use prelude::*; pub fn trans_mono_item<'a, 'tcx: 'a>(cx: &mut CodegenCx<'a, 'tcx, CurrentBackend>, context: &mut Context, mono_item: MonoItem<'tcx>) { let tcx = cx.tcx; match mono_item { MonoItem::Fn(inst) => match inst { Instance { def: InstanceDef::Item(def_id), substs, } => { let mut mir = ::std::io::Cursor::new(Vec::new()); ::rustc_mir::util::write_mir_pretty(tcx, Some(def_id), &mut mir).unwrap(); tcx.sess.warn(&format!("{:?}:\n\n{}", inst, String::from_utf8_lossy(&mir.into_inner()))); let fn_ty = inst.ty(tcx); let fn_ty = tcx.subst_and_normalize_erasing_regions( substs, ty::ParamEnv::reveal_all(), &fn_ty, ); let sig = cton_sig_from_fn_ty(tcx, fn_ty); let func_id = { let module = &mut cx.module; *cx.def_id_fn_id_map.entry(inst).or_insert_with(|| { // WARNING: keep in sync with FunctionCx::get_function_ref let def_path_based_names = ::rustc_mir::monomorphize::item::DefPathBasedNames::new(tcx, false, false); let mut name = String::new(); def_path_based_names.push_instance_as_string(inst, &mut name); module.declare_function(&name, Linkage::Local, &sig).unwrap() }) }; let mut f = Function::with_name_signature(ExternalName::user(0, func_id.index() as u32), sig); let comments = match ::base::trans_fn(cx, &mut f, inst){ Ok(comments) => comments, Err(err) => { tcx.sess.err(&err); return; } }; let mut writer = ::pretty_clif::CommentWriter(comments); let mut cton = String::new(); ::cranelift::codegen::write::decorate_function(&mut writer, &mut cton, &f, None).unwrap(); tcx.sess.warn(&cton); let flags = settings::Flags::new(settings::builder()); match ::cranelift::codegen::verify_function(&f, &flags) { Ok(_) => {} Err(err) => { tcx.sess.err(&format!("{:?}", err)); let pretty_error = ::cranelift::codegen::print_errors::pretty_verifier_error(&f, None, Some(Box::new(writer)), &err); tcx.sess.fatal(&format!("cretonne verify error:\n{}", pretty_error)); } } context.func = f; // TODO: cranelift doesn't yet support some of the things needed // cx.module.define_function(func_id, context).unwrap(); context.clear(); } inst => cx.tcx.sess.warn(&format!("Unimplemented instance {:?}", inst)), } MonoItem::Static(def_id) => cx.tcx.sess.err(&format!("Unimplemented static mono item {:?}", def_id)), MonoItem::GlobalAsm(node_id) => cx.tcx.sess.err(&format!("Unimplemented global asm mono item {:?}", node_id)), } } pub fn trans_fn<'a, 'tcx: 'a>(cx: &mut CodegenCx<'a, 'tcx, CurrentBackend>, f: &mut Function, instance: Instance<'tcx>) -> Result, String> { let mir = cx.tcx.optimized_mir(instance.def_id()); let mut func_ctx = FunctionBuilderContext::new(); let mut bcx: FunctionBuilder = FunctionBuilder::new(f, &mut func_ctx); let start_ebb = bcx.create_ebb(); bcx.switch_to_block(start_ebb); let mut ebb_map: HashMap = HashMap::new(); for (bb, _bb_data) in mir.basic_blocks().iter_enumerated() { ebb_map.insert(bb, bcx.create_ebb()); } let mut fx = FunctionCx { tcx: cx.tcx, module: &mut cx.module, def_id_fn_id_map: &mut cx.def_id_fn_id_map, instance, mir, bcx, param_substs: { assert!