// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::const_eval::{compare_const_vals, const_bool, const_float, const_nil, const_val}; use middle::const_eval::{const_expr_to_pat, eval_const_expr, lookup_const_by_id}; use middle::def::*; use middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor, Init}; use middle::expr_use_visitor::{JustWrite, LoanCause, MutateMode}; use middle::expr_use_visitor::{WriteAndRead}; use middle::mem_categorization::cmt; use middle::pat_util::*; use middle::ty::*; use middle::ty; use std::fmt; use std::iter::AdditiveIterator; use std::iter::range_inclusive; use std::slice; use syntax::ast::*; use syntax::ast_util::walk_pat; use syntax::codemap::{Span, Spanned, DUMMY_SP}; use syntax::fold::{Folder, noop_fold_pat}; use syntax::print::pprust::pat_to_string; use syntax::parse::token; use syntax::ptr::P; use syntax::visit::{mod, Visitor, FnKind}; use util::ppaux::ty_to_string; static DUMMY_WILD_PAT: Pat = Pat { id: DUMMY_NODE_ID, node: PatWild(PatWildSingle), span: DUMMY_SP }; struct Matrix<'a>(Vec>); /// Pretty-printer for matrices of patterns, example: /// ++++++++++++++++++++++++++ /// + _ + [] + /// ++++++++++++++++++++++++++ /// + true + [First] + /// ++++++++++++++++++++++++++ /// + true + [Second(true)] + /// ++++++++++++++++++++++++++ /// + false + [_] + /// ++++++++++++++++++++++++++ /// + _ + [_, _, ..tail] + /// ++++++++++++++++++++++++++ impl<'a> fmt::Show for Matrix<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "\n")); let &Matrix(ref m) = self; let pretty_printed_matrix: Vec> = m.iter().map(|row| { row.iter() .map(|&pat| pat_to_string(&*pat)) .collect::>() }).collect(); let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0u); assert!(m.iter().all(|row| row.len() == column_count)); let column_widths: Vec = range(0, column_count).map(|col| { pretty_printed_matrix.iter().map(|row| row.get(col).len()).max().unwrap_or(0u) }).collect(); let total_width = column_widths.iter().map(|n| *n).sum() + column_count * 3 + 1; let br = String::from_char(total_width, '+'); try!(write!(f, "{}\n", br)); for row in pretty_printed_matrix.move_iter() { try!(write!(f, "+")); for (column, pat_str) in row.move_iter().enumerate() { try!(write!(f, " ")); f.width = Some(*column_widths.get(column)); try!(f.pad(pat_str.as_slice())); try!(write!(f, " +")); } try!(write!(f, "\n")); try!(write!(f, "{}\n", br)); } Ok(()) } } impl<'a> FromIterator> for Matrix<'a> { fn from_iter>>(mut iterator: T) -> Matrix<'a> { Matrix(iterator.collect()) } } pub struct MatchCheckCtxt<'a, 'tcx: 'a> { pub tcx: &'a ty::ctxt<'tcx> } #[deriving(Clone, PartialEq)] pub enum Constructor { /// The constructor of all patterns that don't vary by constructor, /// e.g. struct patterns and fixed-length arrays. Single, /// Enum variants. Variant(DefId), /// Literal values. ConstantValue(const_val), /// Ranges of literal values (2..5). ConstantRange(const_val, const_val), /// Array patterns of length n. Slice(uint), /// Array patterns with a subslice. SliceWithSubslice(uint, uint) } #[deriving(Clone, PartialEq)] enum Usefulness { Useful, UsefulWithWitness(Vec>), NotUseful } enum WitnessPreference { ConstructWitness, LeaveOutWitness } impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> { fn visit_expr(&mut self, ex: &Expr) { check_expr(self, ex); } fn visit_local(&mut self, l: &Local) { check_local(self, l); } fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl, b: &'v Block, s: Span, _: NodeId) { check_fn(self, fk, fd, b, s); } } pub