// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::prelude::*; use back::abi; use driver; use lib::llvm::llvm; use lib::llvm::ValueRef; use lib; use metadata::csearch; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee::*; use middle::trans::callee; use middle::trans::common::*; use middle::trans::expr::{SaveIn, Ignore}; use middle::trans::expr; use middle::trans::glue; use middle::trans::inline; use middle::trans::monomorphize; use middle::trans::type_of::*; use middle::ty; use middle::ty::arg; use middle::typeck; use util::common::indenter; use util::ppaux::ty_to_str; use syntax::ast_map::{path, path_mod, path_name}; use syntax::ast_util; use syntax::{ast, ast_map}; /** The main "translation" pass for methods. Generates code for non-monomorphized methods only. Other methods will be generated once they are invoked with specific type parameters, see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`. */ pub fn trans_impl(ccx: @CrateContext, +path: path, name: ast::ident, methods: &[@ast::method], generics: &ast::Generics, self_ty: Option, id: ast::node_id) { let _icx = ccx.insn_ctxt("impl::trans_impl"); if !generics.ty_params.is_empty() { return; } let sub_path = vec::append_one(path, path_name(name)); for vec::each(methods) |method| { if method.generics.ty_params.len() == 0u { let llfn = get_item_val(ccx, method.id); let path = vec::append_one(/*bad*/copy sub_path, path_name(method.ident)); let param_substs_opt; match self_ty { None => param_substs_opt = None, Some(self_ty) => { param_substs_opt = Some(@param_substs { tys: ~[], vtables: None, bounds: @~[], self_ty: Some(self_ty) }); } } trans_method(ccx, path, *method, param_substs_opt, self_ty, llfn, ast_util::local_def(id)); } } } /** Translates a (possibly monomorphized) method body. # Parameters - `path`: the path to the method - `method`: the AST node for the method - `param_substs`: if this is a generic method, the current values for type parameters and so forth, else none - `base_self_ty`: optionally, the explicit self type for this method. This will be none if this is not a default method and must always be present if this is a default method. - `llfn`: the LLVM ValueRef for the method - `impl_id`: the node ID of the impl this method is inside */ pub fn trans_method(ccx: @CrateContext, +path: path, method: &ast::method, param_substs: Option<@param_substs>, base_self_ty: Option, llfn: ValueRef, impl_id: ast::def_id) { // figure out how self is being passed let self_arg = match method.self_ty.node { ast::sty_static => { no_self } _ => { // determine the (monomorphized) type that `self` maps to for // this method let self_ty; match base_self_ty { None => self_ty = ty::node_id_to_type(ccx.tcx, method.self_id), Some(provided_self_ty) => self_ty = provided_self_ty } let self_ty = match param_substs { None => self_ty, Some(@param_substs {tys: ref tys, _}) => { ty::subst_tps(ccx.tcx, *tys, None, self_ty) } }; debug!