// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * Higher-level interfaces to libc::* functions and operating system services. * * In general these take and return rust types, use rust idioms (enums, * closures, vectors) rather than C idioms, and do more extensive safety * checks. * * This module is not meant to only contain 1:1 mappings to libc entries; any * os-interface code that is reasonably useful and broadly applicable can go * here. Including utility routines that merely build on other os code. * * We assume the general case is that users do not care, and do not want to * be made to care, which operating system they are on. While they may want * to special case various special cases -- and so we will not _hide_ the * facts of which OS the user is on -- they should be given the opportunity * to write OS-ignorant code by default. */ #![experimental] #![allow(missing_doc)] #![allow(non_snake_case)] use clone::Clone; use collections::{Collection, MutableSeq}; use fmt; use io::{IoResult, IoError}; use iter::Iterator; use libc::{c_void, c_int}; use libc; use ops::Drop; use option::{Some, None, Option}; use os; use path::{Path, GenericPath, BytesContainer}; use ptr::RawPtr; use ptr; use result::{Err, Ok, Result}; use slice::{AsSlice, ImmutableSlice, MutableSlice, ImmutablePartialEqSlice}; use slice::CloneableVector; use str::{Str, StrSlice, StrAllocating}; use string::String; use sync::atomic::{AtomicInt, INIT_ATOMIC_INT, SeqCst}; use vec::Vec; #[cfg(unix)] use c_str::ToCStr; #[cfg(unix)] use libc::c_char; /// Get the number of cores available pub fn num_cpus() -> uint { unsafe { return rust_get_num_cpus() as uint; } extern { fn rust_get_num_cpus() -> libc::uintptr_t; } } pub static TMPBUF_SZ : uint = 1000u; static BUF_BYTES : uint = 2048u; /// Returns the current working directory as a Path. /// /// # Failure /// /// Fails if the current working directory value is invalid: /// Possibles cases: /// /// * Current directory does not exist. /// * There are insufficient permissions to access the current directory. /// /// # Example /// /// ```rust /// use std::os; /// /// // We assume that we are in a valid directory like "/home". /// let current_working_directory = os::getcwd(); /// println!("The current directory is {}", current_working_directory.display()); /// // /home /// ``` #[cfg(unix)] pub fn getcwd() -> Path { use c_str::CString; let mut buf = [0 as c_char, ..BUF_BYTES]; unsafe { if libc::getcwd(buf.as_mut_ptr(), buf.len() as libc::size_t).is_null() { fail!() } Path::new(CString::new(buf.as_ptr(), false)) } } /// Returns the current working directory as a Path. /// /// # Failure /// /// Fails if the current working directory value is invalid. /// Possibles cases: /// /// * Current directory does not exist. /// * There are insufficient permissions to access the current directory. /// /// # Example /// /// ```rust /// use std::os; /// /// // We assume that we are in a valid directory like "C:\\Windows". /// let current_working_directory = os::getcwd(); /// println!("The current directory is {}", current_working_directory.display()); /// // C:\\Windows /// ``` #[cfg(windows)] pub fn getcwd() -> Path { use libc::DWORD; use libc::GetCurrentDirectoryW; let mut buf = [0 as u16, ..BUF_BYTES]; unsafe { if libc::GetCurrentDirectoryW(buf.len() as DWORD, buf.as_mut_ptr()) == 0 as DWORD { fail!(); } } Path::new(String::from_utf16(::str::truncate_utf16_at_nul(buf)) .expect("GetCurrentDirectoryW returned invalid UTF-16")) } #[cfg(windows)] pub mod windows { use libc::types::os::arch::extra::DWORD; use libc; use option::{None, Option}; use option; use os::TMPBUF_SZ; use slice::MutableSlice; use string::String; use str::StrSlice; use vec::Vec; pub fn fill_utf16_buf_and_decode(f: |*mut u16, DWORD| -> DWORD) -> Option { unsafe { let mut n = TMPBUF_SZ as DWORD; let mut res = None; let mut done = false; while !done { let mut buf = Vec::from_elem(n as uint, 0u16); let k = f(buf.as_mut_ptr(), n); if k == (0 as DWORD) { done = true; } else if k == n && libc::GetLastError() == libc::ERROR_INSUFFICIENT_BUFFER as DWORD { n *= 2 as DWORD; } else if k >= n { n = k; } else { done = true; } if k != 0 && done { let sub = buf.slice(0, k as uint); // We want to explicitly catch the case when the // closure returned invalid UTF-16, rather than // set `res` to None and continue. let s = String::from_utf16(sub) .expect("fill_utf16_buf_and_decode: closure created invalid UTF-16"); res = option::Some(s) } } return res; } } } /* Accessing environment variables is not generally threadsafe. Serialize access through a global lock. */ fn with_env_lock(f: || -> T) -> T { use rt::mutex::{StaticNativeMutex, NATIVE_MUTEX_INIT}; static mut lock: StaticNativeMutex = NATIVE_MUTEX_INIT; unsafe { let _guard = lock.lock(); f() } } /// Returns a vector of (variable, value) pairs, for all the environment /// variables of the current process. /// /// Invalid UTF-8 bytes are replaced with \uFFFD. See `String::from_utf8_lossy()` /// for details. /// /// # Example /// /// ```rust /// use std::os; /// /// // We will iterate through the references to the element returned by os::env(); /// for &(ref key, ref value) in os::env().iter() { /// println!("'{}': '{}'", key, value ); /// } /// ``` pub fn env() -> Vec<(String,String)> { env_as_bytes().into_iter().map(|(k,v)| { let k = String::from_utf8_lossy(k.as_slice()).into_string(); let v = String::from_utf8_lossy(v.as_slice()).into_string(); (k,v) }).collect() } /// Returns a vector of (variable, value) byte-vector pairs for all the /// environment variables of the current process. pub fn env_as_bytes() -> Vec<(Vec,Vec)> { unsafe { #[cfg(windows)] unsafe fn get_env_pairs() -> Vec> { use slice::raw; use libc::funcs::extra::kernel32::{ GetEnvironmentStringsW, FreeEnvironmentStringsW }; let ch = GetEnvironmentStringsW(); if ch as uint == 0 { fail!("os::env() failure getting env string from OS: {}", os::last_os_error()); } // Here, we lossily decode the string as UTF16. // // The docs suggest that the result should be in Unicode, but // Windows doesn't guarantee it's actually UTF16 -- it doesn't // validate the environment string passed to CreateProcess nor // SetEnvironmentVariable. Yet, it's unlikely that returning a // raw u16 buffer would be of practical use since the result would // be inherently platform-dependent and introduce additional // complexity to this code. // // Using the non-Unicode version of GetEnvironmentStrings is even // worse since the result is in an OEM code page. Characters that // can't be encoded in the code page would be turned into question // marks. let mut result = Vec::new(); let mut i = 0; while *ch.offset(i) != 0 { let p = &*ch.offset(i); let mut len = 0; while *(p as *const _).offset(len) != 0 { len += 1; } raw::buf_as_slice(p, len as uint, |s| { result.push(String::from_utf16_lossy(s).into_bytes()); }); i += len as int + 1; } FreeEnvironmentStringsW(ch); result } #[cfg(unix)] unsafe fn get_env_pairs() -> Vec> { use c_str::CString; extern { fn rust_env_pairs() -> *const *const c_char; } let mut environ = rust_env_pairs(); if environ as uint == 0 { fail!