(!instance.substs.needs_infer()); instance.substs }, ebb_map, local_map: HashMap::new(), comments: HashMap::new(), constants: &mut cx.constants, }; let fx = &mut fx; ::abi::codegen_fn_prelude(fx, start_ebb); fx.bcx.ins().jump(*fx.ebb_map.get(&START_BLOCK).unwrap(), &[]); for (bb, bb_data) in mir.basic_blocks().iter_enumerated() { let ebb = fx.get_ebb(bb); fx.bcx.switch_to_block(ebb); fx.bcx.ins().nop(); for stmt in &bb_data.statements { trans_stmt(fx, ebb, stmt)?; } let mut terminator_head = "\n".to_string(); bb_data.terminator().kind.fmt_head(&mut terminator_head).unwrap(); let inst = fx.bcx.func.layout.last_inst(ebb).unwrap(); fx.add_comment(inst, terminator_head); match &bb_data.terminator().kind { TerminatorKind::Goto { target } => { let ebb = fx.get_ebb(*target); fx.bcx.ins().jump(ebb, &[]); } TerminatorKind::Return => { fx.bcx.ins().return_(&[]); } TerminatorKind::Assert { cond, expected, msg: _, target, cleanup: _ } => { let cond = trans_operand(fx, cond).load_value(fx); let target = fx.get_ebb(*target); if *expected { fx.bcx.ins().brz(cond, target, &[]); } else { fx.bcx.ins().brnz(cond, target, &[]); }; fx.bcx.ins().trap(TrapCode::User(!0)); } TerminatorKind::SwitchInt { discr, switch_ty: _, values, targets } => { let discr = trans_operand(fx, discr).load_value(fx); let mut jt_data = JumpTableData::new(); for (i, value) in values.iter().enumerate() { let ebb = fx.get_ebb(targets[i]); jt_data.set_entry(*value as usize, ebb); } let mut jump_table = fx.bcx.create_jump_table(jt_data); fx.bcx.ins().br_table(discr, jump_table); let otherwise_ebb = fx.get_ebb(targets[targets.len() - 1]); fx.bcx.ins().jump(otherwise_ebb, &[]); } TerminatorKind::Call { func, args, destination, cleanup: _ } => { ::abi::codegen_call(fx, func, args, destination); } TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Unreachable => { fx.bcx.ins().trap(TrapCode::User(!0)); } TerminatorKind::Yield { .. } | TerminatorKind::FalseEdges { .. } | TerminatorKind::FalseUnwind { .. } => { bug!("shouldn't exist at trans {:?}", bb_data.terminator()); } TerminatorKind::Drop { target, .. } | TerminatorKind::DropAndReplace { target, .. } => { // TODO call drop impl // unimplemented!("terminator {:?}", bb_data.terminator()); let target_ebb = fx.get_ebb(*target); fx.bcx.ins().jump(target_ebb, &[]); } TerminatorKind::GeneratorDrop => { unimplemented!("terminator GeneratorDrop"); } }; } fx.bcx.seal_all_blocks(); fx.bcx.finalize(); Ok(fx.comments.clone()) } fn trans_stmt<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, cur_ebb: Ebb, stmt: &Statement<'tcx>) -> Result<(), String> { fx.tcx.sess.warn(&format!("stmt {:?}", stmt)); let inst = fx.bcx.func.layout.last_inst(cur_ebb).unwrap(); fx.add_comment(inst, format!("{:?}", stmt)); match &stmt.kind { StatementKind::SetDiscriminant { place, variant_index } => { let place = trans_place(fx, place); let layout = place.layout(); if layout.for_variant(&*fx, *variant_index).abi == layout::Abi::Uninhabited { return Ok(()); } match layout.variants { layout::Variants::Single { index } => { assert_eq!(index, *variant_index); } layout::Variants::Tagged { .. } => { let ptr = place.place_field(fx, mir::Field::new(0)); let to = layout.ty.ty_adt_def().unwrap() .discriminant_for_variant(fx.tcx, *variant_index) .val; let discr = CValue::const_val(fx, ptr.layout().ty, to as u64 as i64); ptr.write_cvalue(fx, discr); } layout::Variants::NicheFilling { dataful_variant, ref niche_variants, niche_start, .. } => { if *variant_index != dataful_variant { let niche = place.place_field(fx, mir::Field::new(0)); //let niche_llty = niche.layout.immediate_llvm_type(bx.cx); let niche_value = ((variant_index - *niche_variants.start()) as