// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The main parser interface use ast; use codemap::{self, Span, CodeMap, FileMap}; use errors::{Handler, ColorConfig, DiagnosticBuilder}; use parse::parser::Parser; use parse::token::InternedString; use ptr::P; use str::char_at; use std::cell::RefCell; use std::iter; use std::path::{Path, PathBuf}; use std::rc::Rc; use std::str; pub type PResult<'a, T> = Result>; #[macro_use] pub mod parser; pub mod lexer; pub mod token; pub mod attr; pub mod common; pub mod classify; pub mod obsolete; /// Info about a parsing session. pub struct ParseSess { pub span_diagnostic: Handler, // better be the same as the one in the reader! /// Used to determine and report recursive mod inclusions included_mod_stack: RefCell>, code_map: Rc, } impl ParseSess { pub fn new() -> ParseSess { let cm = Rc::new(CodeMap::new()); let handler = Handler::with_tty_emitter(ColorConfig::Auto, None, true, false, cm.clone()); ParseSess::with_span_handler(handler, cm) } pub fn with_span_handler(handler: Handler, code_map: Rc) -> ParseSess { ParseSess { span_diagnostic: handler, included_mod_stack: RefCell::new(vec![]), code_map: code_map } } pub fn codemap(&self) -> &CodeMap { &self.code_map } } // a bunch of utility functions of the form parse__from_ // where includes crate, expr, item, stmt, tts, and one that // uses a HOF to parse anything, and includes file and // source_str. pub fn parse_crate_from_file<'a>(input: &Path, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, ast::Crate> { let mut parser = new_parser_from_file(sess, cfg, input); parser.parse_crate_mod() } pub fn parse_crate_attrs_from_file<'a>(input: &Path, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, Vec> { let mut parser = new_parser_from_file(sess, cfg, input); parser.parse_inner_attributes() } pub fn parse_crate_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, ast::Crate> { let mut p = new_parser_from_source_str(sess, cfg, name, source); p.parse_crate_mod() } pub fn parse_crate_attrs_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, Vec> { let mut p = new_parser_from_source_str(sess, cfg, name, source); p.parse_inner_attributes() } pub fn parse_expr_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, P> { let mut p = new_parser_from_source_str(sess, cfg, name, source); p.parse_expr() } /// Parses an item. /// /// Returns `Ok(Some(item))` when successful, `Ok(None)` when no item was found, and`Err` /// when a syntax error occurred. pub fn parse_item_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, Option>> { let mut p = new_parser_from_source_str(sess, cfg, name, source); p.parse_item() } pub fn parse_meta_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, P> { let mut p = new_parser_from_source_str(sess, cfg, name, source); p.parse_meta_item() } pub fn parse_stmt_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, Option> { let mut p = new_parser_from_source_str( sess, cfg, name, source ); p.parse_stmt() } // Warning: This parses with quote_depth > 0, which is not the default. pub fn parse_tts_from_source_str<'a>(name: String, source: String, cfg: ast::CrateConfig, sess: &'a ParseSess) -> PResult<'a, Vec> { let mut p = new_parser_from_source_str( sess, cfg, name, source ); p.quote_depth += 1; // right now this is re-creating the token trees from ... token trees. p.parse_all_token_trees() } // Create a new parser from a source string pub fn new_parser_from_source_str<'a>(sess: &'a ParseSess, cfg: ast::CrateConfig, name: String, source: String) -> Parser<'a> { filemap_to_parser(sess, sess.codemap().new_filemap(name, source), cfg) } /// Create a new parser, handling errors as appropriate /// if the file doesn't exist pub fn new_parser_from_file<'a>(sess: &'a ParseSess, cfg: ast::CrateConfig, path: &Path) -> Parser<'a> { filemap_to_parser(sess, file_to_filemap(sess, path, None), cfg) } /// Given a session, a crate config, a path, and a span, add /// the file at the given path to the codemap, and return a parser. /// On an error, use the given span as the source of the problem. pub fn new_sub_parser_from_file<'a>(sess: &'a ParseSess, cfg: ast::CrateConfig, path: &Path, owns_directory: bool, module_name: Option, sp: Span) -> Parser<'a> { let mut p = filemap_to_parser(sess, file_to_filemap(sess, path, Some(sp)), cfg); p.owns_directory = owns_directory; p.root_module_name = module_name; p } /// Given a filemap and config, return a parser pub fn filemap_to_parser<'a>(sess: &'a ParseSess, filemap: Rc, cfg: ast::CrateConfig) -> Parser<'a> { let end_pos = filemap.end_pos; let mut parser = tts_to_parser(sess, filemap_to_tts(sess, filemap), cfg); if parser.token == token::Eof && parser.span == codemap::DUMMY_SP { parser.span = codemap::mk_sp(end_pos, end_pos); } parser } // must preserve old name for now, because quote! from the *existing* // compiler expands into it pub fn new_parser_from_tts<'a>(sess: &'a ParseSess, cfg: ast::CrateConfig, tts: Vec) -> Parser<'a> { tts_to_parser(sess, tts, cfg) } // base abstractions /// Given a session and a path and an optional span (for error reporting), /// add the path to the session's codemap and return the new filemap. fn file_to_filemap(sess: &ParseSess, path: &Path, spanopt: Option) -> Rc { match sess.codemap().load_file(path) { Ok(filemap) => filemap, Err(e) => { let msg = format!("couldn't read {:?}: {}", path.display(), e); match spanopt { Some(sp) => panic!(sess.span_diagnostic.span_fatal(sp, &msg)), None => panic!(sess.span_diagnostic.fatal(&msg)) } } } } /// Given a filemap, produce a sequence of token-trees pub fn filemap_to_tts(sess: &ParseSess, filemap: Rc) -> Vec { // it appears to me that the cfg doesn't matter here... indeed, // parsing tt's probably shouldn't require a parser at all. let cfg = Vec::new(); let srdr = lexer::StringReader::new(&sess.span_diagnostic, filemap); let mut p1 = Parser::new(sess, cfg, Box::new(srdr)); panictry!(p1.parse_all_token_trees()) } /// Given tts and cfg, produce a parser pub fn tts_to_parser<'a>(sess: &'a ParseSess, tts: Vec, cfg: ast::CrateConfig) -> Parser<'a> { let trdr = lexer::new_tt_reader(&sess.span_diagnostic, None, None, tts); let mut p = Parser::new(sess, cfg, Box::new(trdr)); p.check_unknown_macro_variable(); p } /// Parse a string representing a character literal into its final form. /// Rather than just accepting/rejecting a given literal, unescapes it as /// well. Can take any slice prefixed by a character escape. Returns the /// character and the number of characters consumed. pub fn char_lit(lit: &str) -> (char, isize) { use std::char; let mut chars = lit.chars(); let c = match (chars.next(), chars.next()) { (Some(c), None) if c != '\\' => return (c, 1), (Some('\\'), Some(c)) => match c { '"' => Some('"'), 'n' => Some('\n'), 'r' => Some('\r'), 't' => Some('\t'), '\\' => Some('\\'), '\'' => Some('\''), '0' => Some('\0'), _ => { None } }, _ => panic!("lexer accepted invalid char escape `{}`", lit) }; match c { Some(x) => return (x, 2), None => { } } let msg = format!("lexer should have rejected a bad character escape {}", lit); let msg2 = &msg[..]; fn esc(len: usize, lit: &str) -> Option<(char, isize)> { u32::from_str_radix(&lit[2..len], 16).ok() .and_then(char::from_u32) .map(|x| (x, len as isize)) } let unicode_escape = || -> Option<(char, isize)> { if lit.as_bytes()[2] == b'{' { let idx = lit.find('}').expect(msg2); let subslice = &lit[3..idx]; u32::from_str_radix(subslice, 16).ok() .and_then(char::from_u32) .map(|x| (x, subslice.chars().count() as isize + 4)) } else { esc(6, lit) } }; // Unicode escapes return match lit.as_bytes()[1] as char { 'x' | 'X' => esc(4, lit), 'u' => unicode_escape(), 'U' => esc(10, lit), _ => None, }.expect(msg2); } /// Parse a string representing a string literal into its final form. Does /// unescaping. pub fn str_lit(lit: &str) -> String { debug!