fn check_crate(tcx: &ty::ctxt) { visit::walk_crate(&mut MatchCheckCtxt { tcx: tcx }, tcx.map.krate()); tcx.sess.abort_if_errors(); } fn check_expr(cx: &mut MatchCheckCtxt, ex: &Expr) { visit::walk_expr(cx, ex); match ex.node { ExprMatch(ref scrut, ref arms) => { // First, check legality of move bindings. for arm in arms.iter() { check_legality_of_move_bindings(cx, arm.guard.is_some(), arm.pats.as_slice()); for pat in arm.pats.iter() { check_legality_of_bindings_in_at_patterns(cx, &**pat); } } // Second, if there is a guard on each arm, make sure it isn't // assigning or borrowing anything mutably. for arm in arms.iter() { match arm.guard { Some(ref guard) => check_for_mutation_in_guard(cx, &**guard), None => {} } } let mut static_inliner = StaticInliner::new(cx.tcx); let inlined_arms = arms.iter().map(|arm| { (arm.pats.iter().map(|pat| { static_inliner.fold_pat((*pat).clone()) }).collect(), arm.guard.as_ref().map(|e| &**e)) }).collect::>, Option<&Expr>)>>(); if static_inliner.failed { return; } // Third, check if there are any references to NaN that we should warn about. for &(ref pats, _) in inlined_arms.iter() { check_for_static_nan(cx, pats.as_slice()); } // Fourth, check for unreachable arms. check_arms(cx, inlined_arms.as_slice()); // Finally, check if the whole match expression is exhaustive. // Check for empty enum, because is_useful only works on inhabited types. let pat_ty = node_id_to_type(cx.tcx, scrut.id); if inlined_arms.is_empty() { if !type_is_empty(cx.tcx, pat_ty) { // We know the type is inhabited, so this must be wrong span_err!(cx.tcx.sess, ex.span, E0002, "non-exhaustive patterns: type {} is non-empty", ty_to_string(cx.tcx, pat_ty) ); } // If the type *is* empty, it's vacuously exhaustive return; } let matrix: Matrix = inlined_arms .iter() .filter(|&&(_, guard)| guard.is_none()) .flat_map(|arm| arm.ref0().iter()) .map(|pat| vec![&**pat]) .collect(); check_exhaustive(cx, ex.span, &matrix); }, ExprForLoop(ref pat, _, _, _) => { let mut static_inliner = StaticInliner::new(cx.tcx); is_refutable(cx, &*static_inliner.fold_pat((*pat).clone()), |uncovered_pat| { cx.tcx.sess.span_err( pat.span, format!("refutable pattern in `for` loop binding: \ `{}` not covered", pat_to_string(uncovered_pat)).as_slice()); }); // Check legality of move bindings. check_legality_of_move_bindings(cx, false, slice::ref_slice(pat)); check_legality_of_bindings_in_at_patterns(cx, &**pat); } _ => () } } fn is_expr_const_nan(tcx: &ty::ctxt, expr: &Expr) -> bool { match eval_const_expr(tcx, expr) { const_float(f) => f.is_nan(), _ => false } } // Check that we do not match against a static NaN (#6804) fn check_for_static_nan(cx: &MatchCheckCtxt, pats: &[P]) { for pat in pats.iter() { walk_pat(&**pat, |p| { match p.node { PatLit(ref expr) if is_expr_const_nan(cx.tcx, &**expr) => { span_warn!(cx.tcx.sess, p.span, E0003, "unmatchable NaN in pattern, \ use the is_nan method in a guard instead"); } _ => () } true }); } } // Check for unreachable patterns fn check_arms(cx: &MatchCheckCtxt, arms: &[(Vec>, Option<&Expr>)]) { let mut seen = Matrix(vec![]); for &(ref pats, guard) in arms.iter() { for pat in pats.iter() { let v = vec![&**pat]; match is_useful(cx, &seen, v.as_slice(), LeaveOutWitness) { NotUseful => span_err!(cx.tcx.sess, pat.span, E0001, "unreachable pattern"), Useful => (), UsefulWithWitness(_) => unreachable!