u128) .wrapping_add(niche_start); // FIXME(eddyb) Check the actual primitive type here. let niche_llval = if niche_value == 0 { CValue::const_val(fx, niche.layout().ty, 0) } else { CValue::const_val(fx, niche.layout().ty, niche_value as u64 as i64) }; niche.write_cvalue(fx, niche_llval); } } } } StatementKind::Assign(to_place, rval) => { let lval = trans_place(fx, to_place); let dest_layout = lval.layout(); match rval { Rvalue::Use(operand) => { let val = trans_operand(fx, operand); lval.write_cvalue(fx, val); } Rvalue::Ref(_, _, place) => { let place = trans_place(fx, place); let addr = place.expect_addr(); lval.write_cvalue(fx, CValue::ByVal(addr, dest_layout)); } Rvalue::BinaryOp(bin_op, lhs, rhs) => { let ty = fx.monomorphize(&lhs.ty(&fx.mir.local_decls, fx.tcx)); let lhs = trans_operand(fx, lhs); let rhs = trans_operand(fx, rhs); let res = match ty.sty { TypeVariants::TyBool => { trans_bool_binop(fx, *bin_op, lhs, rhs, lval.layout().ty) } TypeVariants::TyUint(_) => { trans_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, false, false) } TypeVariants::TyInt(_) => { trans_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, true, false) } TypeVariants::TyFloat(_) => { trans_float_binop(fx, *bin_op, lhs, rhs, lval.layout().ty) } TypeVariants::TyChar => { trans_char_binop(fx, *bin_op, lhs, rhs, lval.layout().ty) } TypeVariants::TyRawPtr(..) => { trans_ptr_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, false) } _ => unimplemented!("bin op {:?} for {:?}", bin_op, ty), }; lval.write_cvalue(fx, res); } Rvalue::CheckedBinaryOp(bin_op, lhs, rhs) => { let ty = fx.monomorphize(&lhs.ty(&fx.mir.local_decls, fx.tcx)); let lhs = trans_operand(fx, lhs); let rhs = trans_operand(fx, rhs); let res = match ty.sty { TypeVariants::TyUint(_) => { trans_int_binop(fx, *bin_op, lhs, rhs, ty, false, true) } TypeVariants::TyInt(_) => { trans_int_binop(fx, *bin_op, lhs, rhs, ty, true, true) } _ => unimplemented!("checked bin op {:?} for {:?}", bin_op, ty), }; return Err(format!("checked bin op {:?}", bin_op)); lval.write_cvalue(fx, res); } Rvalue::UnaryOp(un_op, operand) => { let ty = fx.monomorphize(&operand.ty(&fx.mir.local_decls, fx.tcx)); let layout = fx.layout_of(ty); let val = trans_operand(fx, operand).load_value(fx); let res = match un_op { UnOp::Not => fx.bcx.ins().bnot(val), UnOp::Neg => match ty.sty { TypeVariants::TyFloat(_) => fx.bcx.ins().fneg(val), _ => unimplemented!("un op Neg for {:?}", ty), } }; lval.write_cvalue(fx, CValue::ByVal(res, layout)); } Rvalue::Cast(CastKind::ReifyFnPointer, operand, ty) => { let operand = trans_operand(fx, operand); let layout = fx.layout_of(ty); lval.write_cvalue(fx, operand.unchecked_cast_to(layout)); } Rvalue::Cast(CastKind::UnsafeFnPointer, operand, ty) => { let operand = trans_operand(fx, operand); let layout = fx.layout_of(ty); lval.write_cvalue(fx, operand.unchecked_cast_to(layout)); } Rvalue::Cast(CastKind::Misc, operand, to_ty) => { let operand = trans_operand(fx, operand); let from_ty = operand.layout().ty; match (&from_ty.sty, &to_ty.sty) { (TypeVariants::TyRef(..), TypeVariants::TyRef(..)) | (TypeVariants::TyRef(..), TypeVariants::TyRawPtr(..)) | (TypeVariants::TyRawPtr(..), TypeVariants::TyRef(..)) | (TypeVariants::TyRawPtr(..), TypeVariants::TyRawPtr(..)) => { lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout)); } (TypeVariants::TyChar, TypeVariants::TyUint(_)) | (TypeVariants::TyUint(_), TypeVariants::TyInt(_)) | (TypeVariants::TyUint(_), TypeVariants::TyUint(_)) => { let