("parse_str_lit: given {}", lit.escape_default()); let mut res = String::with_capacity(lit.len()); // FIXME #8372: This could be a for-loop if it didn't borrow the iterator let error = |i| format!("lexer should have rejected {} at {}", lit, i); /// Eat everything up to a non-whitespace fn eat<'a>(it: &mut iter::Peekable>) { loop { match it.peek().map(|x| x.1) { Some(' ') | Some('\n') | Some('\r') | Some('\t') => { it.next(); }, _ => { break; } } } } let mut chars = lit.char_indices().peekable(); loop { match chars.next() { Some((i, c)) => { match c { '\\' => { let ch = chars.peek().unwrap_or_else(|| { panic!("{}", error(i)) }).1; if ch == '\n' { eat(&mut chars); } else if ch == '\r' { chars.next(); let ch = chars.peek().unwrap_or_else(|| { panic!("{}", error(i)) }).1; if ch != '\n' { panic!("lexer accepted bare CR"); } eat(&mut chars); } else { // otherwise, a normal escape let (c, n) = char_lit(&lit[i..]); for _ in 0..n - 1 { // we don't need to move past the first \ chars.next(); } res.push(c); } }, '\r' => { let ch = chars.peek().unwrap_or_else(|| { panic!("{}", error(i)) }).1; if ch != '\n' { panic!("lexer accepted bare CR"); } chars.next(); res.push('\n'); } c => res.push(c), } }, None => break } } res.shrink_to_fit(); // probably not going to do anything, unless there was an escape. debug!("parse_str_lit: returning {}", res); res } /// Parse a string representing a raw string literal into its final form. The /// only operation this does is convert embedded CRLF into a single LF. pub fn raw_str_lit(lit: &str) -> String { debug!("raw_str_lit: given {}", lit.escape_default()); let mut res = String::with_capacity(lit.len()); // FIXME #8372: This could be a for-loop if it didn't borrow the iterator let mut chars = lit.chars().peekable(); loop { match chars.next() { Some(c) => { if c == '\r' { if *chars.peek().unwrap() != '\n' { panic!("lexer accepted bare CR"); } chars.next(); res.push('\n'); } else { res.push(c); } }, None => break } } res.shrink_to_fit(); res } // check if `s` looks like i32 or u1234 etc. fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool { s.len() > 1 && first_chars.contains(&char_at(s, 0)) && s[1..].chars().all(|c| '0' <= c && c <= '9') } fn filtered_float_lit(data: token::InternedString, suffix: Option<&str>, sd: &Handler, sp: Span) -> ast::LitKind { debug!("filtered_float_lit: {}, {:?}", data, suffix); match suffix.as_ref().map(|s| &**s) { Some("f32") => ast::LitKind::Float(data, ast::FloatTy::F32), Some("f64") => ast::LitKind::Float(data, ast::FloatTy::F64), Some(suf) => { if suf.len() >= 2 && looks_like_width_suffix(&['f'], suf) { // if it looks like a width, lets try to be helpful. sd.struct_span_err(sp, &format!("invalid width `{}` for float literal", &suf[1..])) .help("valid widths are 32 and 64") .emit(); } else { sd.struct_span_err(sp, &format!("invalid suffix `{}` for float literal", suf)) .help("valid suffixes are `f32` and `f64`") .emit(); } ast::LitKind::FloatUnsuffixed(data) } None => ast::LitKind::FloatUnsuffixed(data) } } pub fn float_lit(s: &str, suffix: Option, sd: &Handler, sp: Span) -> ast::LitKind { debug!("float_lit: {:?}, {:?}", s, suffix); // FIXME #2252: bounds checking float literals is deferred until trans let s = s.chars().filter(|&c| c != '_').collect::(); let data = token::intern_and_get_ident(&s); filtered_float_lit(data, suffix.as_ref().map(|s| &**s), sd, sp) } /// Parse a string representing a byte literal into its final form. Similar to `char_lit` pub fn byte_lit(lit: &str) -> (u8, usize) { let err = |i| format!