() } if guard.is_none() { let Matrix(mut rows) = seen; rows.push(v); seen = Matrix(rows); } } } } fn raw_pat<'a>(p: &'a Pat) -> &'a Pat { match p.node { PatIdent(_, _, Some(ref s)) => raw_pat(&**s), _ => p } } fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix) { match is_useful(cx, matrix, &[&DUMMY_WILD_PAT], ConstructWitness) { UsefulWithWitness(pats) => { let witness = match pats.as_slice() { [ref witness] => &**witness, [] => &DUMMY_WILD_PAT, _ => unreachable!() }; span_err!(cx.tcx.sess, sp, E0004, "non-exhaustive patterns: `{}` not covered", pat_to_string(witness) ); } NotUseful => { // This is good, wildcard pattern isn't reachable }, _ => unreachable!() } } fn const_val_to_expr(value: &const_val) -> P { let node = match value { &const_bool(b) => LitBool(b), &const_nil => LitNil, _ => unreachable!() }; P(Expr { id: 0, node: ExprLit(P(Spanned { node: node, span: DUMMY_SP })), span: DUMMY_SP }) } pub struct StaticInliner<'a, 'tcx: 'a> { pub tcx: &'a ty::ctxt<'tcx>, pub failed: bool } impl<'a, 'tcx> StaticInliner<'a, 'tcx> { pub fn new<'a>(tcx: &'a ty::ctxt<'tcx>) -> StaticInliner<'a, 'tcx> { StaticInliner { tcx: tcx, failed: false } } } impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> { fn fold_pat(&mut self, pat: P) -> P { match pat.node { PatIdent(..) | PatEnum(..) => { let def = self.tcx.def_map.borrow().find_copy(&pat.id); match def { Some(DefStatic(did, _)) => match lookup_const_by_id(self.tcx, did) { Some(const_expr) => { const_expr_to_pat(self.tcx, const_expr).map(|mut new_pat| { new_pat.span = pat.span; new_pat }) } None => { self.failed = true; span_err!(self.tcx.sess, pat.span, E0158, "extern statics cannot be referenced in patterns"); pat } }, _ => noop_fold_pat(pat, self) } } _ => noop_fold_pat(pat, self) } } } /// Constructs a partial witness for a pattern given a list of /// patterns expanded by the specialization step. /// /// When a pattern P is discovered to be useful, this function is used bottom-up /// to reconstruct a complete witness, e.g. a pattern P' that covers a subset /// of values, V, where each value in that set is not covered by any previously /// used patterns and is covered by the pattern P'. Examples: /// /// left_ty: tuple of 3 elements /// pats: [10, 20, _] => (10, 20, _) /// /// left_ty: struct X { a: (bool, &'static str), b: uint} /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 } fn construct_witness(cx: &MatchCheckCtxt, ctor: &Constructor, pats: Vec<&Pat>, left_ty: ty::t) -> P { let pats_len = pats.len(); let mut pats = pats.move_iter().map(|p| P((*p).clone())); let pat = match ty::get(left_ty).sty { ty::ty_tup(_) => PatTup(pats.collect()), ty::ty_enum(cid, _) | ty::ty_struct(cid, _) => { let (vid, is_structure) = match ctor { &Variant(vid) => (vid, ty::enum_variant_with_id(cx.tcx, cid, vid).arg_names.is_some()), _ => (cid, ty::lookup_struct_fields(cx.tcx, cid).iter() .any(|field| field.name != token::special_idents::unnamed_field.name)) }; if is_structure { let fields = ty::lookup_struct_fields(cx.tcx, vid); let field_pats: Vec = fields.move_iter() .zip(pats) .filter(|&(_, ref pat)| pat.node != PatWild(PatWildSingle)) .map(|(field, pat)| FieldPat { ident: Ident::new(field.name), pat: pat }).collect(); let has_more_fields = field_pats.len() < pats_len; PatStruct(def_to_path(cx.tcx, vid), field_pats, has_more_fields) } else { PatEnum(def_to_path(cx.tcx, vid), Some(pats.collect())) } } ty::ty_rptr(_, ty::mt { ty: ty, .. }) => { match ty::get(ty).sty { ty::ty_vec(_, Some(n)) => match ctor { &Single => { assert_eq!(pats_len, n); PatVec(pats.collect(), None, vec!()) }, _ => unreachable!