from = operand.load_value(fx); let res = ::common::cton_intcast(fx, from, from_ty, to_ty, false); lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } (TypeVariants::TyInt(_), TypeVariants::TyInt(_)) | (TypeVariants::TyInt(_), TypeVariants::TyUint(_)) => { let from = operand.load_value(fx); let res = ::common::cton_intcast(fx, from, from_ty, to_ty, true); lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } _ => return Err(format!("rval misc {:?} {:?}", operand, to_ty)), } }, Rvalue::Cast(CastKind::ClosureFnPointer, operand, ty) => unimplemented!("rval closure_fn_ptr {:?} {:?}", operand, ty), Rvalue::Cast(CastKind::Unsize, operand, ty) => return Err(format!("rval unsize {:?} {:?}", operand, ty)), Rvalue::Discriminant(place) => { let place = trans_place(fx, place).to_cvalue(fx); let discr = trans_get_discriminant(fx, place, dest_layout); lval.write_cvalue(fx, discr); } Rvalue::Repeat(operand, times) => unimplemented!("rval repeat {:?} {:?}", operand, times), Rvalue::Len(lval) => return Err(format!("rval len {:?}", lval)), Rvalue::NullaryOp(NullOp::Box, ty) => unimplemented!("rval box {:?}", ty), Rvalue::NullaryOp(NullOp::SizeOf, ty) => unimplemented!("rval size_of {:?}", ty), Rvalue::Aggregate(_, _) => bug!("shouldn't exist at trans {:?}", rval), } } StatementKind::StorageLive(_) | StatementKind::StorageDead(_) | StatementKind::Nop | StatementKind::ReadForMatch(_) | StatementKind::Validate(_, _) | StatementKind::EndRegion(_) | StatementKind::UserAssertTy(_, _) => {} StatementKind::InlineAsm { .. } => fx.tcx.sess.fatal("Inline assembly is not supported"), } Ok(()) } pub fn trans_get_discriminant<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, value: CValue<'tcx>, dest_layout: TyLayout<'tcx>) -> CValue<'tcx> { let layout = value.layout(); if layout.abi == layout::Abi::Uninhabited { fx.bcx.ins().trap(TrapCode::User(!0)); } match layout.variants { layout::Variants::Single { index } => { let discr_val = layout.ty.ty_adt_def().map_or( index as u128, |def| def.discriminant_for_variant(fx.tcx, index).val); return CValue::const_val(fx, dest_layout.ty, discr_val as u64 as i64); } layout::Variants::Tagged { .. } | layout::Variants::NicheFilling { .. } => {}, } let discr = value.value_field(fx, mir::Field::new(0)); let discr_ty = discr.layout().ty; let lldiscr = discr.load_value(fx); match layout.variants { layout::Variants::Single { .. } => bug!(), layout::Variants::Tagged { ref tag, .. } => { let signed = match tag.value { layout::Int(_, signed) => signed, _ => false }; let val = cton_intcast(fx, lldiscr, discr_ty, dest_layout.ty, signed); return CValue::ByVal(val, dest_layout); } layout::Variants::NicheFilling { dataful_variant, ref niche_variants, niche_start, .. } => { let niche_llty = fx.cton_type(discr_ty).unwrap(); if niche_variants.start() == niche_variants.end() { let dest_cton_ty = fx.cton_type(dest_layout.ty).unwrap(); let b = fx.bcx.ins().icmp_imm(IntCC::Equal, lldiscr, niche_start as u64 as i64); let if_true = fx.bcx.ins().iconst(dest_cton_ty, *niche_variants.start() as u64 as i64); let if_false = fx.bcx.ins().iconst(dest_cton_ty, dataful_variant as u64 as i64); let val = fx.bcx.ins().select(b, if_true, if_false); return CValue::ByVal(val, dest_layout); } else { // Rebase from niche values to discriminant values. let delta = niche_start.wrapping_sub(*niche_variants.start() as u128); let delta = fx.bcx.ins().iconst(niche_llty, delta as u64 as i64); let lldiscr = fx.bcx.ins().isub(lldiscr, delta); let b = fx.bcx.ins().icmp_imm(IntCC::UnsignedLessThanOrEqual, lldiscr, *niche_variants.end() as u64 as i64); let if_true = cton_intcast(fx, lldiscr, discr_ty, dest_layout.ty, false); let if_false = fx.bcx.ins().iconst(niche_llty, dataful_variant as u64 as i64); let val = fx.bcx.ins().select(b, if_true, if_false); return CValue::ByVal(val, dest_layout); } } } } macro_rules! binop_match { (@single $fx:expr, $bug_fmt:expr, $var:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, bug) => { bug!("bin op {} on {} lhs: {:?} rhs: {:?}", stringify!($var), $bug_fmt, $lhs, $rhs) }; (@single $fx:expr, $bug_fmt:expr, $var:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, icmp($cc:ident)) => {{ assert_eq!($fx.tcx.types.bool, $ret_ty); let ret_layout = $fx.layout_of($ret_ty); let b = $fx.bcx.ins().icmp(IntCC::$cc, $lhs, $rhs); CValue::ByVal($fx.bcx.ins().bint(types::I8, b), ret_layout) }}; (@single $fx:expr, $bug_fmt:expr, $var:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, fcmp($cc:ident)) => {{ assert_eq!($fx.tcx.types.bool, $ret_ty); let ret_layout = $fx.layout_of($ret_ty); let b = $fx.bcx.ins().fcmp(FloatCC::$cc, $lhs, $rhs); CValue::ByVal($fx.bcx.ins().bint(types::I8, b), ret_layout) }}; (@single $fx:expr, $bug_fmt:expr, $var:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, custom(|| $body:expr)) => {{ $body }}; (@single $fx:expr, $bug_fmt:expr, $var:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, $name:ident) => {{ let ret_layout = $fx.layout_of($ret_ty); CValue::ByVal($fx.bcx.ins().$name($lhs, $rhs), ret_layout) }}; ( $fx:expr, $bin_op:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, $bug_fmt:expr; $( $var:ident ($sign:pat) $name:tt $( ( $($next:tt)* ) )? ; )* ) => {{ let lhs = $lhs.load_value($fx); let rhs = $rhs.load_value($fx); match ($bin_op, $signed) { $( (BinOp::$var, $sign) => binop_match!(@single $fx, $bug_fmt, $var, lhs, rhs, $ret_ty, $name $( ( $($next)* ) )?), )* } }} } fn trans_bool_binop<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, false, lhs, rhs, ty, "bool"; Add (_) bug; Sub (_) bug; Mul (_) bug; Div (_) bug; Rem (_) bug; BitXor (_) bxor; BitAnd (_) band; BitOr (_) bor; Shl (_) bug; Shr (_) bug; Eq (_) icmp(Equal); Lt (_) icmp(UnsignedLessThan); Le (_) icmp(UnsignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (_) icmp(UnsignedGreaterThanOrEqual); Gt (_) icmp(UnsignedGreaterThan); Offset (_) bug; }; res } pub fn trans_int_binop<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>, signed: bool, _checked: bool) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, signed, lhs, rhs, ty, "int/uint"; Add (_) iadd; Sub (_) isub; Mul (_) imul; Div (false) udiv; Div (true) sdiv; Rem (false) urem; Rem (true) srem; BitXor (_) bxor; BitAnd (_) band; BitOr (_) bor; Shl (_) ishl; Shr (false) ushr; Shr (true) sshr; Eq (_) icmp(Equal); Lt (false) icmp(UnsignedLessThan); Lt (true) icmp(SignedLessThan); Le (false) icmp(UnsignedLessThanOrEqual); Le (true) icmp(SignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (false) icmp(UnsignedGreaterThanOrEqual); Ge (true) icmp(SignedGreaterThanOrEqual); Gt (false) icmp(UnsignedGreaterThan); Gt (true) icmp(SignedGreaterThan); Offset (_) bug; }; // TODO: return correct value for checked binops res } fn trans_float_binop<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, false, lhs, rhs, ty, "float"; Add (_) fadd; Sub (_) fsub; Mul (_) fmul; Div (_) fdiv; Rem (_) custom(|| { assert_eq!