("lexer accepted invalid byte literal {} step {}", lit, i); if lit.len() == 1 { (lit.as_bytes()[0], 1) } else { assert!(lit.as_bytes()[0] == b'\\', err(0)); let b = match lit.as_bytes()[1] { b'"' => b'"', b'n' => b'\n', b'r' => b'\r', b't' => b'\t', b'\\' => b'\\', b'\'' => b'\'', b'0' => b'\0', _ => { match u64::from_str_radix(&lit[2..4], 16).ok() { Some(c) => if c > 0xFF { panic!(err(2)) } else { return (c as u8, 4) }, None => panic!(err(3)) } } }; return (b, 2); } } pub fn byte_str_lit(lit: &str) -> Rc> { let mut res = Vec::with_capacity(lit.len()); // FIXME #8372: This could be a for-loop if it didn't borrow the iterator let error = |i| format!("lexer should have rejected {} at {}", lit, i); /// Eat everything up to a non-whitespace fn eat<'a, I: Iterator>(it: &mut iter::Peekable) { loop { match it.peek().map(|x| x.1) { Some(b' ') | Some(b'\n') | Some(b'\r') | Some(b'\t') => { it.next(); }, _ => { break; } } } } // byte string literals *must* be ASCII, but the escapes don't have to be let mut chars = lit.bytes().enumerate().peekable(); loop { match chars.next() { Some((i, b'\\')) => { let em = error(i); match chars.peek().expect(&em).1 { b'\n' => eat(&mut chars), b'\r' => { chars.next(); if chars.peek().expect(&em).1 != b'\n' { panic!("lexer accepted bare CR"); } eat(&mut chars); } _ => { // otherwise, a normal escape let (c, n) = byte_lit(&lit[i..]); // we don't need to move past the first \ for _ in 0..n - 1 { chars.next(); } res.push(c); } } }, Some((i, b'\r')) => { let em = error(i); if chars.peek().expect(&em).1 != b'\n' { panic!("lexer accepted bare CR"); } chars.next(); res.push(b'\n'); } Some((_, c)) => res.push(c), None => break, } } Rc::new(res) } pub fn integer_lit(s: &str, suffix: Option, sd: &Handler, sp: Span) -> ast::LitKind { // s can only be ascii, byte indexing is fine let s2 = s.chars().filter(|&c| c != '_').collect::(); let mut s = &s2[..]; debug!("integer_lit: {}, {:?}", s, suffix); let mut base = 10; let orig = s; let mut ty = ast::LitIntType::Unsuffixed; if char_at(s, 0) == '0' && s.len() > 1 { match char_at(s, 1) { 'x' => base = 16, 'o' => base = 8, 'b' => base = 2, _ => { } } } // 1f64 and 2f32 etc. are valid float literals. if let Some(ref suf) = suffix { if looks_like_width_suffix(&['f'], suf) { match base { 16 => sd.span_err(sp, "hexadecimal float literal is not supported"), 8 => sd.span_err(sp, "octal float literal is not supported"), 2 => sd.span_err(sp, "binary float literal is not supported"), _ => () } let ident = token::intern_and_get_ident(&s); return filtered_float_lit(ident, Some(&suf), sd, sp) } } if base != 10 { s = &s[2..]; } if let Some(ref suf) = suffix { if suf.is_empty() { sd.span_bug(sp, "found empty literal suffix in Some")} ty = match &**suf { "isize" => ast::LitIntType::Signed(ast::IntTy::Is), "i8" => ast::LitIntType::Signed(ast::IntTy::I8), "i16" => ast::LitIntType::Signed(ast::IntTy::I16), "i32" => ast::LitIntType::Signed(ast::IntTy::I32), "i64" => ast::LitIntType::Signed(ast::IntTy::I64), "usize" => ast::LitIntType::Unsigned(ast::UintTy::Us), "u8" => ast::LitIntType::Unsigned(ast::UintTy::U8), "u16" => ast::LitIntType::Unsigned(ast::UintTy::U16), "u32" => ast::LitIntType::Unsigned(ast::UintTy::U32), "u64" => ast::LitIntType::Unsigned(ast::UintTy::U64), _ => { // i and u look like widths, so lets // give an error message along those lines if looks_like_width_suffix(&['i', 'u'], suf) { sd.struct_span_err(sp, &format!("invalid width `{}` for integer literal", &suf[1..])) .help("valid widths are 8, 16, 32 and 64") .emit(); } else { sd.struct_span_err(sp, &format!