() }, ty::ty_vec(_, None) => match ctor { &Slice(n) => { assert_eq!(pats_len, n); PatVec(pats.collect(), None, vec!()) }, _ => unreachable!() }, ty::ty_str => PatWild(PatWildSingle), _ => { assert_eq!(pats_len, 1); PatRegion(pats.nth(0).unwrap()) } } } ty::ty_box(_) => { assert_eq!(pats_len, 1); PatBox(pats.nth(0).unwrap()) } ty::ty_vec(_, Some(len)) => { assert_eq!(pats_len, len); PatVec(pats.collect(), None, vec![]) } _ => { match *ctor { ConstantValue(ref v) => PatLit(const_val_to_expr(v)), _ => PatWild(PatWildSingle), } } }; P(Pat { id: 0, node: pat, span: DUMMY_SP }) } fn missing_constructor(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix, left_ty: ty::t, max_slice_length: uint) -> Option { let used_constructors: Vec = rows.iter() .flat_map(|row| pat_constructors(cx, *row.get(0), left_ty, max_slice_length).move_iter()) .collect(); all_constructors(cx, left_ty, max_slice_length) .move_iter() .find(|c| !used_constructors.contains(c)) } /// This determines the set of all possible constructors of a pattern matching /// values of type `left_ty`. For vectors, this would normally be an infinite set /// but is instead bounded by the maximum fixed length of slice patterns in /// the column of patterns being analyzed. fn all_constructors(cx: &MatchCheckCtxt, left_ty: ty::t, max_slice_length: uint) -> Vec { match ty::get(left_ty).sty { ty::ty_bool => [true, false].iter().map(|b| ConstantValue(const_bool(*b))).collect(), ty::ty_nil => vec!(ConstantValue(const_nil)), ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty { ty::ty_vec(_, None) => range_inclusive(0, max_slice_length).map(|length| Slice(length)).collect(), _ => vec!(Single) }, ty::ty_enum(eid, _) => ty::enum_variants(cx.tcx, eid) .iter() .map(|va| Variant(va.id)) .collect(), _ => vec!(Single) } } // Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html // // Whether a vector `v` of patterns is 'useful' in relation to a set of such // vectors `m` is defined as there being a set of inputs that will match `v` // but not any of the sets in `m`. // // This is used both for reachability checking (if a pattern isn't useful in // relation to preceding patterns, it is not reachable) and exhaustiveness // checking (if a wildcard pattern is useful in relation to a matrix, the // matrix isn't exhaustive). // Note: is_useful doesn't work on empty types, as the paper notes. // So it assumes that v is non-empty. fn is_useful(cx: &MatchCheckCtxt, matrix: &Matrix, v: &[&Pat], witness: WitnessPreference) -> Usefulness { let &Matrix(ref rows) = matrix; debug!("{:}", matrix); if rows.len() == 0u { return match witness { ConstructWitness => UsefulWithWitness(vec!()), LeaveOutWitness => Useful }; } if rows.get(0).len() == 0u { return NotUseful; } let real_pat = match rows.iter().find(|r| r.get(0).id != DUMMY_NODE_ID) { Some(r) => raw_pat(*r.get(0)), None if v.len() == 0 => return NotUseful, None => v[0] }; let left_ty = if real_pat.id == DUMMY_NODE_ID { ty::mk_nil() } else { ty::pat_ty(cx.tcx, &*real_pat) }; let max_slice_length = rows.iter().filter_map(|row| match row.get(0).node { PatVec(ref before, _, ref after) => Some(before.len() + after.len()), _ => None }).max().map_or(0, |v| v + 1); let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length); if constructors.is_empty() { match missing_constructor(cx, matrix, left_ty, max_slice_length) { None => { all_constructors(cx, left_ty, max_slice_length).move_iter().map(|c| { match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) { UsefulWithWitness(pats) => UsefulWithWitness({ let arity = constructor_arity(cx, &c, left_ty); let mut result = { let pat_slice = pats.as_slice(); let subpats = Vec::from_fn(arity, |i| { pat_slice.get(i).map_or(&DUMMY_WILD_PAT, |p| &**p) }); vec![construct_witness(cx, &c, subpats, left_ty)] }; result.extend(pats.move_iter().skip(arity)); result }), result => result } }).find(|result| result != &NotUseful).unwrap_or(NotUseful) }, Some(constructor) => { let matrix = rows.iter().filter_map(|r| { if pat_is_binding_or_wild(&cx.tcx.def_map, raw_pat(r[0])) { Some(Vec::from_slice(r.tail())) } else { None } }).collect(); match is_useful(cx, &matrix, v.tail(), witness) { UsefulWithWitness(pats) => { let arity = constructor_arity(cx, &constructor, left_ty); let wild_pats = Vec::from_elem(arity, &DUMMY_WILD_PAT); let enum_pat = construct_witness(cx, &constructor, wild_pats, left_ty); let mut new_pats = vec![enum_pat]; new_pats.extend(pats.move_iter()); UsefulWithWitness(new_pats) }, result => result } } } } else { constructors.move_iter().map(|c| is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) ).find(|result| result != &NotUseful).unwrap_or(NotUseful) } } fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix, v: &[&Pat], ctor: Constructor, lty: ty::t, witness: WitnessPreference) -> Usefulness { let arity = constructor_arity(cx, &ctor, lty); let matrix = Matrix(m.iter().filter_map(|r| { specialize(cx, r.as_slice(), &ctor, 0u, arity) }).collect()); match specialize(cx, v, &ctor, 0u, arity) { Some(v) => is_useful(cx, &matrix, v.as_slice(), witness), None => NotUseful } } /// Determines the constructors that the given pattern can be specialized to. /// /// In most cases, there's only one constructor that a specific pattern /// represents, such as a specific enum variant or a specific literal value. /// Slice patterns, however, can match slices of different lengths. For instance, /// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on. /// /// On the other hand, a wild pattern and an identifier pattern cannot be /// specialized in any way. fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat, left_ty: ty::t, max_slice_length: uint) -> Vec { let pat = raw_pat(p); match pat.node { PatIdent(..) => match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefStatic(..)) => cx.tcx.sess.span_bug(pat.span, "static pattern should've been rewritten"), Some(&DefStruct(_)) => vec!(Single), Some(&DefVariant(_, id, _)) => vec!(Variant(id)), _ => vec!() }, PatEnum(..) => match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefStatic(..)) => cx.tcx.sess.span_bug(pat.span, "static pattern should've been rewritten"), Some(&DefVariant(_, id, _)) => vec!(Variant(id)), _ => vec!(Single) }, PatStruct(..) => match cx.tcx.def_map.borrow().find(&pat.id) { Some(&DefStatic(..)) => cx.tcx.sess.span_bug(pat.span, "static pattern should've been rewritten"), Some(&DefVariant(_, id, _)) => vec!(Variant(id)), _ => vec!(Single) }, PatLit(ref expr) => vec!(ConstantValue(eval_const_expr(cx.tcx, &**expr))), PatRange(ref lo, ref hi) => vec!(ConstantRange(eval_const_expr(cx.tcx, &**lo), eval_const_expr(cx.tcx, &**hi))), PatVec(ref before, ref slice, ref after) => match ty::get(left_ty).sty { ty::ty_vec(_, Some(_)) => vec!(Single), _ => if slice.is_some() { range_inclusive(before.len() + after.len(), max_slice_length) .map(|length| Slice(length)) .collect() } else { vec!(Slice(before.len() + after.len())) } }, PatBox(_) | PatTup(_) | PatRegion(..) => vec!