("calling trans_fn with base_self_ty %s, self_ty %s", match base_self_ty { None => ~"(none)", Some(x) => ty_to_str(ccx.tcx, x), }, ty_to_str(ccx.tcx, self_ty)); match method.self_ty.node { ast::sty_value => { impl_owned_self(self_ty) } _ => { impl_self(self_ty) } } } }; // generate the actual code trans_fn(ccx, path, &method.decl, &method.body, llfn, self_arg, param_substs, method.id, Some(impl_id)); } pub fn trans_self_arg(bcx: block, base: @ast::expr, mentry: typeck::method_map_entry) -> Result { let _icx = bcx.insn_ctxt("impl::trans_self_arg"); let mut temp_cleanups = ~[]; // Compute the mode and type of self. let self_arg = arg { mode: mentry.self_arg.mode, ty: monomorphize_type(bcx, mentry.self_arg.ty) }; let result = trans_arg_expr(bcx, self_arg, base, &mut temp_cleanups, None, DontAutorefArg); // FIXME(#3446)---this is wrong, actually. The temp_cleanups // should be revoked only after all arguments have been passed. for temp_cleanups.each |c| { revoke_clean(bcx, *c) } return result; } pub fn trans_method_callee(bcx: block, callee_id: ast::node_id, self: @ast::expr, mentry: typeck::method_map_entry) -> Callee { let _icx = bcx.insn_ctxt("impl::trans_method_callee"); debug!("trans_method_callee(callee_id=%?, self=%s, mentry=%?)", callee_id, bcx.expr_to_str(self), mentry); // Replace method_self with method_static here. let mut origin = mentry.origin; match origin { typeck::method_self(copy trait_id, copy method_index) => { // Get the ID of the impl we're inside. let impl_def_id = bcx.fcx.impl_id.get(); debug!("impl_def_id is %?", impl_def_id); // Get the ID of the method we're calling. let method_name = ty::trait_methods(bcx.tcx(), trait_id)[method_index].ident; let method_id = method_with_name(bcx.ccx(), impl_def_id, method_name); origin = typeck::method_static(method_id); } typeck::method_super(trait_id, method_index) => { // is the self type for this method call let self_ty = node_id_type(bcx, self.id); let tcx = bcx.tcx(); // is the ID of the implementation of // trait for type let impl_id = ty::get_impl_id(tcx, trait_id, self_ty); // Get the supertrait's methods let supertrait_methods = ty::trait_methods(tcx, trait_id); // Make sure to fail with a readable error message if // there's some internal error here if !(method_index < supertrait_methods.len()) { tcx.sess.bug(~"trans_method_callee: supertrait method \ index is out of bounds"); } // Get the method name using the method index in the origin let method_name = supertrait_methods[method_index].ident; // Now that we know the impl ID, we can look up the method // ID from its name origin = typeck::method_static(method_with_name(bcx.ccx(), impl_id, method_name)); } typeck::method_static(*) | typeck::method_param(*) | typeck::method_trait(*) => {} } debug!("origin=%?", origin); match origin { typeck::method_static(did) => { let callee_fn = callee::trans_fn_ref(bcx, did, callee_id); let Result {bcx, val} = trans_self_arg(bcx, self, mentry); let tcx = bcx.tcx(); Callee { bcx: bcx, data: Method(MethodData { llfn: callee_fn.llfn, llself: val, self_ty: node_id_type(bcx, self.id), self_mode: ty::resolved_mode(tcx, mentry.self_arg.mode) }) } } typeck::method_param(typeck::method_param { trait_id: trait_id, method_num: off, param_num: p, bound_num: b }) => { match bcx.fcx.param_substs { Some(substs) => { let vtbl = find_vtable(bcx.tcx(), substs, p, b); trans_monomorphized_callee(bcx, callee_id, self, mentry, trait_id, off, vtbl) } // how to get rid of this? None => fail!(~"trans_method_callee: missing param_substs") } } typeck::method_trait(_, off, store) => { trans_trait_callee(bcx, callee_id, off, self, store, mentry.explicit_self) } typeck::method_self(*) | typeck::method_super(*) => { fail!