//! A map type import chained::hashmap; export hashmap, hashfn, eqfn, set, map, chained, hashmap, str_hash; export box_str_hash; export bytes_hash, int_hash, uint_hash, set_add; export hash_from_vec, hash_from_strs, hash_from_bytes; export hash_from_ints, hash_from_uints; export vec_from_set; /** * A function that returns a hash of a value * * The hash should concentrate entropy in the lower bits. */ type hashfn = fn@(K) -> uint; type eqfn = fn@(K, K) -> bool; /// A convenience type to treat a hashmap as a set type set = hashmap; type hashmap = chained::t; iface map { /// Return the number of elements in the map fn size() -> uint; /** * Add a value to the map. * * If the map already contains a value for the specified key then the * original value is replaced. * * Returns true if the key did not already exist in the map */ fn insert(+K, +V) -> bool; /// Returns true if the map contains a value for the specified key fn contains_key(K) -> bool; /** * Get the value for the specified key. Fails if the key does not exist in * the map. */ fn get(K) -> V; /// Like get, but as an operator. fn [](K) -> V; /** * Get the value for the specified key. If the key does not exist in * the map then returns none. */ fn find(K) -> option; /** * Remove and return a value from the map. If the key does not exist * in the map then returns none. */ fn remove(K) -> option; /// Iterate over all the key/value pairs in the map fn each(fn(K, V) -> bool); /// Iterate over all the keys in the map fn each_key(fn(K) -> bool); /// Iterate over all the values in the map fn each_value(fn(V) -> bool); } // FIXME (#2344): package this up and export it as a datatype usable for // external code that doesn't want to pay the cost of a box. mod chained { export t, mk, hashmap; type entry = { hash: uint, key: K, mut value: V, mut next: chain }; enum chain { present(@entry), absent } type t = @{ mut count: uint, mut chains: ~[mut chain], hasher: hashfn, eqer: eqfn }; enum search_result { not_found, found_first(uint, @entry), found_after(@entry, @entry) } impl private_methods for t { fn search_rem(k: K, h: uint, idx: uint, e_root: @entry) -> search_result { let mut e0 = e_root; let mut comp = 1u; // for logging loop { alt copy e0.next { absent { #debug("search_tbl: absent, comp %u, hash %u, idx %u", comp, h, idx); ret not_found; } present(e1) { comp += 1u; if e1.hash == h && self.eqer(e1.key, k) { #debug("search_tbl: present, comp %u, \ hash %u, idx %u", comp, h, idx); ret found_after(e0, e1); } else { e0 = e1; } } } }; } fn search_tbl(k: K, h: uint) -> search_result { let idx = h % vec::len(self.chains); alt copy self.chains[idx] { absent { #debug("search_tbl: absent, comp %u, hash %u, idx %u", 0u, h, idx); ret not_found; } present(e) { if e.hash == h && self.eqer(e.key, k) { #debug("search_tbl: present, comp %u, hash %u, idx %u", 1u, h, idx); ret found_first(idx, e); } else { ret self.search_rem(k, h, idx, e); } } } } fn rehash() { let n_old_chains = vec::len(self.chains); let n_new_chains: uint = uint::next_power_of_two(n_old_chains+1u); let new_chains = chains(n_new_chains); for self.each_entry |entry| { let idx = entry.hash % n_new_chains; entry.next = new_chains[idx]; new_chains[idx] = present(entry); } self.chains = new_chains; } fn each_entry(blk: fn(@entry) -> bool) { let mut i = 0u, n = vec::len(self.chains); while i < n { let mut chain = self.chains[i]; loop { chain = alt chain { absent { break; } present(entry) { let next = entry.next; if !blk(entry) { ret; } next } } } i += 1u; } } } impl hashmap of map for t { fn size() -> uint { self.count } fn contains_key(k: K) -> bool { let hash = self.hasher(k); alt self.search_tbl(k, hash) { not_found {false} found_first(*) | found_after(*) {true} } } fn insert(+k: K, +v: V) -> bool { let hash = self.hasher(k); alt self.search_tbl(k, hash) { not_found { self.count += 1u; let idx = hash % vec::len(self.chains); let old_chain = self.chains[idx]; self.chains[idx] = present(@{ hash: hash, key: k, mut value: v, mut next: old_chain}); // consider rehashing if more 3/4 full let nchains = vec::len(self.chains); let load = {num: (self.count + 1u) as int, den: nchains as int}; if !util::rational_leq(load, {num:3, den:4}) { self.rehash(); } ret true; } found_first(_, entry) { entry.value = v; ret false; } found_after(_, entry) { entry.value = v; ret false } } } fn find(k: K) -> option { alt self.search_tbl(k, self.hasher(k)) { not_found {none} found_first(_, entry) {some(entry.value)} found_after(_, entry) {some(entry.value)} } } fn get(k: K) -> V { self.find(k).expect("Key not found in table") } fn [](k: K) -> V { self.get(k) } fn remove(k: K) -> option { alt self.search_tbl(k, self.hasher(k)) { not_found {none} found_first(idx, entry) { self.count -= 1u; self.chains[idx] = entry.next; some(entry.value) } found_after(eprev, entry) { self.count -= 1u; eprev.next = entry.next; some(entry.value) } } } fn each(blk: fn(K,V) -> bool) { for self.each_entry |entry| { if !blk(entry.key, copy entry.value) { break; } } } fn each_key(blk: fn(K) -> bool) { self.each(|k, _v| blk(k)) } fn each_value(blk: fn(V) -> bool) { self.each(|_k, v| blk(v)) } } fn chains(nchains: uint) -> ~[mut chain] { ret vec::to_mut(vec::from_elem(nchains, absent)); } fn mk(hasher: hashfn, eqer: eqfn) -> t { let initial_capacity: uint = 32u; // 2^5 let slf: t = @{mut count: 0u, mut chains: chains(initial_capacity), hasher: hasher, eqer: eqer}; slf } } /* Function: hashmap Construct a hashmap. Parameters: hasher - The hash function for key type K eqer - The equality function for key type K */ fn hashmap(hasher: hashfn, eqer: eqfn) -> hashmap { chained::mk(hasher, eqer) } /// Construct a hashmap for string keys fn str_hash() -> hashmap { ret hashmap(str::hash, str::eq); } /// Construct a hashmap for boxed string keys fn box_str_hash() -> hashmap<@str, V> { ret hashmap(|x: @str| str::hash(*x), |x,y| str::eq(*x,*y)); } /// Construct a hashmap for byte string keys fn bytes_hash() -> hashmap<~[u8], V> { ret hashmap(vec::u8::hash, vec::u8::eq); } /// Construct a hashmap for int keys fn int_hash() -> hashmap { ret hashmap(int::hash, int::eq); } /// Construct a hashmap for uint keys fn uint_hash() -> hashmap { ret hashmap(uint::hash, uint::eq); } /// Convenience function for adding keys to a hashmap with nil type keys fn set_add(set: set, key: K) -> bool { ret set.insert(key, ()); } /// Convert a set into a vector. fn vec_from_set(s: set) -> ~[T] { let mut v = ~[]; do s.each_key() |k| { vec::push(v, k); true }; v } /// Construct a hashmap from a vector fn hash_from_vec(hasher: hashfn, eqer: eqfn, items: ~[(K, V)]) -> hashmap { let map = hashmap(hasher, eqer); do vec::iter(items) |item| { let (key, value) = item; map.insert(key, value); } map } /// Construct a hashmap from a vector with string keys fn hash_from_strs(items: ~[(str, V)]) -> hashmap { hash_from_vec(str::hash, str::eq, items) } /// Construct a hashmap from a vector