/* * */ #ifndef RUST_TASK_H #define RUST_TASK_H #include #include "util/array_list.h" #include "context.h" #include "rust_debug.h" #include "rust_internal.h" #include "rust_kernel.h" #include "rust_obstack.h" #include "boxed_region.h" #include "rust_stack.h" #include "rust_port_selector.h" // Corresponds to the rust chan (currently _chan) type. struct chan_handle { rust_task_id task; rust_port_id port; }; struct rust_box; struct frame_glue_fns { uintptr_t mark_glue_off; uintptr_t drop_glue_off; uintptr_t reloc_glue_off; }; // std::lib::task::task_result typedef unsigned long task_result; #define tr_success 0 #define tr_failure 1 struct spawn_args; struct cleanup_args; struct reset_args; // std::lib::task::task_notification // // since it's currently a unary tag, we only add the fields. struct task_notification { rust_task_id id; task_result result; // task_result }; struct rust_task : public kernel_owned, rust_cond { RUST_ATOMIC_REFCOUNT(); rust_task_id id; bool notify_enabled; chan_handle notify_chan; context ctx; stk_seg *stk; uintptr_t runtime_sp; // Runtime sp while task running. rust_scheduler *sched; rust_task_thread *thread; rust_crate_cache *cache; // Fields known only to the runtime. rust_kernel *kernel; const char *const name; rust_task_list *state; rust_cond *cond; const char *cond_name; int32_t list_index; rust_port_id next_port_id; // Rendezvous pointer for receiving data when blocked on a port. If we're // trying to read data and no data is available on any incoming channel, // we block on the port, and yield control to the scheduler. Since, we // were not able to read anything, we remember the location where the // result should go in the rendezvous_ptr, and let the sender write to // that location before waking us up. uintptr_t* rendezvous_ptr; memory_region local_region; boxed_region boxed; // Indicates that fail() has been called and we are cleaning up. // We use this to suppress the "killed" flag during calls to yield. bool unwinding; bool propagate_failure; lock_and_signal lock; hash_map port_table; rust_obstack dynastack; uint32_t cc_counter; debug::task_debug_info debug; // The amount of stack we're using, excluding red zones size_t total_stack_sz; private: // Protects the killed flag lock_and_signal kill_lock; // Indicates that the task was killed and needs to unwind bool killed; // Indicates that we've called back into Rust from C bool reentered_rust_stack; // The stack used for running C code, borrowed from the scheduler thread stk_seg *c_stack; uintptr_t next_c_sp; uintptr_t next_rust_sp; rust_port_selector port_selector; lock_and_signal supervisor_lock; rust_task *supervisor; // Parent-link for failure propagation. // Called when the atomic refcount reaches zero void delete_this(); void new_stack(size_t sz); void del_stack(); void free_stack(stk_seg *stk); size_t get_next_stack_size(size_t min, size_t current, size_t requested); void return_c_stack(); friend void task_start_wrapper(spawn_args *a); friend void cleanup_task(cleanup_args *a); friend void reset_stack_limit_on_c_stack(reset_args *a); public: // Only a pointer to 'name' is kept, so it must live as long as this task. rust_task(rust_task_thread *thread, rust_task_list *state, rust_task *spawner, const char *name, size_t init_stack_sz); void start(spawn_fn spawnee_fn, rust_opaque_box *env, void *args); void start(); bool running(); bool blocked(); bool blocked_on(rust_cond *cond); bool dead(); void *malloc(size_t sz, const char *tag, type_desc *td=0); void *realloc(void *data, size_t sz); void free(void *p); void transition(rust_task_list *src, rust_task_list *dst); void block(rust_cond *on, const char* name); void wakeup(rust_cond *from); void die(); void unblock(); // Print a backtrace, if the "bt" logging option is on. void backtrace(); // Yields control to the scheduler. Called from the Rust stack void yield(bool *killed); // Fail this task (assuming caller-on-stack is different task). void kill(); // Indicates that we've been killed and now is an apropriate // time to fail as a result bool must_fail_from_being_killed(); // Fail self, assuming caller-on-stack is this task. void fail(); void conclude_failure(); void fail_parent(); // Disconnect from our supervisor. void unsupervise(); frame_glue_fns *get_frame_glue_fns(uintptr_t fp); rust_crate_cache * get_crate_cache(); void *calloc(size_t size, const char *tag); rust_port_id register_port(rust_port *port); void release_port(rust_port_id id); rust_port *get_port_by_id(rust_port_id id); // Use this function sparingly. Depending on the ref count is generally // not at all safe. intptr_t get_ref_count() const { return ref_count; } void notify(bool success); void *next_stack(size_t stk_sz, void *args_addr, size_t args_sz); void prev_stack(); void record_stack_limit(); void reset_stack_limit(); bool on_rust_stack(); void check_stack_canary(); void delete_all_stacks(); void config_notify(chan_handle chan); void call_on_c_stack(void *args, void *fn_ptr); void call_on_rust_stack(void *args, void *fn_ptr); bool have_c_stack() { return c_stack != NULL; } rust_port_selector *get_port_selector() { return &port_selector; } }; // This stuff is on the stack-switching fast path // Get a rough approximation of the current stack pointer extern "C" uintptr_t get_sp(); // This is the function that switches stacks by calling another function with // a single void* argument while changing the stack pointer. It has a funny // name because gdb doesn't normally like to backtrace through split stacks // (thinks it indicates a bug), but has a special case to allow functions // named __morestack to move the stack pointer around. extern "C" void __morestack(void *args, void *fn_ptr, uintptr_t stack_ptr); inline static uintptr_t sanitize_next_sp(uintptr_t next_sp) { // Since I'm not precisely sure where the next stack pointer sits in // relation to where the context switch actually happened, nor in relation // to the amount of stack needed for calling __morestack I've added some // extra bytes here. // FIXME: On the rust stack this potentially puts is quite far into the // red zone. Might want to just allocate a new rust stack every time we // switch back to rust. const uintptr_t padding = 16; return align_down(next_sp - padding); } inline void rust_task::call_on_c_stack(void *args, void *fn_ptr) { // Too expensive to check // I(thread, on_rust_stack()); uintptr_t prev_rust_sp = next_rust_sp; next_rust_sp = get_sp(); bool borrowed_a_c_stack = false; uintptr_t sp; if (c_stack == NULL) { c_stack = thread->borrow_c_stack(); next_c_sp = align_down(c_stack->end); sp = next_c_sp; borrowed_a_c_stack = true; } else { sp = sanitize_next_sp(next_c_sp); } __morestack(args, fn_ptr, sp); // Note that we may not actually get here if we threw an exception, // in which case we will return the c stack when the exception is caught. if (borrowed_a_c_stack) { return_c_stack(); } next_rust_sp = prev_rust_sp; } inline void rust_task::call_on_rust_stack(void *args, void *fn_ptr) { // Too expensive to check // I(thread, !on_rust_stack()); I(thread, next_rust_sp); bool had_reentered_rust_stack = reentered_rust_stack; reentered_rust_stack = true; uintptr_t prev_c_sp = next_c_sp; next_c_sp = get_sp(); uintptr_t sp = sanitize_next_sp(next_rust_sp); __morestack(args, fn_ptr, sp); next_c_sp = prev_c_sp; reentered_rust_stack = had_reentered_rust_stack; } inline void rust_task::return_c_stack() { // Too expensive to check // I(thread, on_rust_stack()); I(thread, c_stack != NULL); thread->return_c_stack(c_stack); c_stack = NULL; next_c_sp = 0; } // // Local Variables: // mode: C++ // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: // #endif /* RUST_TASK_H */