(Single), PatWild(_) => vec!(), PatMac(_) => cx.tcx.sess.bug("unexpanded macro") } } /// This computes the arity of a constructor. The arity of a constructor /// is how many subpattern patterns of that constructor should be expanded to. /// /// For instance, a tuple pattern (_, 42u, Some([])) has the arity of 3. /// A struct pattern's arity is the number of fields it contains, etc. pub fn constructor_arity(cx: &MatchCheckCtxt, ctor: &Constructor, ty: ty::t) -> uint { match ty::get(ty).sty { ty::ty_tup(ref fs) => fs.len(), ty::ty_box(_) | ty::ty_uniq(_) => 1u, ty::ty_rptr(_, ty::mt { ty: ty, .. }) => match ty::get(ty).sty { ty::ty_vec(_, None) => match *ctor { Slice(length) => length, ConstantValue(_) => 0u, _ => unreachable!() }, ty::ty_str => 0u, _ => 1u }, ty::ty_enum(eid, _) => { match *ctor { Variant(id) => enum_variant_with_id(cx.tcx, eid, id).args.len(), _ => unreachable!() } } ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(), ty::ty_vec(_, Some(n)) => n, _ => 0u } } fn range_covered_by_constructor(ctor: &Constructor, from: &const_val, to: &const_val) -> Option { let (c_from, c_to) = match *ctor { ConstantValue(ref value) => (value, value), ConstantRange(ref from, ref to) => (from, to), Single => return Some(true), _ => unreachable!() }; let cmp_from = compare_const_vals(c_from, from); let cmp_to = compare_const_vals(c_to, to); match (cmp_from, cmp_to) { (Some(val1), Some(val2)) => Some(val1 >= 0 && val2 <= 0), _ => None } } /// This is the main specialization step. It expands the first pattern in the given row /// into `arity` patterns based on the constructor. For most patterns, the step is trivial, /// for instance tuple patterns are flattened and box patterns expand into their inner pattern. /// /// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple /// different patterns. /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing /// fields filled with wild patterns. pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat], constructor: &Constructor, col: uint, arity: uint) -> Option> { let &Pat { id: pat_id, node: ref node, span: pat_span } = raw_pat(r[col]); let head: Option> = match node { &PatWild(_) => Some(Vec::from_elem(arity, &DUMMY_WILD_PAT)), &PatIdent(_, _, _) => { let opt_def = cx.tcx.def_map.borrow().find_copy(&pat_id); match opt_def { Some(DefStatic(..)) => cx.tcx.sess.span_bug(pat_span, "static pattern should've been rewritten"), Some(DefVariant(_, id, _)) => if *constructor == Variant(id) { Some(vec!()) } else { None }, _ => Some(Vec::from_elem(arity, &DUMMY_WILD_PAT)) } } &PatEnum(_, ref args) => { let def = cx.tcx.def_map.borrow().get_copy(&pat_id); match def { DefStatic(..) => cx.tcx.sess.span_bug(pat_span, "static pattern should've been rewritten"), DefVariant(_, id, _) if *constructor != Variant(id) => None, DefVariant(..) | DefFn(..) | DefStruct(..) => { Some(match args { &Some(ref args) => args.iter().map(|p| &**p).collect(), &None => Vec::from_elem(arity, &DUMMY_WILD_PAT) }) } _ => None } } &PatStruct(_, ref pattern_fields, _) => { // Is this a struct or an enum variant? let def = cx.tcx.def_map.borrow().get_copy(&pat_id); let class_id = match def { DefStatic(..) => cx.tcx.sess.span_bug(pat_span, "static pattern should've been rewritten"), DefVariant(_, variant_id, _) => if *constructor == Variant(variant_id) { Some(variant_id) } else { None }, _ => { // Assume this is a struct. match ty::ty_to_def_id(node_id_to_type(cx.tcx, pat_id)) { None => { cx.tcx.sess.span_bug(pat_span, "struct pattern wasn't of a \ type with a def ID?!") } Some(def_id) => Some(def_id), } } }; class_id.map(|variant_id| { let struct_fields = ty::lookup_struct_fields(cx.tcx, variant_id); let args = struct_fields.iter().map(|sf| { match pattern_fields.iter().find(|f| f.ident.name == sf.name) { Some(ref f) => &*f.pat, _ => &DUMMY_WILD_PAT } }).collect(); args }) } &PatTup(ref args) => Some(args.iter().map(|p| &**p).collect()), &PatBox(ref inner) | &PatRegion(ref inner) => Some(vec![&**inner]), &PatLit(ref expr) => { let expr_value = eval_const_expr(cx.tcx, &**expr); match range_covered_by_constructor(constructor, &expr_value, &expr_value) { Some(true) => Some(vec![]), Some(false) => None, None => { cx.tcx.sess.span_err(pat_span, "mismatched types between arms"); None } } } &PatRange(ref from, ref to) => { let from_value = eval_const_expr(cx.tcx, &**from); let to_value = eval_const_expr(cx.tcx, &**to); match range_covered_by_constructor(constructor, &from_value, &to_value) { Some(true) => Some(vec![]), Some(false) => None, None => { cx.tcx.sess.span_err(pat_span, "mismatched types between arms"); None } } } &PatVec(ref before, ref slice, ref after) => { match *constructor { // Fixed-length vectors. Single => { let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect(); pats.grow_fn(arity - before.len() - after.len(), |_| &DUMMY_WILD_PAT); pats.extend(after.iter().map(|p| &**p)); Some(pats) }, Slice(length) if before.len() + after.len() <= length && slice.is_some() => { let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect(); pats.grow_fn(arity - before.len() - after.len(), |_| &DUMMY_WILD_PAT); pats.extend(after.iter().map(|p| &**p)); Some(pats) }, Slice(length) if before.len() + after.len() == length => { let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect(); pats.extend(after.iter().map(|p| &**p)); Some(pats) }, SliceWithSubslice(prefix, suffix) if before.len() == prefix && after.len() == suffix && slice.is_some() => { let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect(); pats.extend(after.iter().map(|p| &**p)); Some(pats) } _ => None } } &PatMac(_) => { cx.tcx.sess.span_err(pat_span, "unexpanded macro"); None } }; head.map(|head| head.append(r.slice_to(col)).append(r.slice_from(col + 1))) } fn check_local(cx: &mut MatchCheckCtxt, loc: &Local) { visit::walk_local(cx, loc); let name = match loc.source { LocalLet => "local", LocalFor => "`for` loop" }; let mut static_inliner = StaticInliner::new(cx.tcx); is_refutable(cx, &*static_inliner.fold_pat(loc.pat.clone()), |pat| { span_err!(cx.tcx.sess, loc.pat.span, E0005, "refutable pattern in {} binding: `{}` not covered", name, pat_to_string(pat) ); }); // Check legality of move bindings and `@` patterns. check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat)); check_legality_of_bindings_in_at_patterns(cx, &*loc.pat); } fn check_fn(cx: &mut MatchCheckCtxt, kind: FnKind, decl: &FnDecl, body: &Block, sp: Span) { visit::walk_fn(cx, kind, decl, body, sp); for input in decl.inputs.iter() { is_refutable(cx, &*input.pat, |pat| { span_err!(cx.tcx.sess, input.pat.span, E0006, "refutable pattern in function argument: `{}` not covered", pat_to_string(pat) ); }); check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat)); check_legality_of_bindings_in_at_patterns(cx, &*input.pat); } } fn is_refutable(cx: &MatchCheckCtxt, pat: &Pat, refutable: |&Pat| -> A) -> Option { let pats = Matrix(vec!(vec!