(~"method_self or method_super should have been handled \ above") } } } pub fn trans_static_method_callee(bcx: block, method_id: ast::def_id, trait_id: ast::def_id, callee_id: ast::node_id) -> FnData { let _icx = bcx.insn_ctxt("impl::trans_static_method_callee"); let ccx = bcx.ccx(); debug!("trans_static_method_callee(method_id=%?, trait_id=%s, \ callee_id=%?)", method_id, ty::item_path_str(bcx.tcx(), trait_id), callee_id); let _indenter = indenter(); // When we translate a static fn defined in a trait like: // // trait Trait { // fn foo(...) {...} // } // // this winds up being translated as something like: // // fn foo,M1...Mn>(...) {...} // // So when we see a call to this function foo, we have to figure // out which impl the `Trait` bound on the type `self` was // bound to. Due to the fact that we use a flattened list of // impls, one per bound, this means we have to total up the bounds // found on the type parametesr T1...Tn to find the index of the // one we are interested in. let bound_index = { let trait_polyty = ty::lookup_item_type(bcx.tcx(), trait_id); ty::count_traits_and_supertraits(bcx.tcx(), *trait_polyty.bounds) }; let mname = if method_id.crate == ast::local_crate { match *bcx.tcx().items.get(&method_id.node) { ast_map::node_trait_method(trait_method, _, _) => { ast_util::trait_method_to_ty_method(trait_method).ident } _ => fail!(~"callee is not a trait method") } } else { let path = csearch::get_item_path(bcx.tcx(), method_id); match path[path.len()-1] { path_name(s) => { s } path_mod(_) => { fail!(~"path doesn't have a name?") } } }; debug!("trans_static_method_callee: method_id=%?, callee_id=%?, \ name=%s", method_id, callee_id, *ccx.sess.str_of(mname)); let vtbls = resolve_vtables_in_fn_ctxt( bcx.fcx, *ccx.maps.vtable_map.get(&callee_id)); match vtbls[bound_index] { typeck::vtable_static(impl_did, ref rcvr_substs, rcvr_origins) => { assert!(rcvr_substs.all(|t| !ty::type_needs_infer(*t))); let mth_id = method_with_name(bcx.ccx(), impl_did, mname); let callee_substs = combine_impl_and_methods_tps( bcx, mth_id, impl_did, callee_id, *rcvr_substs); let callee_origins = combine_impl_and_methods_origins( bcx, mth_id, impl_did, callee_id, rcvr_origins); let FnData {llfn: lval} = trans_fn_ref_with_vtables(bcx, mth_id, callee_id, callee_substs, Some(callee_origins)); let callee_ty = node_id_type(bcx, callee_id); let llty = T_ptr(type_of_fn_from_ty(ccx, callee_ty)); FnData {llfn: PointerCast(bcx, lval, llty)} } _ => { fail!(~"vtable_param left in monomorphized \ function's vtable substs"); } } } pub fn method_from_methods(ms: &[@ast::method], name: ast::ident) -> Option { ms.find(|m| m.ident == name).map(|m| ast_util::local_def(m.id)) } pub fn method_with_name(ccx: @CrateContext, impl_id: ast::def_id, name: ast::ident) -> ast::def_id { if impl_id.crate == ast::local_crate { match *ccx.tcx.items.get(&impl_id.node) { ast_map::node_item(@ast::item { node: ast::item_impl(_, _, _, ref ms), _ }, _) => { method_from_methods(*ms, name).get() } _ => fail!(~"method_with_name") } } else { csearch::get_impl_method(ccx.sess.cstore, impl_id, name) } } pub fn method_with_name_or_default(ccx: @CrateContext, impl_id: ast::def_id, name: ast::ident) -> ast::def_id { if impl_id.crate == ast::local_crate { match *ccx.tcx.items.get(&impl_id.node) { ast_map::node_item(@ast::item { node: ast::item_impl(_, _, _, ref ms), _ }, _) => { let did = method_from_methods(*ms, name); if did.is_some() { return did.get(); } else { // Look for a default method let pmm = ccx.tcx.provided_methods; match pmm.find(&impl_id) { Some(pmis) => { for pmis.each |pmi| { if pmi.method_info.ident == name { debug!