("os::env() failure getting env string from OS: {}", os::last_os_error()); } let mut result = Vec::new(); while *environ != 0 as *const _ { let env_pair = CString::new(*environ, false).as_bytes_no_nul().to_vec(); result.push(env_pair); environ = environ.offset(1); } result } fn env_convert(input: Vec>) -> Vec<(Vec, Vec)> { let mut pairs = Vec::new(); for p in input.iter() { let mut it = p.as_slice().splitn(1, |b| *b == b'='); let key = it.next().unwrap().to_vec(); let default: &[u8] = &[]; let val = it.next().unwrap_or(default).to_vec(); pairs.push((key, val)); } pairs } with_env_lock(|| { let unparsed_environ = get_env_pairs(); env_convert(unparsed_environ) }) } } #[cfg(unix)] /// Fetches the environment variable `n` from the current process, returning /// None if the variable isn't set. /// /// Any invalid UTF-8 bytes in the value are replaced by \uFFFD. See /// `String::from_utf8_lossy()` for details. /// /// # Failure /// /// Fails if `n` has any interior NULs. /// /// # Example /// /// ```rust /// use std::os; /// /// let key = "HOME"; /// match os::getenv(key) { /// Some(val) => println!("{}: {}", key, val), /// None => println!("{} is not defined in the environment.", key) /// } /// ``` pub fn getenv(n: &str) -> Option { getenv_as_bytes(n).map(|v| String::from_utf8_lossy(v.as_slice()).into_string()) } #[cfg(unix)] /// Fetches the environment variable `n` byte vector from the current process, /// returning None if the variable isn't set. /// /// # Failure /// /// Fails if `n` has any interior NULs. pub fn getenv_as_bytes(n: &str) -> Option> { use c_str::CString; unsafe { with_env_lock(|| { let s = n.with_c_str(|buf| libc::getenv(buf)); if s.is_null() { None } else { Some(CString::new(s as *const i8, false).as_bytes_no_nul().to_vec()) } }) } } #[cfg(windows)] /// Fetches the environment variable `n` from the current process, returning /// None if the variable isn't set. pub fn getenv(n: &str) -> Option { unsafe { with_env_lock(|| { use os::windows::{fill_utf16_buf_and_decode}; let mut n: Vec = n.utf16_units().collect(); n.push(0); fill_utf16_buf_and_decode(|buf, sz| { libc::GetEnvironmentVariableW(n.as_ptr(), buf, sz) }) }) } } #[cfg(windows)] /// Fetches the environment variable `n` byte vector from the current process, /// returning None if the variable isn't set. pub fn getenv_as_bytes(n: &str) -> Option> { getenv(n).map(|s| s.into_bytes()) } /// Sets the environment variable `n` to the value `v` for the currently running /// process. /// /// # Example /// /// ```rust /// use std::os; /// /// let key = "KEY"; /// os::setenv(key, "VALUE"); /// match os::getenv(key) { /// Some(ref val) => println!("{}: {}", key, val), /// None => println!("{} is not defined in the environment.", key) /// } /// ``` pub fn setenv(n: &str, v: T) { #[cfg(unix)] fn _setenv(n: &str, v: &[u8]) { unsafe { with_env_lock(|| { n.with_c_str(|nbuf| { v.with_c_str(|vbuf| { libc::funcs::posix01::unistd::setenv(nbuf, vbuf, 1); }) }) }) } } #[cfg(windows)] fn _setenv(n: &str, v: &[u8]) { let mut n: Vec = n.utf16_units().collect(); n.push(0); let mut v: Vec = ::str::from_utf8(v).unwrap().utf16_units().collect(); v.push(0); unsafe { with_env_lock(|| { libc::SetEnvironmentVariableW(n.as_ptr(), v.as_ptr()); }) } } _setenv(n, v.container_as_bytes()) } /// Remove a variable from the environment entirely. pub fn unsetenv(n: &str) { #[cfg(unix)] fn _unsetenv(n: &str) { unsafe { with_env_lock(|| { n.with_c_str(|nbuf| { libc::funcs::posix01::unistd::unsetenv(nbuf); }) }) } } #[cfg(windows)] fn _unsetenv(n: &str) { let mut n: Vec = n.utf16_units().collect(); n.push(0); unsafe { with_env_lock(|| { libc::SetEnvironmentVariableW(n.as_ptr(), ptr::null()); }) } } _unsetenv(n); } /// Parses input according to platform conventions for the `PATH` /// environment variable. /// /// # Example /// ```rust /// use std::os; /// /// let key = "PATH"; /// match os::getenv_as_bytes(key) { /// Some(paths) => { /// for path in os::split_paths(paths).iter() { /// println!("'{}'", path.display()); /// } /// } /// None => println!("{} is not defined in the environment.", key) /// } /// ``` pub fn split_paths(unparsed: T) -> Vec { #[cfg(unix)] fn _split_paths(unparsed: T) -> Vec { unparsed.container_as_bytes() .split(|b| *b == b':') .map(Path::new) .collect() } #[cfg(windows)] fn _split_paths(unparsed: T) -> Vec { // On Windows, the PATH environment variable is semicolon separated. Double // quotes are used as a way of introducing literal semicolons (since // c:\some;dir is a valid Windows path). Double quotes are not themselves // permitted in path names, so there is no way to escape a double quote. // Quoted regions can appear in arbitrary locations, so // // c:\foo;c:\som"e;di"r;c:\bar // // Should parse as [c:\foo, c:\some;dir, c:\bar]. // // (The above is based on testing; there is no clear reference available // for the grammar.) let mut parsed = Vec::new(); let mut in_progress = Vec::new(); let mut in_quote = false; for b in unparsed.container_as_bytes().iter() { match *b { b';' if !in_quote => { parsed.push(Path::new(in_progress.as_slice())); in_progress.truncate(0) } b'"' => { in_quote = !in_quote; } _ => { in_progress.push(*b); } } } parsed.push(Path::new(in_progress)); parsed } _split_paths(unparsed) } /// Joins a collection of `Path`s appropriately for the `PATH` /// environment variable. /// /// Returns a `Vec` on success, since `Path`s are not utf-8 /// encoded on all platforms. /// /// Returns an `Err` (containing an error message) if one of the input /// `Path`s contains an invalid character for constructing the `PATH` /// variable (a double quote on Windows or a colon on Unix). /// /// # Example /// /// ```rust /// use std::os; /// use std::path::Path; /// /// let key = "PATH"; /// let mut paths = os::getenv_as_bytes(key).map_or(Vec::new(), os::split_paths); /// paths.push(Path::new("/home/xyz/bin")); /// os::setenv(key, os::join_paths(paths.as_slice()).unwrap()); /// ``` pub fn join_paths(paths: &[T]) -> Result, &'static str> { #[cfg(windows)] fn _join_paths(paths: &[T]) -> Result, &'static str> { let mut joined = Vec::new(); let sep = b';'; for (i, path) in paths.iter().map(|p| p.container_as_bytes()).enumerate() { if i > 0 { joined.push(sep) } if path.contains(&b'"') { return Err("path segment contains `\"`"); } else if path.contains(&sep) { joined.push(b'"'); joined.push_all(path); joined.push(b'"'); } else { joined.push_all(path); } } Ok(joined) } #[cfg(unix)] fn _join_paths(paths: &[T]) -> Result, &'static str> { let mut joined = Vec::new(); let sep = b':'; for (i, path) in paths.iter().map(|p| p.container_as_bytes()).enumerate() { if i > 0 { joined.push(sep) } if path.contains(&sep) { return Err("path segment contains separator `:`") } joined.push_all(path); } Ok(joined) } _join_paths(paths) } /// A low-level OS in-memory pipe. pub struct Pipe { /// A file descriptor representing the reading end of the pipe. Data written /// on the `out` file descriptor can be read from this file descriptor. pub reader: c_int, /// A file descriptor representing the write end of the pipe. Data written /// to this file descriptor can be read from the `input` file descriptor. pub writer: c_int, } /// Creates a new low-level OS in-memory pipe. /// /// This function can fail to succeed if there are no more resources available /// to allocate a pipe. /// /// This function is also unsafe as there is no destructor associated with the /// `Pipe` structure will return. If it is not arranged for the returned file /// descriptors to be closed, the file descriptors will leak. For safe handling /// of this scenario, use `std::io::PipeStream` instead. pub unsafe fn pipe() -> IoResult { return _pipe(); #[cfg(unix)] unsafe fn _pipe() -> IoResult { let mut fds = [0, ..2]; match libc::pipe(fds.as_mut_ptr()) { 0 => Ok(Pipe { reader: fds[0], writer: fds[1] }), _ => Err(IoError::last_error()), } } #[cfg(windows)] unsafe fn _pipe() -> IoResult { // Windows pipes work subtly differently than unix pipes, and their // inheritance has to be handled in a different way that I do not // fully understand. Here we explicitly make the pipe non-inheritable, // which means to pass it to a subprocess they need to be duplicated // first, as in std::run. let mut fds = [0, ..2]; match libc::pipe(fds.as_mut_ptr(), 1024 as ::libc::c_uint, (libc::O_BINARY | libc::O_NOINHERIT) as c_int) { 0 => { assert!(fds[0] != -1 && fds[0] != 0); assert!(fds[1] != -1 && fds[1] != 0); Ok(Pipe { reader: fds[0], writer: fds[1] }) } _ => Err(IoError::last_error()), } } } /// Returns the proper dll filename for the given basename of a file /// as a String. #[cfg(not(target_os="ios"))] pub fn dll_filename(base: &str) -> String { format!("{}{}{}", consts::DLL_PREFIX, base, consts::DLL_SUFFIX) } /// Optionally returns the filesystem path to the current executable which is /// running but with the executable name. /// /// # Examples /// /// ```rust /// use std::os; /// /// match os::self_exe_name() { /// Some(exe_path) => println!("Path of this executable is: {}", exe_path.display()), /// None => println!("Unable to get the path of this executable!") /// }; /// ``` pub fn self_exe_name() -> Option { #[cfg(any(target_os = "freebsd", target_os = "dragonfly"))] fn load_self() -> Option> { unsafe { use libc::funcs::bsd44::*; use libc::consts::os::extra::*; let mut mib = vec![CTL_KERN as c_int, KERN_PROC as c_int, KERN_PROC_PATHNAME as c_int, -1 as c_int]; let mut sz: libc::size_t = 0; let err = sysctl(mib.as_mut_ptr(), mib.len() as ::libc::c_uint, ptr::null_mut(), &mut sz, ptr::null_mut(), 0u as libc::size_t); if err != 0 { return None; } if sz == 0 { return None; } let mut v: Vec = Vec::with_capacity(sz as uint); let err = sysctl(mib.as_mut_ptr(), mib.len() as ::libc::c_uint, v.as_mut_ptr() as *mut c_void, &mut sz, ptr::null_mut(), 0u as libc::size_t); if err != 0 { return None; } if sz == 0 { return None; } v.set_len(sz as uint - 1); // chop off trailing NUL Some(v) } } #[cfg(any(target_os = "linux", target_os = "android"))] fn load_self() -> Option> { use std::io; match io::fs::readlink(&Path::new("/proc/self/exe")) { Ok(path) => Some(path.into_vec()), Err(..) => None } } #[cfg(any(target_os = "macos", target_os = "ios"))] fn load_self() -> Option> { unsafe { use libc::funcs::extra::_NSGetExecutablePath; let mut sz: u32 = 0; _NSGetExecutablePath(ptr::null_mut(), &mut sz); if sz == 0 { return None; } let mut v: Vec = Vec::with_capacity(sz as uint); let err = _NSGetExecutablePath(v.as_mut_ptr() as *mut i8, &mut sz); if err != 0 { return None; } v.set_len(sz as uint - 1); // chop off trailing NUL Some(v) } } #[cfg(windows)] fn load_self() -> Option> { unsafe { use os::windows::fill_utf16_buf_and_decode; fill_utf16_buf_and_decode(|buf, sz| { libc::GetModuleFileNameW(0u as libc::DWORD, buf, sz) }).map(|s| s.into_string().into_bytes()) } } load_self().and_then(Path::new_opt) } /// Optionally returns the filesystem path to the current executable which is /// running. /// /// Like self_exe_name() but without the binary's name. /// /// # Example /// /// ```rust /// use std::os; /// /// match os::self_exe_path() { /// Some(exe_path) => println!("Executable's Path is: {}", exe_path.display()), /// None => println!("Impossible to fetch the path of this executable.") /// }; /// ``` pub fn self_exe_path() -> Option { self_exe_name().map(|mut p| { p.pop(); p }) } /// Optionally returns the path to the current user's home directory if known. /// /// # Unix /// /// Returns the value of the 'HOME' environment variable if it is set /// and not equal to the empty string. /// /// # Windows /// /// Returns the value of the 'HOME' environment variable if it is /// set and not equal to the empty string. Otherwise, returns the value of the /// 'USERPROFILE' environment variable if it is set and not equal to the empty /// string. /// /// # Example /// /// ```rust /// use std::os; /// /// match os::homedir() { /// Some(ref p) => println!("{}", p.display()), /// None => println!("Impossible to get your home dir!") /// } /// ``` pub fn homedir() -> Option { #[inline] #[cfg(unix)] fn _homedir() -> Option { aux_homedir("HOME") } #[inline] #[cfg(windows)] fn _homedir() -> Option { aux_homedir("HOME").or(aux_homedir("USERPROFILE")) } #[inline] fn aux_homedir(home_name: &str) -> Option { match getenv_as_bytes(home_name) { Some(p) => { if p.is_empty() { None } else { Path::new_opt(p) } }, _ => None } } _homedir() } /** * Returns the path to a temporary directory. * * On Unix, returns the value of the 'TMPDIR' environment variable if it is * set, otherwise for non-Android it returns '/tmp'. If Android, since there * is no global temporary folder (it is usually allocated per-app), we return * '/data/local/tmp'. * * On Windows, returns the value of, in order, the 'TMP', 'TEMP', * 'USERPROFILE' environment variable if any are set and not the empty * string. Otherwise, tmpdir returns the path to the Windows directory. */ pub fn tmpdir() -> Path { return lookup(); fn getenv_nonempty(v: &str) -> Option { match getenv(v) { Some(x) => if x.is_empty() { None } else { Path::new_opt(x) }, _ => None } } #[cfg(unix)] fn lookup() -> Path { let default = if cfg!(target_os = "android") { Path::new("/data/local/tmp") } else { Path::new("/tmp") }; getenv_nonempty("TMPDIR").unwrap_or(default) } #[cfg(windows)] fn lookup() -> Path { getenv_nonempty("TMP").or( getenv_nonempty("TEMP").or( getenv_nonempty("USERPROFILE").or( getenv_nonempty("WINDIR")))).unwrap_or(Path::new("C:\\Windows")) } } /// /// Convert a relative path to an absolute path /// /// If the given path is relative, return it prepended with the current working /// directory. If the given path is already an absolute path, return it /// as is. /// /// # Example /// ```rust /// use std::os; /// use std::path::Path; /// /// // Assume we're in a path like /home/someuser /// let rel_path = Path::new(".."); /// let abs_path = os::make_absolute(&rel_path); /// println!