use clippy_utils::diagnostics::{span_lint_and_help, span_lint_and_note, span_lint_and_sugg, span_lint_and_then}; use clippy_utils::paths; use clippy_utils::ty::{implements_trait, implements_trait_with_env, is_copy}; use clippy_utils::{is_lint_allowed, match_def_path}; use if_chain::if_chain; use rustc_errors::Applicability; use rustc_hir::intravisit::{walk_expr, walk_fn, walk_item, FnKind, Visitor}; use rustc_hir::{ self as hir, BlockCheckMode, BodyId, Expr, ExprKind, FnDecl, HirId, Impl, Item, ItemKind, UnsafeSource, Unsafety, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::hir::nested_filter; use rustc_middle::ty::subst::GenericArg; use rustc_middle::ty::{self, BoundConstness, ImplPolarity, ParamEnv, PredicateKind, TraitPredicate, TraitRef, Ty}; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Span; use rustc_span::sym; declare_clippy_lint! { /// ### What it does /// Checks for deriving `Hash` but implementing `PartialEq` /// explicitly or vice versa. /// /// ### Why is this bad? /// The implementation of these traits must agree (for /// example for use with `HashMap`) so it’s probably a bad idea to use a /// default-generated `Hash` implementation with an explicitly defined /// `PartialEq`. In particular, the following must hold for any type: /// /// ```text /// k1 == k2 ⇒ hash(k1) == hash(k2) /// ``` /// /// ### Example /// ```ignore /// #[derive(Hash)] /// struct Foo; /// /// impl PartialEq for Foo { /// ... /// } /// ``` #[clippy::version = "pre 1.29.0"] pub DERIVE_HASH_XOR_EQ, correctness, "deriving `Hash` but implementing `PartialEq` explicitly" } declare_clippy_lint! { /// ### What it does /// Checks for deriving `Ord` but implementing `PartialOrd` /// explicitly or vice versa. /// /// ### Why is this bad? /// The implementation of these traits must agree (for /// example for use with `sort`) so it’s probably a bad idea to use a /// default-generated `Ord` implementation with an explicitly defined /// `PartialOrd`. In particular, the following must hold for any type /// implementing `Ord`: /// /// ```text /// k1.cmp(&k2) == k1.partial_cmp(&k2).unwrap() /// ``` /// /// ### Example /// ```rust,ignore /// #[derive(Ord, PartialEq, Eq)] /// struct Foo; /// /// impl PartialOrd for Foo { /// ... /// } /// ``` /// Use instead: /// ```rust,ignore /// #[derive(PartialEq, Eq)] /// struct Foo; /// /// impl PartialOrd for Foo { /// fn partial_cmp(&self, other: &Foo) -> Option { /// Some(self.cmp(other)) /// } /// } /// /// impl Ord for Foo { /// ... /// } /// ``` /// or, if you don't need a custom ordering: /// ```rust,ignore /// #[derive(Ord, PartialOrd, PartialEq, Eq)] /// struct Foo; /// ``` #[clippy::version = "1.47.0"] pub DERIVE_ORD_XOR_PARTIAL_ORD, correctness, "deriving `Ord` but implementing `PartialOrd` explicitly" } declare_clippy_lint! { /// ### What it does /// Checks for explicit `Clone` implementations for `Copy` /// types. /// /// ### Why is this bad? /// To avoid surprising behavior, these traits should /// agree and the behavior of `Copy` cannot be overridden. In almost all /// situations a `Copy` type should have a `Clone` implementation that does /// nothing more than copy the object, which is what `#[derive(Copy, Clone)]` /// gets you. /// /// ### Example /// ```rust,ignore /// #[derive(Copy)] /// struct Foo; /// /// impl Clone for Foo { /// // .. /// } /// ``` #[clippy::version = "pre 1.29.0"] pub EXPL_IMPL_CLONE_ON_COPY, pedantic, "implementing `Clone` explicitly on `Copy` types" } declare_clippy_lint! { /// ### What it does /// Checks for deriving `serde::Deserialize` on a type that /// has methods using `unsafe`. /// /// ### Why is this bad? /// Deriving `serde::Deserialize` will create a constructor /// that may violate invariants hold by another constructor. /// /// ### Example /// ```rust,ignore /// use serde::Deserialize; /// /// #[derive(Deserialize)] /// pub struct Foo { /// // .. /// } /// /// impl Foo { /// pub fn new() -> Self { /// // setup here .. /// } /// /// pub unsafe fn parts() -> (&str, &str) { /// // assumes invariants hold /// } /// } /// ``` #[clippy::version = "1.45.0"] pub UNSAFE_DERIVE_DESERIALIZE, pedantic, "deriving `serde::Deserialize` on a type that has methods using `unsafe`" } declare_clippy_lint! { /// ### What it does /// Checks for types that derive `PartialEq` and could implement `Eq`. /// /// ### Why is this bad? /// If a type `T` derives `PartialEq` and all of its members implement `Eq`, /// then `T` can always implement `Eq`. Implementing `Eq` allows `T` to be used /// in APIs that require `Eq` types. It also allows structs containing `T` to derive /// `Eq` themselves. /// /// ### Example /// ```rust /// #[derive(PartialEq)] /// struct Foo { /// i_am_eq: i32, /// i_am_eq_too: Vec, /// } /// ``` /// Use instead: /// ```rust /// #[derive(PartialEq, Eq)] /// struct Foo { /// i_am_eq: i32, /// i_am_eq_too: Vec, /// } /// ``` #[clippy::version = "1.62.0"] pub DERIVE_PARTIAL_EQ_WITHOUT_EQ, style, "deriving `PartialEq` on a type that can implement `Eq`, without implementing `Eq`" } declare_lint_pass!(Derive => [ EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ, DERIVE_ORD_XOR_PARTIAL_ORD, UNSAFE_DERIVE_DESERIALIZE, DERIVE_PARTIAL_EQ_WITHOUT_EQ ]); impl<'tcx> LateLintPass<'tcx> for Derive { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if let ItemKind::Impl(Impl { of_trait: Some(ref trait_ref), .. }) = item.kind { let ty = cx.tcx.type_of(item.def_id); let is_automatically_derived = cx.tcx.has_attr(item.def_id.to_def_id(), sym::automatically_derived); check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived); check_ord_partial_ord(cx, item.span, trait_ref, ty, is_automatically_derived); if is_automatically_derived { check_unsafe_derive_deserialize(cx, item, trait_ref, ty); check_partial_eq_without_eq(cx, item.span, trait_ref, ty); } else { check_copy_clone(cx, item, trait_ref, ty); } } } } /// Implementation of the `DERIVE_HASH_XOR_EQ` lint. fn check_hash_peq<'tcx>( cx: &LateContext<'tcx>, span: Span, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>, hash_is_automatically_derived: bool, ) { if_chain! { if let Some(peq_trait_def_id) = cx.tcx.lang_items().eq_trait(); if let Some(def_id) = trait_ref.trait_def_id(); if cx.tcx.is_diagnostic_item(sym::Hash, def_id); then { // Look for the PartialEq implementations for `ty` cx.tcx.for_each_relevant_impl(peq_trait_def_id, ty, |impl_id| { let peq_is_automatically_derived = cx.tcx.has_attr(impl_id, sym::automatically_derived); if peq_is_automatically_derived == hash_is_automatically_derived { return; } let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); // Only care about `impl PartialEq for Foo` // For `impl PartialEq for A, input_types is [A, B] if trait_ref.substs.type_at(1) == ty { let mess = if peq_is_automatically_derived { "you are implementing `Hash` explicitly but have derived `PartialEq`" } else { "you are deriving `Hash` but have implemented `PartialEq` explicitly" }; span_lint_and_then( cx, DERIVE_HASH_XOR_EQ, span, mess, |diag| { if let Some(local_def_id) = impl_id.as_local() { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id); diag.span_note( cx.tcx.hir().span(hir_id), "`PartialEq` implemented here" ); } } ); } }); } } } /// Implementation of the `DERIVE_ORD_XOR_PARTIAL_ORD` lint. fn check_ord_partial_ord<'tcx>( cx: &LateContext<'tcx>, span: Span, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>, ord_is_automatically_derived: bool, ) { if_chain! { if let Some(ord_trait_def_id) = cx.tcx.get_diagnostic_item(sym::Ord); if let Some(partial_ord_trait_def_id) = cx.tcx.lang_items().partial_ord_trait(); if let Some(def_id) = &trait_ref.trait_def_id(); if *def_id == ord_trait_def_id; then { // Look for the PartialOrd implementations for `ty` cx.tcx.for_each_relevant_impl(partial_ord_trait_def_id, ty, |impl_id| { let partial_ord_is_automatically_derived = cx.tcx.has_attr(impl_id, sym::automatically_derived); if partial_ord_is_automatically_derived == ord_is_automatically_derived { return; } let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); // Only care about `impl PartialOrd for Foo` // For `impl PartialOrd for A, input_types is [A, B] if trait_ref.substs.type_at(1) == ty { let mess = if partial_ord_is_automatically_derived { "you are implementing `Ord` explicitly but have derived `PartialOrd`" } else { "you are deriving `Ord` but have implemented `PartialOrd` explicitly" }; span_lint_and_then( cx, DERIVE_ORD_XOR_PARTIAL_ORD, span, mess, |diag| { if let Some(local_def_id) = impl_id.as_local() { let hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id); diag.span_note( cx.tcx.hir().span(hir_id), "`PartialOrd` implemented here" ); } } ); } }); } } } /// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint. fn check_copy_clone<'tcx>(cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>) { let clone_id = match cx.tcx.lang_items().clone_trait() { Some(id) if trait_ref.trait_def_id() == Some(id) => id, _ => return, }; let copy_id = match cx.tcx.lang_items().copy_trait() { Some(id) => id, None => return, }; let (ty_adt, ty_subs) = match *ty.kind() { // Unions can't derive clone. ty::Adt(adt, subs) if !adt.is_union() => (adt, subs), _ => return, }; // If the current self type doesn't implement Copy (due to generic constraints), search to see if // there's a Copy impl for any instance of the adt. if !is_copy(cx, ty) { if ty_subs.non_erasable_generics().next().is_some() { let has_copy_impl = cx.tcx.all_local_trait_impls(()).get(©_id).map_or(false, |impls| { impls .iter() .any(|&id| matches!(cx.tcx.type_of(id).kind(), ty::Adt(adt, _) if ty_adt.did() == adt.did())) }); if !has_copy_impl { return; } } else { return; } } // Derive constrains all generic types to requiring Clone. Check if any type is not constrained for // this impl. if ty_subs.types().any(|ty| !implements_trait(cx, ty, clone_id, &[])) { return; } span_lint_and_note( cx, EXPL_IMPL_CLONE_ON_COPY, item.span, "you are implementing `Clone` explicitly on a `Copy` type", Some(item.span), "consider deriving `Clone` or removing `Copy`", ); } /// Implementation of the `UNSAFE_DERIVE_DESERIALIZE` lint. fn check_unsafe_derive_deserialize<'tcx>( cx: &LateContext<'tcx>, item: &Item<'_>, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>, ) { fn has_unsafe<'tcx>(cx: &LateContext<'tcx>, item: &'tcx Item<'_>) -> bool { let mut visitor = UnsafeVisitor { cx, has_unsafe: false }; walk_item(&mut