("invalid suffix `{}` for numeric literal", suf)) .help("the suffix must be one of the integral types \ (`u32`, `isize`, etc)") .emit(); } ty } } } debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \ string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix); match u64::from_str_radix(s, base) { Ok(r) => ast::LitKind::Int(r, ty), Err(_) => { // small bases are lexed as if they were base 10, e.g, the string // might be `0b10201`. This will cause the conversion above to fail, // but these cases have errors in the lexer: we don't want to emit // two errors, and we especially don't want to emit this error since // it isn't necessarily true. let already_errored = base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base)); if !already_errored { sd.span_err(sp, "int literal is too large"); } ast::LitKind::Int(0, ty) } } } #[cfg(test)] mod tests { use super::*; use std::rc::Rc; use codemap::{Span, BytePos, Pos, Spanned, NO_EXPANSION}; use ast::{self, TokenTree, PatKind}; use abi::Abi; use attr::{first_attr_value_str_by_name, AttrMetaMethods}; use parse; use parse::parser::Parser; use parse::token::{str_to_ident}; use print::pprust::item_to_string; use ptr::P; use util::parser_testing::{string_to_tts, string_to_parser}; use util::parser_testing::{string_to_expr, string_to_item, string_to_stmt}; // produce a codemap::span fn sp(a: u32, b: u32) -> Span { Span {lo: BytePos(a), hi: BytePos(b), expn_id: NO_EXPANSION} } #[test] fn path_exprs_1() { assert!(string_to_expr("a".to_string()) == P(ast::Expr{ id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path { span: sp(0, 1), global: false, segments: vec!( ast::PathSegment { identifier: str_to_ident("a"), parameters: ast::PathParameters::none(), } ), }), span: sp(0, 1), attrs: None, })) } #[test] fn path_exprs_2 () { assert!(string_to_expr("::a::b".to_string()) == P(ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path { span: sp(0, 6), global: true, segments: vec!( ast::PathSegment { identifier: str_to_ident("a"), parameters: ast::PathParameters::none(), }, ast::PathSegment { identifier: str_to_ident("b"), parameters: ast::PathParameters::none(), } ) }), span: sp(0, 6), attrs: None, })) } #[should_panic] #[test] fn bad_path_expr_1() { string_to_expr("::abc::def::return".to_string()); } // check the token-tree-ization of macros #[test] fn string_to_tts_macro () { let tts = string_to_tts("macro_rules! zip (($a)=>($a))".to_string()); let tts: &[ast::TokenTree] = &tts[..]; match (tts.len(), tts.get(0), tts.get(1), tts.get(2), tts.get(3)) { ( 4, Some(&TokenTree::Token(_, token::Ident(name_macro_rules))), Some(&TokenTree::Token(_, token::Not)), Some(&TokenTree::Token(_, token::Ident(name_zip))), Some(&TokenTree::Delimited(_, ref macro_delimed)), ) if name_macro_rules.name.as_str() == "macro_rules" && name_zip.name.as_str() == "zip" => { let tts = ¯o_delimed.tts[..]; match (tts.len(), tts.get(0), tts.get(1), tts.get(2)) { ( 3, Some(&TokenTree::Delimited(_, ref first_delimed)), Some(&TokenTree::Token(_, token::FatArrow)), Some(&TokenTree::Delimited(_, ref second_delimed)), ) if macro_delimed.delim == token::Paren => { let tts = &first_delimed.tts[..]; match (tts.len(), tts.get(0), tts.get(1)) { ( 2, Some(&TokenTree::Token(_, token::Dollar)), Some(&TokenTree::Token(_, token::Ident(ident))), ) if first_delimed.delim == token::Paren && ident.name.as_str() == "a" => {}, _ => panic!("value 3: {:?}", **first_delimed), } let tts = &second_delimed.tts[..]; match (tts.len(), tts.get(0), tts.get(1)) { ( 2, Some(&TokenTree::Token(_, token::Dollar)), Some(&TokenTree::Token(_, token::Ident(ident))), ) if second_delimed.delim == token::Paren && ident.name.as_str() == "a" => {}, _ => panic!("value 4: {:?}", **second_delimed), } }, _ => panic!