(pat))); match is_useful(cx, &pats, [&DUMMY_WILD_PAT], ConstructWitness) { UsefulWithWitness(pats) => { assert_eq!(pats.len(), 1); Some(refutable(&*pats[0])) }, NotUseful => None, Useful => unreachable!() } } // Legality of move bindings checking fn check_legality_of_move_bindings(cx: &MatchCheckCtxt, has_guard: bool, pats: &[P]) { let tcx = cx.tcx; let def_map = &tcx.def_map; let mut by_ref_span = None; for pat in pats.iter() { pat_bindings(def_map, &**pat, |bm, _, span, _path| { match bm { BindByRef(_) => { by_ref_span = Some(span); } BindByValue(_) => { } } }) } let check_move: |&Pat, Option<&Pat>| = |p, sub| { // check legality of moving out of the enum // x @ Foo(..) is legal, but x @ Foo(y) isn't. if sub.map_or(false, |p| pat_contains_bindings(def_map, &*p)) { span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings"); } else if has_guard { span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard"); } else if by_ref_span.is_some() { span_err!(cx.tcx.sess, p.span, E0009, "cannot bind by-move and by-ref in the same pattern"); span_note!(cx.tcx.sess, by_ref_span.unwrap(), "by-ref binding occurs here"); } }; for pat in pats.iter() { walk_pat(&**pat, |p| { if pat_is_binding(def_map, &*p) { match p.node { PatIdent(BindByValue(_), _, ref sub) => { let pat_ty = ty::node_id_to_type(tcx, p.id); if ty::type_moves_by_default(tcx, pat_ty) { check_move(p, sub.as_ref().map(|p| &**p)); } } PatIdent(BindByRef(_), _, _) => { } _ => { cx.tcx.sess.span_bug( p.span, format!("binding pattern {} is not an \ identifier: {:?}", p.id, p.node).as_slice()); } } } true }); } } /// Ensures that a pattern guard doesn't borrow by mutable reference or /// assign. fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>, guard: &Expr) { let mut checker = MutationChecker { cx: cx, }; let mut visitor = ExprUseVisitor::new(&mut checker, checker.cx.tcx); visitor.walk_expr(guard); } struct MutationChecker<'a, 'tcx: 'a> { cx: &'a MatchCheckCtxt<'a, 'tcx>, } impl<'a, 'tcx> Delegate for MutationChecker<'a, 'tcx> { fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {} fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {} fn borrow(&mut self, _: NodeId, span: Span, _: cmt, _: Region, kind: BorrowKind, _: LoanCause) { match kind { MutBorrow => { self.cx .tcx .sess .span_err(span, "cannot mutably borrow in a pattern guard") } ImmBorrow | UniqueImmBorrow => {} } } fn decl_without_init(&mut self, _: NodeId, _: Span) {} fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) { match mode { JustWrite | WriteAndRead => { self.cx .tcx .sess .span_err(span, "cannot assign in a pattern guard") } Init => {} } } } /// Forbids bindings in `@` patterns. This is necessary for memory safety, /// because of the way rvalues are handled in the borrow check. (See issue /// #14587.) fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) { AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat); } struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> { cx: &'a MatchCheckCtxt<'b, 'tcx>, bindings_allowed: bool } impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> { fn visit_pat(&mut self, pat: &Pat) { if !self.bindings_allowed && pat_is_binding(&self.cx.tcx.def_map, pat) { self.cx.tcx.sess.span_err(pat.span, "pattern bindings are not allowed \ after an `@`"); } match pat.node { PatIdent(_, _, Some(_)) => { let bindings_were_allowed = self.bindings_allowed; self.bindings_allowed = false; visit::walk_pat(self, pat); self.bindings_allowed = bindings_were_allowed; } _ => visit::walk_pat(self, pat), } } }