("XXX %?", pmi.method_info.did); return pmi.method_info.did; } } fail!() } None => fail!() } } } _ => fail!(~"method_with_name") } } else { csearch::get_impl_method(ccx.sess.cstore, impl_id, name) } } pub fn method_ty_param_count(ccx: @CrateContext, m_id: ast::def_id, i_id: ast::def_id) -> uint { debug!("method_ty_param_count: m_id: %?, i_id: %?", m_id, i_id); if m_id.crate == ast::local_crate { match ccx.tcx.items.find(&m_id.node) { Some(&ast_map::node_method(m, _, _)) => m.generics.ty_params.len(), None => { match ccx.tcx.provided_method_sources.find(&m_id) { Some(source) => { method_ty_param_count( ccx, source.method_id, source.impl_id) } None => fail!() } } Some(&ast_map::node_trait_method(@ast::provided(@ref m), _, _)) => { m.generics.ty_params.len() } copy e => fail!(fmt!("method_ty_param_count %?", e)) } } else { csearch::get_type_param_count(ccx.sess.cstore, m_id) - csearch::get_type_param_count(ccx.sess.cstore, i_id) } } pub fn trans_monomorphized_callee(bcx: block, callee_id: ast::node_id, base: @ast::expr, mentry: typeck::method_map_entry, trait_id: ast::def_id, n_method: uint, +vtbl: typeck::vtable_origin) -> Callee { let _icx = bcx.insn_ctxt("impl::trans_monomorphized_callee"); return match vtbl { typeck::vtable_static(impl_did, ref rcvr_substs, rcvr_origins) => { let ccx = bcx.ccx(); let mname = ty::trait_methods(ccx.tcx, trait_id)[n_method].ident; let mth_id = method_with_name_or_default( bcx.ccx(), impl_did, mname); // obtain the `self` value: let Result {bcx, val: llself_val} = trans_self_arg(bcx, base, mentry); // create a concatenated set of substitutions which includes // those from the impl and those from the method: let callee_substs = combine_impl_and_methods_tps( bcx, mth_id, impl_did, callee_id, *rcvr_substs); let callee_origins = combine_impl_and_methods_origins( bcx, mth_id, impl_did, callee_id, rcvr_origins); // translate the function let callee = trans_fn_ref_with_vtables( bcx, mth_id, callee_id, callee_substs, Some(callee_origins)); // create a llvalue that represents the fn ptr let fn_ty = node_id_type(bcx, callee_id); let llfn_ty = T_ptr(type_of_fn_from_ty(ccx, fn_ty)); let llfn_val = PointerCast(bcx, callee.llfn, llfn_ty); // combine the self environment with the rest let tcx = bcx.tcx(); Callee { bcx: bcx, data: Method(MethodData { llfn: llfn_val, llself: llself_val, self_ty: node_id_type(bcx, base.id), self_mode: ty::resolved_mode(tcx, mentry.self_arg.mode) }) } } typeck::vtable_param(*) => { fail!(~"vtable_param left in monomorphized function's " + "vtable substs"); } }; } pub fn combine_impl_and_methods_tps(bcx: block, mth_did: ast::def_id, impl_did: ast::def_id, callee_id: ast::node_id, rcvr_substs: &[ty::t]) -> ~[ty::t] { /*! * * Creates a concatenated set of substitutions which includes * those from the impl and those from the method. This are * some subtle complications here. Statically, we have a list * of type parameters like `[T0, T1, T2, M1, M2, M3]` where * `Tn` are type parameters that appear on the receiver. For * example, if the receiver is a method parameter `A` with a * bound like `trait` then `Tn` would be `[B,C,D]`. * * The weird part is that the type `A` might now be bound to * any other type, such as `foo`. In that case, the vector * we want is: `[X, M1, M2, M3]`. Therefore, what we do now is * to slice off the method type parameters and append them to * the type parameters from the type that the receiver is * mapped to. */ let ccx = bcx.ccx(); let n_m_tps = method_ty_param_count(ccx, mth_did, impl_did); let node_substs = node_id_type_params(bcx, callee_id); debug!