("value 2: {:?}", **macro_delimed), } }, _ => panic!("value: {:?}",tts), } } #[test] fn string_to_tts_1() { let tts = string_to_tts("fn a (b : i32) { b; }".to_string()); let expected = vec![ TokenTree::Token(sp(0, 2), token::Ident(str_to_ident("fn"))), TokenTree::Token(sp(3, 4), token::Ident(str_to_ident("a"))), TokenTree::Delimited( sp(5, 14), Rc::new(ast::Delimited { delim: token::DelimToken::Paren, open_span: sp(5, 6), tts: vec![ TokenTree::Token(sp(6, 7), token::Ident(str_to_ident("b"))), TokenTree::Token(sp(8, 9), token::Colon), TokenTree::Token(sp(10, 13), token::Ident(str_to_ident("i32"))), ], close_span: sp(13, 14), })), TokenTree::Delimited( sp(15, 21), Rc::new(ast::Delimited { delim: token::DelimToken::Brace, open_span: sp(15, 16), tts: vec![ TokenTree::Token(sp(17, 18), token::Ident(str_to_ident("b"))), TokenTree::Token(sp(18, 19), token::Semi), ], close_span: sp(20, 21), })) ]; assert_eq!(tts, expected); } #[test] fn ret_expr() { assert!(string_to_expr("return d".to_string()) == P(ast::Expr{ id: ast::DUMMY_NODE_ID, node:ast::ExprKind::Ret(Some(P(ast::Expr{ id: ast::DUMMY_NODE_ID, node:ast::ExprKind::Path(None, ast::Path{ span: sp(7, 8), global: false, segments: vec!( ast::PathSegment { identifier: str_to_ident("d"), parameters: ast::PathParameters::none(), } ), }), span:sp(7,8), attrs: None, }))), span:sp(0,8), attrs: None, })) } #[test] fn parse_stmt_1 () { assert!(string_to_stmt("b;".to_string()) == Some(Spanned{ node: ast::StmtKind::Expr(P(ast::Expr { id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path { span:sp(0,1), global:false, segments: vec!( ast::PathSegment { identifier: str_to_ident("b"), parameters: ast::PathParameters::none(), } ), }), span: sp(0,1), attrs: None}), ast::DUMMY_NODE_ID), span: sp(0,1)})) } fn parser_done(p: Parser){ assert_eq!(p.token.clone(), token::Eof); } #[test] fn parse_ident_pat () { let sess = ParseSess::new(); let mut parser = string_to_parser(&sess, "b".to_string()); assert!(panictry!(parser.parse_pat()) == P(ast::Pat{ id: ast::DUMMY_NODE_ID, node: PatKind::Ident(ast::BindingMode::ByValue(ast::Mutability::Immutable), Spanned{ span:sp(0, 1), node: str_to_ident("b") }, None), span: sp(0,1)})); parser_done(parser); } // check the contents of the tt manually: #[test] fn parse_fundecl () { // this test depends on the intern order of "fn" and "i32" assert_eq!(string_to_item("fn a (b : i32) { b; }".to_string()), Some( P(ast::Item{ident:str_to_ident("a"), attrs:Vec::new(), id: ast::DUMMY_NODE_ID, node: ast::ItemKind::Fn(P(ast::FnDecl { inputs: vec!(ast::Arg{ ty: P(ast::Ty{id: ast::DUMMY_NODE_ID, node: ast::TyKind::Path(None, ast::Path{ span:sp(10,13), global:false, segments: vec!( ast::PathSegment { identifier: str_to_ident("i32"), parameters: ast::PathParameters::none(), } ), }), span:sp(10,13) }), pat: P(ast::Pat { id: ast::DUMMY_NODE_ID, node: PatKind::Ident( ast::BindingMode::ByValue(ast::Mutability::Immutable), Spanned{ span: sp(6,7), node: str_to_ident("b")}, None ), span: sp(6,7) }), id: ast::DUMMY_NODE_ID }), output: ast::FunctionRetTy::Default(sp(15, 15)), variadic: false }), ast::Unsafety::Normal, ast::Constness::NotConst, Abi::Rust, ast::Generics{ // no idea on either of these: lifetimes: Vec::new(), ty_params: P::new(), where_clause: ast::WhereClause { id: ast::DUMMY_NODE_ID, predicates: Vec::new(), } }, P(ast::Block { stmts: vec!(Spanned{ node: ast::StmtKind::Semi(P(ast::Expr{ id: ast::DUMMY_NODE_ID, node: ast::ExprKind::Path(None, ast::Path{ span:sp(17,18), global:false, segments: vec!