with byte keys fn hash_from_bytes(items: ~[(~[u8], V)]) -> hashmap<~[u8], V> { hash_from_vec(vec::u8::hash, vec::u8::eq, items) } /// Construct a hashmap from a vector with int keys fn hash_from_ints(items: ~[(int, V)]) -> hashmap { hash_from_vec(int::hash, int::eq, items) } /// Construct a hashmap from a vector with uint keys fn hash_from_uints(items: ~[(uint, V)]) -> hashmap { hash_from_vec(uint::hash, uint::eq, items) } #[cfg(test)] mod tests { #[test] fn test_simple() { #debug("*** starting test_simple"); fn eq_uint(&&x: uint, &&y: uint) -> bool { ret x == y; } fn uint_id(&&x: uint) -> uint { x } let hasher_uint: map::hashfn = uint_id; let eqer_uint: map::eqfn = eq_uint; let hasher_str: map::hashfn = str::hash; let eqer_str: map::eqfn = str::eq; #debug("uint -> uint"); let hm_uu: map::hashmap = map::hashmap::(hasher_uint, eqer_uint); assert (hm_uu.insert(10u, 12u)); assert (hm_uu.insert(11u, 13u)); assert (hm_uu.insert(12u, 14u)); assert (hm_uu.get(11u) == 13u); assert (hm_uu.get(12u) == 14u); assert (hm_uu.get(10u) == 12u); assert (!hm_uu.insert(12u, 14u)); assert (hm_uu.get(12u) == 14u); assert (!hm_uu.insert(12u, 12u)); assert (hm_uu.get(12u) == 12u); let ten: str = "ten"; let eleven: str = "eleven"; let twelve: str = "twelve"; #debug("str -> uint"); let hm_su: map::hashmap = map::hashmap::(hasher_str, eqer_str); assert (hm_su.insert("ten", 12u)); assert (hm_su.insert(eleven, 13u)); assert (hm_su.insert("twelve", 14u)); assert (hm_su.get(eleven) == 13u); assert (hm_su.get("eleven") == 13u); assert (hm_su.get("twelve") == 14u); assert (hm_su.get("ten") == 12u); assert (!hm_su.insert("twelve", 14u)); assert (hm_su.get("twelve") == 14u); assert (!hm_su.insert("twelve", 12u)); assert (hm_su.get("twelve") == 12u); #debug("uint -> str"); let hm_us: map::hashmap = map::hashmap::(hasher_uint, eqer_uint); assert (hm_us.insert(10u, "twelve")); assert (hm_us.insert(11u, "thirteen")); assert (hm_us.insert(12u, "fourteen")); assert (str::eq(hm_us.get(11u), "thirteen")); assert (str::eq(hm_us.get(12u), "fourteen")); assert (str::eq(hm_us.get(10u), "twelve")); assert (!hm_us.insert(12u, "fourteen")); assert (str::eq(hm_us.get(12u), "fourteen")); assert (!hm_us.insert(12u, "twelve")); assert (str::eq(hm_us.get(12u), "twelve")); #debug("str -> str"); let hm_ss: map::hashmap = map::hashmap::(hasher_str, eqer_str); assert (hm_ss.insert(ten, "twelve")); assert (hm_ss.insert(eleven, "thirteen")); assert (hm_ss.insert(twelve, "fourteen")); assert (str::eq(hm_ss.get("eleven"), "thirteen")); assert (str::eq(hm_ss.get("twelve"), "fourteen")); assert (str::eq(hm_ss.get("ten"), "twelve")); assert (!hm_ss.insert("twelve", "fourteen")); assert (str::eq(hm_ss.get("twelve"), "fourteen")); assert (!hm_ss.insert("twelve", "twelve")); assert (str::eq(hm_ss.get("twelve"), "twelve")); #debug("*** finished test_simple"); } /** * Force map growth */ #[test] fn test_growth() { #debug("*** starting test_growth"); let num_to_insert: uint = 64u; fn eq_uint(&&x: uint, &&y: uint) -> bool { ret x == y; } fn uint_id(&&x: uint) -> uint { x } #debug("uint -> uint"); let hasher_uint: map::hashfn = uint_id; let eqer_uint: map::eqfn = eq_uint; let hm_uu: map::hashmap = map::hashmap::(hasher_uint, eqer_uint); let mut i: uint = 0u; while i < num_to_insert { assert (hm_uu.insert(i, i * i)); #debug("inserting %u -> %u", i, i*i); i += 1u; } #debug("-----"); i = 0u; while i < num_to_insert { #debug("get(%u) = %u", i, hm_uu.get(i)); assert (hm_uu.get(i) == i * i); i += 1u; } assert (hm_uu.insert(num_to_insert, 17u)); assert (hm_uu.get(num_to_insert) == 17u); #debug("-----"); i = 0u; while i < num_to_insert { #debug("get(%u) = %u", i, hm_uu.get(i)); assert (hm_uu.get(i) == i * i); i += 1u; } #debug("str -> str"); let hasher_str: map::hashfn = str::hash; let eqer_str: map::eqfn = str::eq; let hm_ss: map::hashmap = map::hashmap::(hasher_str, eqer_str); i = 0u; while i < num_to_insert { assert hm_ss.insert(uint::to_str(i, 2u), uint::to_str(i * i, 2u)); #debug("inserting \"%s\" -> \"%s\"", uint::to_str(i, 2u), uint::to_str(i*i, 2u)); i += 1u; } #debug("-----"); i = 0u; while i < num_to_insert { #debug("get(\"%s\") = \"%s\"", uint::to_str(i, 2u), hm_ss.get(uint::to_str(i, 2u))); assert (str::eq(hm_ss.get(uint::to_str(i, 2u)), uint::to_str(i * i, 2u))); i += 1u; } assert (hm_ss.insert(uint::to_str(num_to_insert, 2u), uint::to_str(17u, 2u))); assert (str::eq(hm_ss.get(uint::to_str(num_to_insert, 2u)), uint::to_str(17u, 2u))); #debug("-----"); i = 0u; while i < num_to_insert { #debug("get(\"%s\") = \"%s\"", uint::to_str(i, 2u), hm_ss.get(uint::to_str(i, 2u))); assert (str::eq(hm_ss.get(uint::to_str(i, 2u)), uint::to_str(i * i, 2u))); i += 1u; } #debug("*** finished test_growth"); } #[test] fn test_removal() { #debug("*** starting test_removal"); let num_to_insert: uint = 64u; fn eq(&&x: uint, &&y: uint) -> bool { ret x == y; } fn hash(&&u: uint) -> uint { // This hash function intentionally causes collisions between // consecutive integer pairs. ret u / 2u * 2u; } assert (hash(0u) == hash(1u)); assert (hash(2u) == hash(3u)); assert (hash(0u) != hash(2u)); let hasher: map::hashfn = hash; let eqer: map::eqfn = eq; let hm: map::hashmap = map::hashmap::(hasher, eqer); let mut i: uint = 0u; while i < num_to_insert { assert (hm.insert(i, i * i)); #debug("inserting %u -> %u", i, i*i); i += 1u; } assert (hm.size() == num_to_insert); #debug("-----"); #debug("removing evens"); i = 0u; while i < num_to_insert { let v = hm.remove(i); alt v { option::some(u) { assert (u == i * i); } option::none { fail; } } i += 2u; } assert (hm.size() == num_to_insert / 2u); #debug("-----"); i = 1u; while i < num_to_insert { #debug("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 2u; } #debug("-----"); i = 1u; while i < num_to_insert { #debug("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 2u; } #debug("-----"); i = 0u; while i < num_to_insert { assert (hm.insert(i, i * i)); #debug("inserting %u -> %u", i, i*i); i += 2u; } assert (hm.size() == num_to_insert); #debug("-----"); i = 0u; while i < num_to_insert { #debug("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 1u; } #debug("-----"); assert (hm.size() == num_to_insert); i = 0u; while i < num_to_insert { #debug("get(%u) = %u", i, hm.get(i)); assert (hm.get(i) == i * i); i += 1u; } #debug("*** finished test_removal"); } #[test] fn test_contains_key() { let key = "k"; let map = map::hashmap::(str::hash, str::eq); assert (!map.contains_key(key)); map.insert(key, "val"); assert (map.contains_key(key)); } #[test] fn test_find() { let key = "k"; let map = map::hashmap::(str::hash, str::eq); assert (option::is_none(map.find(key))); map.insert(key, "val"); assert (option::get(map.find(key)) == "val"); } #[test] fn test_hash_from_vec() { let map = map::hash_from_strs(~[ ("a", 1), ("b", 2), ("c", 3) ]); assert map.size() == 3u; assert map.get("a") == 1; assert map.get("b") == 2; assert map.get("c") == 3; } }