("rcvr_substs=%?", rcvr_substs.map(|t| bcx.ty_to_str(*t))); let ty_substs = vec::append(rcvr_substs.to_vec(), vec::tailn(node_substs, node_substs.len() - n_m_tps)); debug!("n_m_tps=%?", n_m_tps); debug!("node_substs=%?", node_substs.map(|t| bcx.ty_to_str(*t))); debug!("ty_substs=%?", ty_substs.map(|t| bcx.ty_to_str(*t))); return ty_substs; } pub fn combine_impl_and_methods_origins(bcx: block, mth_did: ast::def_id, impl_did: ast::def_id, callee_id: ast::node_id, rcvr_origins: typeck::vtable_res) -> typeck::vtable_res { /*! * * Similar to `combine_impl_and_methods_tps`, but for vtables. * This is much messier because of the flattened layout we are * currently using (for some reason that I fail to understand). * The proper fix is described in #3446. */ // Find the bounds for the method, which are the tail of the // bounds found in the item type, as the item type combines the // rcvr + method bounds. let ccx = bcx.ccx(), tcx = bcx.tcx(); let n_m_tps = method_ty_param_count(ccx, mth_did, impl_did); let ty::ty_param_bounds_and_ty {bounds: r_m_bounds, _} = ty::lookup_item_type(tcx, mth_did); let n_r_m_tps = r_m_bounds.len(); // rcvr + method tps let m_boundss = vec::slice(*r_m_bounds, n_r_m_tps - n_m_tps, n_r_m_tps); // Flatten out to find the number of vtables the method expects. let m_vtables = ty::count_traits_and_supertraits(tcx, m_boundss); // Find the vtables we computed at type check time and monomorphize them let r_m_origins = match node_vtables(bcx, callee_id) { Some(vt) => vt, None => @~[] }; // Extract those that belong to method: let m_origins = vec::tailn(*r_m_origins, r_m_origins.len() - m_vtables); // Combine rcvr + method to find the final result: @vec::append(/*bad*/copy *rcvr_origins, m_origins) } pub fn trans_trait_callee(bcx: block, callee_id: ast::node_id, n_method: uint, self_expr: @ast::expr, store: ty::TraitStore, explicit_self: ast::self_ty_) -> Callee { //! // // Create a method callee where the method is coming from a trait // instance (e.g., @Trait type). In this case, we must pull the // fn pointer out of the vtable that is packaged up with the // @/~/&Trait instance. @/~/&Traits are represented as a pair, so we // first evaluate the self expression (expected a by-ref result) and then // extract the self data and vtable out of the pair. let _icx = bcx.insn_ctxt("impl::trans_trait_callee"); let mut bcx = bcx; let self_datum = unpack_datum!(bcx, expr::trans_to_datum(bcx, self_expr)); let llpair = self_datum.to_ref_llval(bcx); let llpair = match explicit_self { ast::sty_region(*) => Load(bcx, llpair), ast::sty_static | ast::sty_value | ast::sty_box(_) | ast::sty_uniq(_) => llpair }; let callee_ty = node_id_type(bcx, callee_id); trans_trait_callee_from_llval(bcx, callee_ty, n_method, llpair, store, explicit_self) } pub fn trans_trait_callee_from_llval(bcx: block, callee_ty: ty::t, n_method: uint, llpair: ValueRef, store: ty::TraitStore, explicit_self: ast::self_ty_) -> Callee { //! // // Same as `trans_trait_callee()` above, except that it is given // a by-ref pointer to the @Trait pair. let _icx = bcx.insn_ctxt("impl::trans_trait_callee"); let ccx = bcx.ccx(); let mut bcx = bcx; // Load the vtable from the @Trait pair debug!