(lhs.layout().ty, ty); assert_eq!(rhs.layout().ty, ty); match ty.sty { TypeVariants::TyFloat(FloatTy::F32) => fx.easy_call("fmodf", &[lhs, rhs], ty), TypeVariants::TyFloat(FloatTy::F64) => fx.easy_call("fmod", &[lhs, rhs], ty), _ => bug!(), } }); BitXor (_) bxor; BitAnd (_) band; BitOr (_) bor; Shl (_) bug; Shr (_) bug; Eq (_) fcmp(Equal); Lt (_) fcmp(LessThan); Le (_) fcmp(LessThanOrEqual); Ne (_) fcmp(NotEqual); Ge (_) fcmp(GreaterThanOrEqual); Gt (_) fcmp(GreaterThan); Offset (_) bug; }; res } fn trans_char_binop<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, false, lhs, rhs, ty, "char"; Add (_) bug; Sub (_) bug; Mul (_) bug; Div (_) bug; Rem (_) bug; BitXor (_) bug; BitAnd (_) bug; BitOr (_) bug; Shl (_) bug; Shr (_) bug; Eq (_) icmp(Equal); Lt (_) icmp(UnsignedLessThan); Le (_) icmp(UnsignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (_) icmp(UnsignedGreaterThanOrEqual); Gt (_) icmp(UnsignedGreaterThan); Offset (_) bug; }; res } fn trans_ptr_binop<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>, _checked: bool) -> CValue<'tcx> { binop_match! { fx, bin_op, false, lhs, rhs, ty, "ptr"; Add (_) bug; Sub (_) bug; Mul (_) bug; Div (_) bug; Rem (_) bug; BitXor (_) bug; BitAnd (_) bug; BitOr (_) bug; Shl (_) bug; Shr (_) bug; Eq (_) icmp(Equal); Lt (_) icmp(UnsignedLessThan); Le (_) icmp(UnsignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (_) icmp(UnsignedGreaterThanOrEqual); Gt (_) icmp(UnsignedGreaterThan); Offset (_) iadd; } } pub fn trans_place<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, place: &Place<'tcx>) -> CPlace<'tcx> { match place { Place::Local(local) => fx.get_local_place(*local), Place::Static(static_) => unimplemented!("static place {:?} ty {:?}", static_.def_id, static_.ty), Place::Projection(projection) => { let base = trans_place(fx, &projection.base); match projection.elem { ProjectionElem::Deref => { CPlace::Addr(base.to_cvalue(fx).load_value(fx), fx.layout_of(place.ty(&*fx.mir, fx.tcx).to_ty(fx.tcx))) } ProjectionElem::Field(field, _ty) => { base.place_field(fx, field) } ProjectionElem::Index(local) => unimplemented!("projection index {:?} {:?}", projection.base, local), ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false } => unimplemented!("projection const index {:?} offset {:?} not from end", projection.base, offset), ProjectionElem::ConstantIndex { offset, min_length: _, from_end: true } => unimplemented!("projection const index {:?} offset {:?} from end", projection.base, offset), ProjectionElem::Subslice { from, to } => unimplemented!("projection subslice {:?} from {} to {}", projection.base, from, to), ProjectionElem::Downcast(_adt_def, variant) => { base.downcast_variant(fx, variant) } } } } } pub fn trans_operand<'a, 'tcx>(fx: &mut FunctionCx<'a, 'tcx>, operand: &Operand<'tcx>) -> CValue<'tcx> { match operand { Operand::Move(place) | Operand::Copy(place) => { let cplace = trans_place(fx, place); cplace.to_cvalue(fx) }, Operand::Constant(const_) => { ::constant::trans_constant(fx, const_) } } }