("The absolute path is {}", abs_path.display()); /// // Prints "The absolute path is /home" /// ``` // NB: this is here rather than in path because it is a form of environment // querying; what it does depends on the process working directory, not just // the input paths. pub fn make_absolute(p: &Path) -> Path { if p.is_absolute() { p.clone() } else { let mut ret = getcwd(); ret.push(p); ret } } /// Changes the current working directory to the specified path, returning /// whether the change was completed successfully or not. /// /// # Example /// ```rust /// use std::os; /// use std::path::Path; /// /// let root = Path::new("/"); /// assert!(os::change_dir(&root)); /// println!("Successfully changed working directory to {}!", root.display()); /// ``` pub fn change_dir(p: &Path) -> bool { return chdir(p); #[cfg(windows)] fn chdir(p: &Path) -> bool { let p = match p.as_str() { Some(s) => { let mut p = s.utf16_units().collect::>(); p.push(0); p } None => return false, }; unsafe { libc::SetCurrentDirectoryW(p.as_ptr()) != (0 as libc::BOOL) } } #[cfg(unix)] fn chdir(p: &Path) -> bool { p.with_c_str(|buf| { unsafe { libc::chdir(buf) == (0 as c_int) } }) } } #[cfg(unix)] /// Returns the platform-specific value of errno pub fn errno() -> int { #[cfg(any(target_os = "macos", target_os = "ios", target_os = "freebsd"))] fn errno_location() -> *const c_int { extern { fn __error() -> *const c_int; } unsafe { __error() } } #[cfg(target_os = "dragonfly")] fn errno_location() -> *const c_int { extern { fn __dfly_error() -> *const c_int; } unsafe { __dfly_error() } } #[cfg(any(target_os = "linux", target_os = "android"))] fn errno_location() -> *const c_int { extern { fn __errno_location() -> *const c_int; } unsafe { __errno_location() } } unsafe { (*errno_location()) as int } } #[cfg(windows)] /// Returns the platform-specific value of errno pub fn errno() -> uint { use libc::types::os::arch::extra::DWORD; #[link_name = "kernel32"] extern "system" { fn GetLastError() -> DWORD; } unsafe { GetLastError() as uint } } /// Return the string corresponding to an `errno()` value of `errnum`. /// # Example /// ```rust /// use std::os; /// /// // Same as println!("{}", last_os_error()); /// println!("{}", os::error_string(os::errno() as uint)); /// ``` pub fn error_string(errnum: uint) -> String { return strerror(errnum); #[cfg(unix)] fn strerror(errnum: uint) -> String { #[cfg(any(target_os = "macos", target_os = "ios", target_os = "android", target_os = "freebsd", target_os = "dragonfly"))] fn strerror_r(errnum: c_int, buf: *mut c_char, buflen: libc::size_t) -> c_int { extern { fn strerror_r(errnum: c_int, buf: *mut c_char, buflen: libc::size_t) -> c_int; } unsafe { strerror_r(errnum, buf, buflen) } } // GNU libc provides a non-compliant version of strerror_r by default // and requires macros to instead use the POSIX compliant variant. // So we just use __xpg_strerror_r which is always POSIX compliant #[cfg(target_os = "linux")] fn strerror_r(errnum: c_int, buf: *mut c_char, buflen: libc::size_t) -> c_int { extern { fn __xpg_strerror_r(errnum: c_int, buf: *mut c_char, buflen: libc::size_t) -> c_int; } unsafe { __xpg_strerror_r(errnum, buf, buflen) } } let mut buf = [0 as c_char, ..TMPBUF_SZ]; let p = buf.as_mut_ptr(); unsafe { if strerror_r(errnum as c_int, p, buf.len() as libc::size_t) < 0 { fail!("strerror_r failure"); } ::string::raw::from_buf(p as *const u8) } } #[cfg(windows)] fn strerror(errnum: uint) -> String { use libc::types::os::arch::extra::DWORD; use libc::types::os::arch::extra::LPWSTR; use libc::types::os::arch::extra::LPVOID; use libc::types::os::arch::extra::WCHAR; #[link_name = "kernel32"] extern "system" { fn FormatMessageW(flags: DWORD, lpSrc: LPVOID, msgId: DWORD, langId: DWORD, buf: LPWSTR, nsize: DWORD, args: *const c_void) -> DWORD; } static FORMAT_MESSAGE_FROM_SYSTEM: DWORD = 0x00001000; static FORMAT_MESSAGE_IGNORE_INSERTS: DWORD = 0x00000200; // This value is calculated from the macro // MAKELANGID(LANG_SYSTEM_DEFAULT, SUBLANG_SYS_DEFAULT) let langId = 0x0800 as DWORD; let mut buf = [0 as WCHAR, ..TMPBUF_SZ]; unsafe { let res = FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, ptr::null_mut(), errnum as DWORD, langId, buf.as_mut_ptr(), buf.len() as DWORD, ptr::null()); if res == 0 { // Sometimes FormatMessageW can fail e.g. system doesn't like langId, let fm_err = errno(); return format!("OS Error {} (FormatMessageW() returned error {})", errnum, fm_err); } let msg = String::from_utf16(::str::truncate_utf16_at_nul(buf)); match msg { Some(msg) => format!("OS Error {}: {}", errnum, msg), None => format!("OS Error {} (FormatMessageW() returned invalid UTF-16)", errnum), } } } } /// Get a string representing the platform-dependent last error pub fn last_os_error() -> String { error_string(errno() as uint) } static mut EXIT_STATUS: AtomicInt = INIT_ATOMIC_INT; /** * Sets the process exit code * * Sets the exit code returned by the process if all supervised tasks * terminate successfully (without failing). If the current root task fails * and is supervised by the scheduler then any user-specified exit status is * ignored and the process exits with the default failure status. * * Note that this is not synchronized against modifications of other threads. */ pub fn set_exit_status(code: int) { unsafe { EXIT_STATUS.store(code, SeqCst) } } /// Fetches the process's current exit code. This defaults to 0 and can change /// by calling `set_exit_status`. pub fn get_exit_status() -> int { unsafe { EXIT_STATUS.load(SeqCst) } } #[cfg(target_os = "macos")] unsafe fn load_argc_and_argv(argc: int, argv: *const *const c_char) -> Vec> { use c_str::CString; Vec::from_fn(argc as uint, |i| { CString::new(*argv.offset(i as int), false).as_bytes_no_nul().to_vec() }) } /** * Returns the command line arguments * * Returns a list of the command line arguments. */ #[cfg(target_os = "macos")] fn real_args_as_bytes() -> Vec> { unsafe { let (argc, argv) = (*_NSGetArgc() as int, *_NSGetArgv() as *const *const c_char); load_argc_and_argv(argc, argv) } } // As _NSGetArgc and _NSGetArgv aren't mentioned in iOS docs // and use underscores in their names - they're most probably // are considered private and therefore should be avoided // Here is another way to get arguments using Objective C // runtime // // In general it looks like: // res = Vec::new() // let args = [[NSProcessInfo processInfo] arguments] // for i in range(0, [args count]) // res.push([args objectAtIndex:i]) // res #[cfg(target_os = "ios")] fn real_args_as_bytes() -> Vec> { use c_str::CString; use iter::range; use mem; #[link(name = "objc")] extern { fn sel_registerName(name: *const libc::c_uchar) -> Sel; fn objc_msgSend(obj: NsId, sel: Sel, ...) -> NsId; fn objc_getClass(class_name: *const libc::c_uchar) -> NsId; } #[link(name = "Foundation", kind = "framework")] extern {} type Sel = *const libc::c_void; type NsId = *const libc::c_void; let mut res = Vec::new(); unsafe { let processInfoSel = sel_registerName("processInfo\0".as_ptr()); let argumentsSel = sel_registerName("arguments\0".as_ptr()); let utf8Sel = sel_registerName("UTF8String\0".as_ptr()); let countSel = sel_registerName("count\0".as_ptr()); let objectAtSel = sel_registerName("objectAtIndex:\0".as_ptr()); let klass = objc_getClass("NSProcessInfo\0".as_ptr()); let info = objc_msgSend(klass, processInfoSel); let args = objc_msgSend(info, argumentsSel); let cnt: int = mem::transmute(objc_msgSend(args, countSel)); for i in range(0, cnt) { let tmp = objc_msgSend(args, objectAtSel, i); let utf_c_str: *const libc::c_char = mem::transmute(objc_msgSend(tmp, utf8Sel)); let s = CString::new(utf_c_str, false); res.push(s.as_bytes_no_nul().to_vec()) } } res } #[cfg(any(target_os = "linux", target_os = "android", target_os = "freebsd", target_os = "dragonfly"))] fn real_args_as_bytes() -> Vec> { use rt; match rt::args::clone() { Some(args) => args, None => fail!("process arguments not initialized") } } #[cfg(not(windows))] fn real_args() -> Vec { real_args_as_bytes().into_iter() .map(|v| { String::from_utf8_lossy(v.as_slice()).into_string() }).collect() } #[cfg(windows)] fn real_args() -> Vec { use slice; let mut nArgs: c_int = 0; let lpArgCount: *mut c_int = &mut nArgs; let lpCmdLine = unsafe { GetCommandLineW() }; let szArgList = unsafe { CommandLineToArgvW(lpCmdLine, lpArgCount) }; let args = Vec::from_fn(nArgs as uint, |i| unsafe { // Determine the length of this argument. let ptr = *szArgList.offset(i as int); let mut len = 0; while *ptr.offset(len as int) != 0 { len += 1; } // Push it onto the list. let opt_s = slice::raw::buf_as_slice(ptr as *const _, len, |buf| { String::from_utf16(::str::truncate_utf16_at_nul(buf)) }); opt_s.expect("CommandLineToArgvW returned invalid UTF-16") }); unsafe { LocalFree(szArgList as *mut c_void); } return args } #[cfg(windows)] fn real_args_as_bytes() -> Vec> { real_args().into_iter().map(|s| s.into_bytes()).collect() } type LPCWSTR = *const u16; #[cfg(windows)] #[link_name="kernel32"] extern "system" { fn GetCommandLineW() -> LPCWSTR; fn LocalFree(ptr: *mut c_void); } #[cfg(windows)] #[link_name="shell32"] extern "system" { fn CommandLineToArgvW(lpCmdLine: LPCWSTR, pNumArgs: *mut c_int) -> *mut *mut u16; } /// Returns the arguments which this program was started with (normally passed /// via the command line). /// /// The arguments are interpreted as utf-8, with invalid bytes replaced with \uFFFD. /// See `String::from_utf8_lossy` for details. /// # Example /// /// ```rust /// use std::os; /// /// // Prints each argument on a separate line /// for argument in os::args().iter() { /// println!("{}", argument); /// } /// ``` pub fn args() -> Vec { real_args() } /// Returns the arguments which this program was started with (normally passed /// via the command line) as byte vectors. pub fn args_as_bytes() -> Vec> { real_args_as_bytes() } #[cfg(target_os = "macos")] extern { // These functions are in crt_externs.h. pub fn _NSGetArgc() -> *mut c_int; pub fn _NSGetArgv() -> *mut *mut *mut c_char; } // Round up `from` to be divisible by `to` fn round_up(from: uint, to: uint) -> uint { let r = if from % to == 0 { from } else { from + to - (from % to) }; if r == 0 { to } else { r } } /// Returns the page size of the current architecture in bytes. #[cfg(unix)] pub fn page_size() -> uint { unsafe { libc::sysconf(libc::_SC_PAGESIZE) as uint } } /// Returns the page size of the current architecture in bytes. #[cfg(windows)] pub fn page_size() -> uint { use mem; unsafe { let mut info = mem::zeroed(); libc::GetSystemInfo(&mut info); return info.dwPageSize as uint; } } /// A memory mapped file or chunk of memory. This is a very system-specific /// interface to the OS's memory mapping facilities (`mmap` on POSIX, /// `VirtualAlloc`/`CreateFileMapping` on Windows). It makes no attempt at /// abstracting platform differences, besides in error values returned. Consider /// yourself warned. /// /// The memory map is released (unmapped) when the destructor is run, so don't /// let it leave scope by accident if you want it to stick around. pub struct MemoryMap { data: *mut u8, len: uint, kind: MemoryMapKind, } /// Type of memory map pub enum MemoryMapKind { /// Virtual memory map. Usually used to change the permissions of a given /// chunk of memory. Corresponds to `VirtualAlloc` on Windows. MapFile(*const u8), /// Virtual memory map. Usually used to change the permissions of a given /// chunk of memory, or for allocation. Corresponds to `VirtualAlloc` on /// Windows. MapVirtual } /// Options the memory map is created with pub enum MapOption { /// The memory should be readable MapReadable, /// The memory should be writable MapWritable, /// The memory should be executable MapExecutable, /// Create a map for a specific address range. Corresponds to `MAP_FIXED` on /// POSIX. MapAddr(*const u8), /// Create a memory mapping for a file with a given fd. MapFd(c_int), /// When using `MapFd`, the start of the map is `uint` bytes from the start /// of the file. MapOffset(uint), /// On POSIX, this can be used to specify the default flags passed to /// `mmap`. By default it uses `MAP_PRIVATE` and, if not using `MapFd`, /// `MAP_ANON`. This will override both of those. This is platform-specific /// (the exact values used) and ignored on Windows. MapNonStandardFlags(c_int), } /// Possible errors when creating a map. pub enum MapError { /// ## The following are POSIX-specific /// /// fd was not open for reading or, if using `MapWritable`, was not open for /// writing. ErrFdNotAvail, /// fd was not valid ErrInvalidFd, /// Either the address given by `MapAddr` or offset given by `MapOffset` was /// not a multiple of `MemoryMap::granularity` (unaligned to page size). ErrUnaligned, /// With `MapFd`, the fd does not support mapping. ErrNoMapSupport, /// If using `MapAddr`, the address + `min_len` was outside of the process's /// address space. If using `MapFd`, the target of the fd didn't have enough /// resources to fulfill the request. ErrNoMem, /// A zero-length map was requested. This is invalid according to /// [POSIX](http://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html). /// Not all platforms obey this, but this wrapper does. ErrZeroLength, /// Unrecognized error. The inner value is the unrecognized errno. ErrUnknown(int), /// ## The following are Windows-specific /// /// Unsupported combination of protection flags /// (`MapReadable`/`MapWritable`/`MapExecutable`). ErrUnsupProt, /// When using `MapFd`, `MapOffset` was given (Windows does not support this /// at all) ErrUnsupOffset, /// When using `MapFd`, there was already a mapping to the file. ErrAlreadyExists, /// Unrecognized