * A precondition is used here to ensure that the vectors are the same * length. While we do not often use preconditions in the standard * library, a precondition is used here because result::t is generally * used in 'careful' code contexts where it is both appropriate and easy * to accommodate an error like the vectors being of different lengths. */ fn map_vec2(ss: ~[S], ts: ~[T], op: fn(S,T) -> result) -> result<~[V],U> { assert vec::same_length(ss, ts); let n = vec::len(ts); let mut vs = ~[]; vec::reserve(vs, n); let mut i = 0u; while i < n { alt op(ss[i],ts[i]) { ok(v) { vec::push(vs, v); } err(u) { ret err(u); } } i += 1u; } ret ok(vs); } /** * Applies op to the pairwise elements from `ss` and `ts`, aborting on * error. This could be implemented using `map2()` but it is more efficient * on its own as no result vector is built. */ fn iter_vec2(ss: ~[S], ts: ~[T], op: fn(S,T) -> result<(),U>) -> result<(),U> { assert vec::same_length(ss, ts); let n = vec::len(ts); let mut i = 0u; while i < n { alt op(ss[i],ts[i]) { ok(()) { } err(u) { ret err(u); } } i += 1u; } ret ok(()); } /// Unwraps a result, assuming it is an `ok(T)` fn unwrap(-res: result) -> T { unsafe { let addr = alt res { ok(x) { ptr::addr_of(x) } err(_) { fail ~"error result" } }; let liberated_value = unsafe::reinterpret_cast(*addr); unsafe::forget(res); ret liberated_value; } } #[cfg(test)] mod tests { fn op1() -> result::result { result::ok(666) } fn op2(&&i: int) -> result::result { result::ok(i as uint + 1u) } fn op3() -> result::result { result::err(~"sadface") } #[test] fn chain_success() { assert get(chain(op1(), op2)) == 667u; } #[test] fn chain_failure() { assert get_err(chain(op3(), op2)) == ~"sadface"; } #[test] fn test_impl_iter() { let mut valid = false; ok::<~str, ~str>(~"a").iter(|_x| valid = true); assert valid; err::<~str, ~str>(~"b").iter(|_x| valid = false); assert valid; } #[test] fn test_impl_iter_err() { let mut valid = true; ok::<~str, ~str>(~"a").iter_err(|_x| valid = false); assert valid; valid = false; err::<~str, ~str>(~"b").iter_err(|_x| valid = true); assert valid; } #[test] fn test_impl_map() { assert ok::<~str, ~str>(~"a").map(|_x| ~"b") == ok(~"b"); assert err::<~str, ~str>(~"a").map(|_x| ~"b") == err(~"a"); } #[test] fn test_impl_map_err() { assert ok::<~str, ~str>(~"a").map_err(|_x| ~"b") == ok(~"a"); assert err::<~str, ~str>(~"a").map_err(|_x| ~"b") == err(~"b"); } }