("(translating trait callee) loading vtable from pair %s", val_str(bcx.ccx().tn, llpair)); let llvtable = Load(bcx, PointerCast(bcx, GEPi(bcx, llpair, [0u, 0u]), T_ptr(T_ptr(T_vtable())))); // Load the box from the @Trait pair and GEP over the box header if // necessary: let mut llself; debug!("(translating trait callee) loading second index from pair"); let llbox = Load(bcx, GEPi(bcx, llpair, [0u, 1u])); // Munge `llself` appropriately for the type of `self` in the method. let self_mode; match explicit_self { ast::sty_static => { bcx.tcx().sess.bug(~"shouldn't see static method here"); } ast::sty_value => { bcx.tcx().sess.bug(~"methods with by-value self should not be \ called on objects"); } ast::sty_region(*) => { // As before, we need to pass a pointer to a pointer to the // payload. match store { ty::BoxTraitStore | ty::BareTraitStore | ty::UniqTraitStore => { llself = GEPi(bcx, llbox, [0u, abi::box_field_body]); } ty::RegionTraitStore(_) => { llself = llbox; } } let llscratch = alloca(bcx, val_ty(llself)); Store(bcx, llself, llscratch); llself = llscratch; self_mode = ast::by_ref; } ast::sty_box(_) => { // Bump the reference count on the box. debug!("(translating trait callee) callee type is `%s`", bcx.ty_to_str(callee_ty)); bcx = glue::take_ty(bcx, llbox, callee_ty); // Pass a pointer to the box. match store { ty::BoxTraitStore | ty::BareTraitStore => llself = llbox, _ => bcx.tcx().sess.bug(~"@self receiver with non-@Trait") } let llscratch = alloca(bcx, val_ty(llself)); Store(bcx, llself, llscratch); llself = llscratch; self_mode = ast::by_ref; } ast::sty_uniq(_) => { // Pass the unique pointer. match store { ty::UniqTraitStore => llself = llbox, _ => bcx.tcx().sess.bug(~"~self receiver with non-~Trait") } let llscratch = alloca(bcx, val_ty(llself)); Store(bcx, llself, llscratch); llself = llscratch; self_mode = ast::by_ref; } } // Load the function from the vtable and cast it to the expected type. debug!("(translating trait callee) loading method"); let llcallee_ty = type_of_fn_from_ty(ccx, callee_ty); let mptr = Load(bcx, GEPi(bcx, llvtable, [0u, n_method])); let mptr = PointerCast(bcx, mptr, T_ptr(llcallee_ty)); return Callee { bcx: bcx, data: Method(MethodData { llfn: mptr, llself: llself, self_ty: ty::mk_opaque_box(bcx.tcx()), self_mode: self_mode, /* XXX: Some(llbox) */ }) }; } pub fn vtable_id(ccx: @CrateContext, +origin: typeck::vtable_origin) -> mono_id { match origin { typeck::vtable_static(impl_id, substs, sub_vtables) => { monomorphize::make_mono_id( ccx, impl_id, substs, if (*sub_vtables).len() == 0u { None } else { Some(sub_vtables) }, None, None) } // can't this be checked at the callee? _ => fail!(~"vtable_id") } } pub fn get_vtable(ccx: @CrateContext, +origin: typeck::vtable_origin) -> ValueRef { // XXX: Bad copy. let hash_id = vtable_id(ccx, copy origin); match ccx.vtables.find(&hash_id) { Some(&val) => val, None => match origin { typeck::vtable_static(id, substs, sub_vtables) => { make_impl_vtable(ccx, id, substs, sub_vtables) } _ => fail!