visitor, item); visitor.has_unsafe } if_chain! { if let Some(trait_def_id) = trait_ref.trait_def_id(); if match_def_path(cx, trait_def_id, &paths::SERDE_DESERIALIZE); if let ty::Adt(def, _) = ty.kind(); if let Some(local_def_id) = def.did().as_local(); let adt_hir_id = cx.tcx.hir().local_def_id_to_hir_id(local_def_id); if !is_lint_allowed(cx, UNSAFE_DERIVE_DESERIALIZE, adt_hir_id); if cx.tcx.inherent_impls(def.did()) .iter() .map(|imp_did| cx.tcx.hir().expect_item(imp_did.expect_local())) .any(|imp| has_unsafe(cx, imp)); then { span_lint_and_help( cx, UNSAFE_DERIVE_DESERIALIZE, item.span, "you are deriving `serde::Deserialize` on a type that has methods using `unsafe`", None, "consider implementing `serde::Deserialize` manually. See https://serde.rs/impl-deserialize.html" ); } } } struct UnsafeVisitor<'a, 'tcx> { cx: &'a LateContext<'tcx>, has_unsafe: bool, } impl<'tcx> Visitor<'tcx> for UnsafeVisitor<'_, 'tcx> { type NestedFilter = nested_filter::All; fn visit_fn(&mut self, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body_id: BodyId, span: Span, id: HirId) { if self.has_unsafe { return; } if_chain! { if let Some(header) = kind.header(); if header.unsafety == Unsafety::Unsafe; then { self.has_unsafe = true; } } walk_fn(self, kind, decl, body_id, span, id); } fn visit_expr(&mut self, expr: &'tcx Expr<'_>) { if self.has_unsafe { return; } if let ExprKind::Block(block, _) = expr.kind { if block.rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) { self.has_unsafe = true; } } walk_expr(self, expr); } fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } } /// Implementation of the `DERIVE_PARTIAL_EQ_WITHOUT_EQ` lint. fn check_partial_eq_without_eq<'tcx>(cx: &LateContext<'tcx>, span: Span, trait_ref: &hir::TraitRef<'_>, ty: Ty<'tcx>) { if_chain! { if let ty::Adt(adt, substs) = ty.kind(); if let Some(eq_trait_def_id) = cx.tcx.get_diagnostic_item(sym::Eq); if let Some(peq_trait_def_id) = cx.tcx.get_diagnostic_item(sym::PartialEq); if let Some(def_id) = trait_ref.trait_def_id(); if cx.tcx.is_diagnostic_item(sym::PartialEq, def_id); // New `ParamEnv` replacing `T: PartialEq` with `T: Eq` let param_env = ParamEnv::new( cx.tcx.mk_predicates(cx.param_env.caller_bounds().iter().map(|p| { let kind = p.kind(); match kind.skip_binder() { PredicateKind::Trait(p) if p.trait_ref.def_id == peq_trait_def_id && p.trait_ref.substs.get(0) == p.trait_ref.substs.get(1) && matches!(p.trait_ref.self_ty().kind(), ty::Param(_)) && p.constness == BoundConstness::NotConst && p.polarity == ImplPolarity::Positive => { cx.tcx.mk_predicate(kind.rebind(PredicateKind::Trait(TraitPredicate { trait_ref: TraitRef::new( eq_trait_def_id, cx.tcx.mk_substs([GenericArg::from(p.trait_ref.self_ty())].into_iter()), ), constness: BoundConstness::NotConst, polarity: ImplPolarity::Positive, }))) }, _ => p, } })), cx.param_env.reveal(), cx.param_env.constness(), ); if !implements_trait_with_env(cx.tcx, param_env, ty, eq_trait_def_id, substs); then { // If all of our fields implement `Eq`, we can implement `Eq` too for variant in adt.variants() { for field in &variant.fields { let ty = field.ty(cx.tcx, substs); if !implements_trait(cx, ty, eq_trait_def_id, substs) { return; } } } span_lint_and_sugg( cx, DERIVE_PARTIAL_EQ_WITHOUT_EQ, span.ctxt().outer_expn_data().call_site, "you are deriving `PartialEq` and can implement `Eq`", "consider deriving `Eq` as well", "PartialEq, Eq".to_string(), Applicability::MachineApplicable, ) } } }