error from `VirtualAlloc`. The inner value is the return /// value of GetLastError. ErrVirtualAlloc(uint), /// Unrecognized error from `CreateFileMapping`. The inner value is the /// return value of `GetLastError`. ErrCreateFileMappingW(uint), /// Unrecognized error from `MapViewOfFile`. The inner value is the return /// value of `GetLastError`. ErrMapViewOfFile(uint) } impl fmt::Show for MapError { fn fmt(&self, out: &mut fmt::Formatter) -> fmt::Result { let str = match *self { ErrFdNotAvail => "fd not available for reading or writing", ErrInvalidFd => "Invalid fd", ErrUnaligned => { "Unaligned address, invalid flags, negative length or \ unaligned offset" } ErrNoMapSupport=> "File doesn't support mapping", ErrNoMem => "Invalid address, or not enough available memory", ErrUnsupProt => "Protection mode unsupported", ErrUnsupOffset => "Offset in virtual memory mode is unsupported", ErrAlreadyExists => "File mapping for specified file already exists", ErrZeroLength => "Zero-length mapping not allowed", ErrUnknown(code) => { return write!(out, "Unknown error = {}", code) }, ErrVirtualAlloc(code) => { return write!(out, "VirtualAlloc failure = {}", code) }, ErrCreateFileMappingW(code) => { return write!(out, "CreateFileMappingW failure = {}", code) }, ErrMapViewOfFile(code) => { return write!(out, "MapViewOfFile failure = {}", code) } }; write!(out, "{}", str) } } #[cfg(unix)] impl MemoryMap { /// Create a new mapping with the given `options`, at least `min_len` bytes /// long. `min_len` must be greater than zero; see the note on /// `ErrZeroLength`. pub fn new(min_len: uint, options: &[MapOption]) -> Result { use libc::off_t; if min_len == 0 { return Err(ErrZeroLength) } let mut addr: *const u8 = ptr::null(); let mut prot = 0; let mut flags = libc::MAP_PRIVATE; let mut fd = -1; let mut offset = 0; let mut custom_flags = false; let len = round_up(min_len, page_size()); for &o in options.iter() { match o { MapReadable => { prot |= libc::PROT_READ; }, MapWritable => { prot |= libc::PROT_WRITE; }, MapExecutable => { prot |= libc::PROT_EXEC; }, MapAddr(addr_) => { flags |= libc::MAP_FIXED; addr = addr_; }, MapFd(fd_) => { flags |= libc::MAP_FILE; fd = fd_; }, MapOffset(offset_) => { offset = offset_ as off_t; }, MapNonStandardFlags(f) => { custom_flags = true; flags = f }, } } if fd == -1 && !custom_flags { flags |= libc::MAP_ANON; } let r = unsafe { libc::mmap(addr as *mut c_void, len as libc::size_t, prot, flags, fd, offset) }; if r == libc::MAP_FAILED { Err(match errno() as c_int { libc::EACCES => ErrFdNotAvail, libc::EBADF => ErrInvalidFd, libc::EINVAL => ErrUnaligned, libc::ENODEV => ErrNoMapSupport, libc::ENOMEM => ErrNoMem, code => ErrUnknown(code as int) }) } else { Ok(MemoryMap { data: r as *mut u8, len: len, kind: if fd == -1 { MapVirtual } else { MapFile(ptr::null()) } }) } } /// Granularity that the offset or address must be for `MapOffset` and /// `MapAddr` respectively. pub fn granularity() -> uint { page_size() } } #[cfg(unix)] impl Drop for MemoryMap { /// Unmap the mapping. Fails the task if `munmap` fails. fn drop(&mut self) { if self.len == 0 { /* workaround for dummy_stack */ return; } unsafe { // `munmap` only fails due to logic errors libc::munmap(self.data as *mut c_void, self.len as libc::size_t); } } } #[cfg(windows)] impl MemoryMap { /// Create a new mapping with the given `options`, at least `min_len` bytes long. pub fn new(min_len: uint, options: &[MapOption]) -> Result { use libc::types::os::arch::extra::{LPVOID, DWORD, SIZE_T, HANDLE}; let mut lpAddress: LPVOID = ptr::null_mut(); let mut readable = false; let mut writable = false; let mut executable = false; let mut fd: c_int = -1; let mut offset: uint = 0; let len = round_up(min_len, page_size()); for &o in options.iter() { match o { MapReadable => { readable = true; }, MapWritable => { writable = true; }, MapExecutable => { executable = true; } MapAddr(addr_) => { lpAddress = addr_ as LPVOID; }, MapFd(fd_) => { fd = fd_; }, MapOffset(offset_) => { offset = offset_; }, MapNonStandardFlags(..) => {} } } let flProtect = match (executable, readable, writable) { (false, false, false) if fd == -1 => libc::PAGE_NOACCESS, (false, true, false) => libc::PAGE_READONLY, (false, true, true) => libc::PAGE_READWRITE, (true, false, false) if fd == -1 => libc::PAGE_EXECUTE, (true, true, false) => libc::PAGE_EXECUTE_READ, (true, true, true) => libc::PAGE_EXECUTE_READWRITE, _ => return Err(ErrUnsupProt) }; if fd == -1 { if offset != 0 { return Err(ErrUnsupOffset); } let r = unsafe { libc::VirtualAlloc(lpAddress, len as SIZE_T, libc::MEM_COMMIT | libc::MEM_RESERVE, flProtect) }; match r as uint { 0 => Err(ErrVirtualAlloc(errno())), _ => Ok(MemoryMap { data: r as *mut u8, len: len, kind: MapVirtual }) } } else { let dwDesiredAccess = match (executable, readable, writable) { (false, true, false) => libc::FILE_MAP_READ, (false, true, true) => libc::FILE_MAP_WRITE, (true, true, false) => libc::FILE_MAP_READ | libc::FILE_MAP_EXECUTE, (true, true, true) => libc::FILE_MAP_WRITE | libc::FILE_MAP_EXECUTE, _ => return Err(ErrUnsupProt) // Actually, because of the check above, // we should never get here. }; unsafe { let hFile = libc::get_osfhandle(fd) as HANDLE; let mapping = libc::CreateFileMappingW(hFile, ptr::null_mut(), flProtect, 0, 0, ptr::null()); if mapping == ptr::null_mut() { return Err(ErrCreateFileMappingW(errno())); } if errno() as c_int == libc::ERROR_ALREADY_EXISTS { return Err(ErrAlreadyExists); } let r = libc::MapViewOfFile(mapping, dwDesiredAccess, ((len as u64) >> 32) as DWORD, (offset & 0xffff_ffff) as DWORD, 0); match r as uint { 0 => Err(ErrMapViewOfFile(errno())), _ => Ok(MemoryMap { data: r as *mut u8, len: len, kind: MapFile(mapping as *const u8) }) } } } } /// Granularity of MapAddr() and MapOffset() parameter values. /// This may be greater than the value returned by page_size(). pub fn granularity() -> uint { use mem; unsafe { let mut info = mem::zeroed(); libc::GetSystemInfo(&mut info); return info.dwAllocationGranularity as uint; } } } #[cfg(windows)] impl Drop for MemoryMap { /// Unmap the mapping. Fails the task if any of `VirtualFree`, /// `UnmapViewOfFile`, or `CloseHandle` fail. fn drop(&mut self) { use libc::types::os::arch::extra::{LPCVOID, HANDLE}; use libc::consts::os::extra::FALSE; if self.len == 0 { return } unsafe { match self.kind { MapVirtual => { if libc::VirtualFree(self.data as *mut c_void, 0, libc::MEM_RELEASE) == 0 { println!("VirtualFree failed: {}", errno()); } }, MapFile(mapping) => { if libc::UnmapViewOfFile(self.data as LPCVOID) == FALSE { println!("UnmapViewOfFile failed: {}", errno()); } if libc::CloseHandle(mapping as HANDLE) == FALSE { println!