(~"get_vtable: expected a static origin") } } } pub fn make_vtable(ccx: @CrateContext, ptrs: ~[ValueRef]) -> ValueRef { unsafe { let _icx = ccx.insn_ctxt("impl::make_vtable"); let tbl = C_struct(ptrs); let vtable = ccx.sess.str_of((ccx.names)(~"vtable")); let vt_gvar = do str::as_c_str(*vtable) |buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(tbl), buf) }; llvm::LLVMSetInitializer(vt_gvar, tbl); llvm::LLVMSetGlobalConstant(vt_gvar, lib::llvm::True); lib::llvm::SetLinkage(vt_gvar, lib::llvm::InternalLinkage); vt_gvar } } pub fn make_impl_vtable(ccx: @CrateContext, impl_id: ast::def_id, substs: ~[ty::t], vtables: typeck::vtable_res) -> ValueRef { let _icx = ccx.insn_ctxt("impl::make_impl_vtable"); let tcx = ccx.tcx; // XXX: This should support multiple traits. let trt_id = driver::session::expect( tcx.sess, ty::ty_to_def_id(ty::impl_traits(tcx, impl_id, ty::BoxTraitStore)[0]), || ~"make_impl_vtable: non-trait-type implemented"); let has_tps = (*ty::lookup_item_type(ccx.tcx, impl_id).bounds).len() > 0u; make_vtable(ccx, vec::map(*ty::trait_methods(tcx, trt_id), |im| { let fty = ty::subst_tps(tcx, substs, None, ty::mk_bare_fn(tcx, copy im.fty)); if (*im.tps).len() > 0u || ty::type_has_self(fty) { debug!("(making impl vtable) method has self or type params: %s", *tcx.sess.str_of(im.ident)); C_null(T_ptr(T_nil())) } else { debug!("(making impl vtable) adding method to vtable: %s", *tcx.sess.str_of(im.ident)); let mut m_id = method_with_name(ccx, impl_id, im.ident); if has_tps { // If the method is in another crate, need to make an inlined // copy first if m_id.crate != ast::local_crate { // XXX: Set impl ID here? m_id = inline::maybe_instantiate_inline(ccx, m_id, true); } let (val, _) = monomorphize::monomorphic_fn(ccx, m_id, substs, Some(vtables), None, None); val } else if m_id.crate == ast::local_crate { get_item_val(ccx, m_id.node) } else { trans_external_path(ccx, m_id, fty) } } })) } pub fn trans_trait_cast(bcx: block, val: @ast::expr, id: ast::node_id, dest: expr::Dest, store: ty::TraitStore) -> block { let mut bcx = bcx; let _icx = bcx.insn_ctxt("impl::trans_cast"); let lldest = match dest { Ignore => { return expr::trans_into(bcx, val, Ignore); } SaveIn(dest) => dest }; let ccx = bcx.ccx(); let v_ty = expr_ty(bcx, val); match store { ty::RegionTraitStore(_) | ty::BoxTraitStore | ty::BareTraitStore => { let mut llboxdest = GEPi(bcx, lldest, [0u, 1u]); // Just store the pointer into the pair. llboxdest = PointerCast(bcx, llboxdest, T_ptr(type_of(bcx.ccx(), v_ty))); bcx = expr::trans_into(bcx, val, SaveIn(llboxdest)); } ty::UniqTraitStore => { // Translate the uniquely-owned value into the second element of // the triple. (The first element is the vtable.) let mut llvaldest = GEPi(bcx, lldest, [0, 1]); llvaldest = PointerCast(bcx, llvaldest, T_ptr(type_of(bcx.ccx(), v_ty))); bcx = expr::trans_into(bcx, val, SaveIn(llvaldest)); // Get the type descriptor of the wrapped value and store it into // the third element of the triple as well. let tydesc = get_tydesc(bcx.ccx(), v_ty); glue::lazily_emit_all_tydesc_glue(bcx.ccx(), tydesc); let lltydescdest = GEPi(bcx, lldest, [0, 2]); Store(bcx, tydesc.tydesc, lltydescdest); } } // Store the vtable into the pair or triple. let orig = /*bad*/copy ccx.maps.vtable_map.get(&id)[0]; let orig = resolve_vtable_in_fn_ctxt(bcx.fcx, orig); let vtable = get_vtable(bcx.ccx(), orig); Store(bcx, vtable, PointerCast(bcx, GEPi(bcx, lldest, [0u, 0u]), T_ptr(val_ty(vtable)))); bcx }