( ast::PathSegment { identifier: str_to_ident( "b"), parameters: ast::PathParameters::none(), } ), }), span: sp(17,18), attrs: None,}), ast::DUMMY_NODE_ID), span: sp(17,19)}), expr: None, id: ast::DUMMY_NODE_ID, rules: ast::BlockCheckMode::Default, // no idea span: sp(15,21), })), vis: ast::Visibility::Inherited, span: sp(0,21)}))); } #[test] fn parse_use() { let use_s = "use foo::bar::baz;"; let vitem = string_to_item(use_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], use_s); let use_s = "use foo::bar as baz;"; let vitem = string_to_item(use_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], use_s); } #[test] fn parse_extern_crate() { let ex_s = "extern crate foo;"; let vitem = string_to_item(ex_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], ex_s); let ex_s = "extern crate foo as bar;"; let vitem = string_to_item(ex_s.to_string()).unwrap(); let vitem_s = item_to_string(&vitem); assert_eq!(&vitem_s[..], ex_s); } fn get_spans_of_pat_idents(src: &str) -> Vec { let item = string_to_item(src.to_string()).unwrap(); struct PatIdentVisitor { spans: Vec } impl<'v> ::visit::Visitor<'v> for PatIdentVisitor { fn visit_pat(&mut self, p: &'v ast::Pat) { match p.node { PatKind::Ident(_ , ref spannedident, _) => { self.spans.push(spannedident.span.clone()); } _ => { ::visit::walk_pat(self, p); } } } } let mut v = PatIdentVisitor { spans: Vec::new() }; ::visit::walk_item(&mut v, &item); return v.spans; } #[test] fn span_of_self_arg_pat_idents_are_correct() { let srcs = ["impl z { fn a (&self, &myarg: i32) {} }", "impl z { fn a (&mut self, &myarg: i32) {} }", "impl z { fn a (&'a self, &myarg: i32) {} }", "impl z { fn a (self, &myarg: i32) {} }", "impl z { fn a (self: Foo, &myarg: i32) {} }", ]; for &src in &srcs { let spans = get_spans_of_pat_idents(src); let Span{ lo, hi, .. } = spans[0]; assert!("self" == &src[lo.to_usize()..hi.to_usize()], "\"{}\" != \"self\". src=\"{}\"", &src[lo.to_usize()..hi.to_usize()], src) } } #[test] fn parse_exprs () { // just make sure that they parse.... string_to_expr("3 + 4".to_string()); string_to_expr("a::z.froob(b,&(987+3))".to_string()); } #[test] fn attrs_fix_bug () { string_to_item("pub fn mk_file_writer(path: &Path, flags: &[FileFlag]) -> Result, String> { #[cfg(windows)] fn wb() -> c_int { (O_WRONLY | libc::consts::os::extra::O_BINARY) as c_int } #[cfg(unix)] fn wb() -> c_int { O_WRONLY as c_int } let mut fflags: c_int = wb(); }".to_string()); } #[test] fn crlf_doc_comments() { let sess = ParseSess::new(); let name = "".to_string(); let source = "/// doc comment\r\nfn foo() {}".to_string(); let item = parse_item_from_source_str(name.clone(), source, Vec::new(), &sess) .unwrap().unwrap(); let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap(); assert_eq!(&doc[..], "/// doc comment"); let source = "/// doc comment\r\n/// line 2\r\nfn foo() {}".to_string(); let item = parse_item_from_source_str(name.clone(), source, Vec::new(), &sess) .unwrap().unwrap(); let docs = item.attrs.iter().filter(|a| &*a.name() == "doc") .map(|a| a.value_str().unwrap().to_string()).collect::>(); let b: &[_] = &["/// doc comment".to_string(), "/// line 2".to_string()]; assert_eq!(&docs[..], b); let source = "/** doc comment\r\n * with CRLF */\r\nfn foo() {}".to_string(); let item = parse_item_from_source_str(name, source, Vec::new(), &sess).unwrap().unwrap(); let doc = first_attr_value_str_by_name(&item.attrs, "doc").unwrap(); assert_eq!(&doc[..], "/** doc comment\n * with CRLF */"); } #[test] fn ttdelim_span() { let sess = ParseSess::new(); let expr = parse::parse_expr_from_source_str("foo".to_string(), "foo!( fn main() { body } )".to_string(), vec![], &sess).unwrap(); let tts = match expr.node { ast::ExprKind::Mac(ref mac) => mac.node.tts.clone(), _ => panic!("not a macro"), }; let span = tts.iter().rev().next().unwrap().get_span(); match sess.codemap().span_to_snippet(span) { Ok(s) => assert_eq!(&s[..], "{ body }"), Err(_) => panic!("could not get snippet"), } } }