("CloseHandle failed: {}", errno()); } } } } } } impl MemoryMap { /// Returns the pointer to the memory created or modified by this map. pub fn data(&self) -> *mut u8 { self.data } /// Returns the number of bytes this map applies to. pub fn len(&self) -> uint { self.len } /// Returns the type of mapping this represents. pub fn kind(&self) -> MemoryMapKind { self.kind } } #[cfg(target_os = "linux")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "unix"; /// A string describing the specific operating system in use: in this /// case, `linux`. pub static SYSNAME: &'static str = "linux"; /// Specifies the filename prefix used for shared libraries on this /// platform: in this case, `lib`. pub static DLL_PREFIX: &'static str = "lib"; /// Specifies the filename suffix used for shared libraries on this /// platform: in this case, `.so`. pub static DLL_SUFFIX: &'static str = ".so"; /// Specifies the file extension used for shared libraries on this /// platform that goes after the dot: in this case, `so`. pub static DLL_EXTENSION: &'static str = "so"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, the empty string. pub static EXE_SUFFIX: &'static str = ""; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, the empty string. pub static EXE_EXTENSION: &'static str = ""; } #[cfg(target_os = "macos")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "unix"; /// A string describing the specific operating system in use: in this /// case, `macos`. pub static SYSNAME: &'static str = "macos"; /// Specifies the filename prefix used for shared libraries on this /// platform: in this case, `lib`. pub static DLL_PREFIX: &'static str = "lib"; /// Specifies the filename suffix used for shared libraries on this /// platform: in this case, `.dylib`. pub static DLL_SUFFIX: &'static str = ".dylib"; /// Specifies the file extension used for shared libraries on this /// platform that goes after the dot: in this case, `dylib`. pub static DLL_EXTENSION: &'static str = "dylib"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, the empty string. pub static EXE_SUFFIX: &'static str = ""; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, the empty string. pub static EXE_EXTENSION: &'static str = ""; } #[cfg(target_os = "ios")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "unix"; /// A string describing the specific operating system in use: in this /// case, `ios`. pub static SYSNAME: &'static str = "ios"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, the empty string. pub static EXE_SUFFIX: &'static str = ""; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, the empty string. pub static EXE_EXTENSION: &'static str = ""; } #[cfg(target_os = "freebsd")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "unix"; /// A string describing the specific operating system in use: in this /// case, `freebsd`. pub static SYSNAME: &'static str = "freebsd"; /// Specifies the filename prefix used for shared libraries on this /// platform: in this case, `lib`. pub static DLL_PREFIX: &'static str = "lib"; /// Specifies the filename suffix used for shared libraries on this /// platform: in this case, `.so`. pub static DLL_SUFFIX: &'static str = ".so"; /// Specifies the file extension used for shared libraries on this /// platform that goes after the dot: in this case, `so`. pub static DLL_EXTENSION: &'static str = "so"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, the empty string. pub static EXE_SUFFIX: &'static str = ""; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, the empty string. pub static EXE_EXTENSION: &'static str = ""; } #[cfg(target_os = "dragonfly")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "unix"; /// A string describing the specific operating system in use: in this /// case, `dragonfly`. pub static SYSNAME: &'static str = "dragonfly"; /// Specifies the filename prefix used for shared libraries on this /// platform: in this case, `lib`. pub static DLL_PREFIX: &'static str = "lib"; /// Specifies the filename suffix used for shared libraries on this /// platform: in this case, `.so`. pub static DLL_SUFFIX: &'static str = ".so"; /// Specifies the file extension used for shared libraries on this /// platform that goes after the dot: in this case, `so`. pub static DLL_EXTENSION: &'static str = "so"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, the empty string. pub static EXE_SUFFIX: &'static str = ""; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, the empty string. pub static EXE_EXTENSION: &'static str = ""; } #[cfg(target_os = "android")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "unix"; /// A string describing the specific operating system in use: in this /// case, `android`. pub static SYSNAME: &'static str = "android"; /// Specifies the filename prefix used for shared libraries on this /// platform: in this case, `lib`. pub static DLL_PREFIX: &'static str = "lib"; /// Specifies the filename suffix used for shared libraries on this /// platform: in this case, `.so`. pub static DLL_SUFFIX: &'static str = ".so"; /// Specifies the file extension used for shared libraries on this /// platform that goes after the dot: in this case, `so`. pub static DLL_EXTENSION: &'static str = "so"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, the empty string. pub static EXE_SUFFIX: &'static str = ""; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, the empty string. pub static EXE_EXTENSION: &'static str = ""; } #[cfg(target_os = "windows")] pub mod consts { pub use os::arch_consts::ARCH; pub static FAMILY: &'static str = "windows"; /// A string describing the specific operating system in use: in this /// case, `windows`. pub static SYSNAME: &'static str = "windows"; /// Specifies the filename prefix used for shared libraries on this /// platform: in this case, the empty string. pub static DLL_PREFIX: &'static str = ""; /// Specifies the filename suffix used for shared libraries on this /// platform: in this case, `.dll`. pub static DLL_SUFFIX: &'static str = ".dll"; /// Specifies the file extension used for shared libraries on this /// platform that goes after the dot: in this case, `dll`. pub static DLL_EXTENSION: &'static str = "dll"; /// Specifies the filename suffix used for executable binaries on this /// platform: in this case, `.exe`. pub static EXE_SUFFIX: &'static str = ".exe"; /// Specifies the file extension, if any, used for executable binaries /// on this platform: in this case, `exe`. pub static EXE_EXTENSION: &'static str = "exe"; } #[cfg(target_arch = "x86")] mod arch_consts { pub static ARCH: &'static str = "x86"; } #[cfg(target_arch = "x86_64")] mod arch_consts { pub static ARCH: &'static str = "x86_64"; } #[cfg(target_arch = "arm")] mod arch_consts { pub static ARCH: &'static str = "arm"; } #[cfg(target_arch = "mips")] mod arch_consts { pub static ARCH: &'static str = "mips"; } #[cfg(target_arch = "mipsel")] mod arch_consts { pub static ARCH: &'static str = "mipsel"; } #[cfg(test)] mod tests { use prelude::*; use c_str::ToCStr; use option; use os::{env, getcwd, getenv, make_absolute}; use os::{split_paths, join_paths, setenv, unsetenv}; use os; use rand::Rng; use rand; #[test] pub fn last_os_error() { debug!("{}", os::last_os_error()); } fn make_rand_name() -> String { let mut rng = rand::task_rng(); let n = format!("TEST{}", rng.gen_ascii_chars().take(10u) .collect::()); assert!(getenv(n.as_slice()).is_none()); n } #[test] fn test_num_cpus() { assert!(os::num_cpus() > 0); } #[test] fn test_setenv() { let n = make_rand_name(); setenv(n.as_slice(), "VALUE"); assert_eq!(getenv(n.as_slice()), option::Some("VALUE".to_string())); } #[test] fn test_unsetenv() { let n = make_rand_name(); setenv(n.as_slice(), "VALUE"); unsetenv(n.as_slice()); assert_eq!(getenv(n.as_slice()), option::None); } #[test] #[ignore] fn test_setenv_overwrite() { let n = make_rand_name(); setenv(n.as_slice(), "1"); setenv(n.as_slice(), "2"); assert_eq!(getenv(n.as_slice()), option::Some("2".to_string())); setenv(n.as_slice(), ""); assert_eq!(getenv(n.as_slice()), option::Some("".to_string())); } // Windows GetEnvironmentVariable requires some extra work to make sure // the buffer the variable is copied into is the right size #[test] #[ignore] fn test_getenv_big() { let mut s = "".to_string(); let mut i = 0i; while i < 100 { s.push_str("aaaaaaaaaa"); i += 1; } let n = make_rand_name(); setenv(n.as_slice(), s.as_slice()); debug!("{}", s.clone()); assert_eq!(getenv(n.as_slice()), option::Some(s)); } #[test] fn test_self_exe_name() { let path = os::self_exe_name(); assert!(path.is_some()); let path = path.unwrap(); debug!("{:?}", path.clone()); // Hard to test this function assert!(path.is_absolute()); } #[test] fn test_self_exe_path() { let path = os::self_exe_path(); assert!(path.is_some()); let path = path.unwrap(); debug!("{:?}", path.clone()); // Hard to test this function assert!(path.is_absolute()); } #[test] #[ignore] fn test_env_getenv() { let e = env(); assert!(e.len() > 0u); for p in e.iter() { let (n, v) = (*p).clone(); debug!("{:?}", n.clone()); let v2 = getenv(n.as_slice()); // MingW seems to set some funky environment variables like // "=C:=C:\MinGW\msys\1.0\bin" and "!::=::\" that are returned // from env() but not visible from getenv(). assert!(v2.is_none() || v2 == option::Some(v)); } } #[test] fn test_env_set_get_huge() { let n = make_rand_name(); let s = "x".repeat(10000).to_string(); setenv(n.as_slice(), s.as_slice()); assert_eq!(getenv(n.as_slice()), Some(s)); unsetenv(n.as_slice()); assert_eq!(getenv(n.as_slice()), None); } #[test] fn test_env_setenv() { let n = make_rand_name(); let mut e = env(); setenv(n.as_slice(), "VALUE"); assert!(!e.contains(&(n.clone(), "VALUE".to_string()))); e = env(); assert!(e.contains(&(n, "VALUE".to_string()))); } #[test] fn test() { assert!((!Path::new("test-path").is_absolute())); let cwd = getcwd(); debug!("Current working directory: {}", cwd.display()); debug!("{:?}", make_absolute(&Path::new("test-path"))); debug!("{:?}", make_absolute(&Path::new("/usr/bin"))); } #[test] #[cfg(unix)] fn homedir() { let oldhome = getenv("HOME"); setenv("HOME", "/home/MountainView"); assert!(os::homedir() == Some(Path::new("/home/MountainView"))); setenv("HOME", ""); assert!(os::homedir().is_none()); for s in oldhome.iter() { setenv("HOME", s.as_slice()); } } #[test] #[cfg(windows)] fn homedir() { let oldhome = getenv("HOME"); let olduserprofile = getenv("USERPROFILE"); setenv("HOME", ""); setenv("USERPROFILE", ""); assert!(os::homedir().is_none()); setenv("HOME", "/home/MountainView"); assert!(os::homedir() == Some(Path::new("/home/MountainView"))); setenv("HOME", ""); setenv("USERPROFILE", "/home/MountainView"); assert!(os::homedir() == Some(Path::new("/home/MountainView"))); setenv("HOME", "/home/MountainView"); setenv("USERPROFILE", "/home/PaloAlto"); assert!(os::homedir() == Some(Path::new("/home/MountainView"))); for s in oldhome.iter() { setenv("HOME", s.as_slice()); } for s in olduserprofile.iter() { setenv("USERPROFILE", s.as_slice()); } } #[test] fn memory_map_rw() { use result::{Ok, Err}; let chunk = match os::MemoryMap::new(16, [ os::MapReadable, os::MapWritable ]) { Ok(chunk) => chunk, Err(msg) => fail!("{}", msg) }; assert!(chunk.len >= 16); unsafe { *chunk.data = 0xBE; assert!(*chunk.data == 0xBE); } } #[test] fn memory_map_file() { use result::{Ok, Err}; use os::*; use libc::*; use io::fs; #[cfg(unix)] fn lseek_(fd: c_int, size: uint) { unsafe { assert!(lseek(fd, size as off_t, SEEK_SET) == size as off_t); } } #[cfg(windows)] fn lseek_(fd: c_int, size: uint) { unsafe { assert!(lseek(fd, size as c_long, SEEK_SET) == size as c_long); } } let mut path = tmpdir(); path.push("mmap_file.tmp"); let size = MemoryMap::granularity() * 2; let fd = unsafe { let fd = path.with_c_str(|path| { open(path, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR) }); lseek_(fd, size); "x".with_c_str(|x| assert!(write(fd, x as *const c_void, 1) == 1)); fd }; let chunk = match MemoryMap::new(size / 2, [ MapReadable, MapWritable, MapFd(fd), MapOffset(size / 2) ]) { Ok(chunk) => chunk, Err(msg) => fail!("{}", msg) }; assert!(chunk.len > 0); unsafe { *chunk.data = 0xbe; assert!(*chunk.data == 0xbe); close(fd); } drop(chunk); fs::unlink(&path).unwrap(); } #[test] #[cfg(windows)] fn split_paths_windows() { fn check_parse(unparsed: &str, parsed: &[&str]) -> bool { split_paths(unparsed) == parsed.iter().map(|s| Path::new(*s)).collect() } assert!(check_parse("", [""])); assert!(check_parse(r#""""#, [""])); assert!(check_parse(";;", ["", "", ""])); assert!(check_parse(r"c:\", [r"c:\"])); assert!(check_parse(r"c:\;", [r"c:\", ""])); assert!(check_parse(r"c:\;c:\Program Files\", [r"c:\", r"c:\Program Files\"])); assert!(check_parse(r#"c:\;c:\"foo"\"#, [r"c:\", r"c:\foo\"])); assert!(check_parse(r#"c:\;c:\"foo;bar"\;c:\baz"#, [r"c:\", r"c:\foo;bar\", r"c:\baz"])); } #[test] #[cfg(unix)] fn split_paths_unix() { fn check_parse(unparsed: &str, parsed: &[&str]) -> bool { split_paths(unparsed) == parsed.iter().map(|s| Path::new(*s)).collect() } assert!(check_parse("", [""])); assert!(check_parse("::", ["", "", ""])); assert!(check_parse("/", ["/"])); assert!(check_parse("/:", ["/", ""])); assert!(check_parse("/:/usr/local", ["/", "/usr/local"])); } #[test] #[cfg(unix)] fn join_paths_unix() { fn test_eq(input: &[&str], output: &str) -> bool { join_paths(input).unwrap().as_slice() == output.as_bytes() } assert!(test_eq([], "")); assert!(test_eq(["/bin", "/usr/bin", "/usr/local/bin"], "/bin:/usr/bin:/usr/local/bin")); assert!(test_eq(["", "/bin", "", "", "/usr/bin", ""], ":/bin:::/usr/bin:")); assert!(join_paths(["/te:st"]).is_err()); } #[test] #[cfg(windows)] fn join_paths_windows() { fn test_eq(input: &[&str], output: &str) -> bool { join_paths(input).unwrap().as_slice() == output.as_bytes() } assert!(test_eq([], "")); assert!(test_eq([r"c:\windows", r"c:\"], r"c:\windows;c:\")); assert!(test_eq(["", r"c:\windows", "", "", r"c:\", ""], r";c:\windows;;;c:\;")); assert!(test_eq([r"c:\te;st", r"c:\"], r#""c:\te;st";c:\"#)); assert!(join_paths([r#"c:\te"st"#]).is_err()); } // More recursive_mkdir tests are in extra::tempfile }